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Extended MPQ-Trees for Probe Interval Graphs

Ryuhei UEHARAT

Abstract

Probe interval graphs are introduced to deal with the physical mapping and sequencing of DNA
as a generalization of interval graphs. In this paper, we propose extended MPQ-trees to represent
the probe interval graphs. An extended MP Q-tree is canonical, represents all possible permutations
of the intervals, and can be constructed in O(ns) time. Thus we can solve the graph isomorphism
problem for the graphs in O(n?) time. Using the tree, we can determine the relationship of two
nonprobes. Therefore, in a sense, we can find the best nonprobe that would be probed in the next

experiment.

1 Introduction

Interval graphs were introduced in the 1950’s by Hajos and Benzer independently. Since then a number of
interesting applications for interval graphs have been found including to model the topological structure
of the DNA molecule, scheduling, and others (see [4, 10, 2] for further details). The interval graph model
requires all overlap information. However, in many cases, only partial overlap data exist. The class of
probe interval graphs is introduced by Zhang in the assembly of contigs in physical mapping of DNA,
which is a problem arising in the sequencing of DNA (see [13, 15, 14, 10] for background). A probe
interval graph is obtained from an interval graph by designating a subset P of vertices as probes, and
removing the edges between pairs of vertices in the remaining set N of nonprobes. That is, on the model,
only partial overlap information (between a probe and the others) is given. Recently, the recognition
algorithms of the graph class are investigated [6, 9, 5].

A data structure called PQ-trees was developed by Booth and Lueker to represent all possible per-
mutations of the intervals of an interval graph [1]. Korte and Mohring simplified their algorithm by
introducing MP Q-trees [7]. An MPQ-tree is canonical; that is, given two interval graphs are isomor-
phic if and only if their corresponding MP Q-trees are isomorphic. In general, given probe interval graph,
there are several affirmative interval graphs those are not isomorphic, and their interval representations
are consistent to the probe interval graph. Thus there are no canonical MP Q-trees for probe interval
graphs.

In this paper, we extend MP Q-trees to represent probe interval graphs. The extended MP Q-tree is
canonical for any probe interval graph, and the tree can be constructed in O(n?) time. There are several
applications including:
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1. The graph isomorphism problem for probe interval graphs can be solved in O(n®) time. From the
practical point of view, it is useful in the Computational Biology community; we might determine that
two given DNA sequences differ before probing all nonprobes.

From the theoretical point of view, the complexity of the graph isomorphism of probe interval graphs
was not known (see [12] for related results and references). Thus the result improves the upper bound of
the graph classes such that the graph isomorphism problem can be solved in polynomial time.

2. The extended MPQ-tree gives us the information about nonprobes; two nonprobes are either (1)
independent (and they cannot overlap each other), (2) overlapping, or (3) not determined without ex-
periments. Hence, to clarify the structure of the DNA sequence, we only have to experiment on the
nonprobes in the case (3). Moreover, we can find the nonprobe that has most nonprobes in the case
(3) in linear time. Therefore, we can determine the “best” nonprobe to fix the structure of the DNA
sequence in a sense.

3. We can enumerate all possible permutations of the intervals for given probe interval graph, which is
beneficial in the Computational Biology community.

Due to space limitation, all proofs and several templates are omitted and can be found in full draft
available at http://www.komazawa-u.ac.jp/ uehara/ps/MPQpig.pdf.

2 Preliminaries

The neighborhood of a vertex v in a graph G = (V, F) is the set Ng(v) = {u € V|{u,v} € F}, and the
degree of a vertex v is |[Ng(v)| and denoted by degg(v). For the vertex set U of V', we denote by Ng(U)
the set {v € V|v € N(u) for some u € U}. If no confusion can arise we will omit the index G. Given
graph G = (V, F), its cograph is defined by F = {{u,v}|{u,v} ¢ E}, and denoted by G = (V, F). A
vertex set T is independent set if G[I] contains no edges, and then the graph G[I] is said to be clique.
For a given graph G = (V, F), asequence of the vertices vg, vy, - - -, 1 is a path, denoted by (vo, v, - -, v1),

if {v;,vj41} € E for each 0 < j <1—1. The length of a path is the number of edges on the path. For
two vertices u and v, the distance of the vertices is the minimum length of the paths joining u and v.
A cycle is a path beginning and ending with the same vertex. A cycle of length ¢ is denoted by C;. An
edge which joins two vertices of a cycle but is not itself an edge of the cycle is a chord of that cycle. A
graph is chordal if each cycle of length at least 4 has a chord. Given graph G = (V, E), a vertex v € V' is
stmplicial in G if G[N(v)] is a clique in G. The following lemma is a folklore:

Lemma 1 Given chordal graph, all simplicial vertices can be found in linear time.

Two graphs G = (V, E) and G’ = (V' E') are isomorphic iff there is a one-to-one mapping ¢ : V. — V’
which satisfies {u,v} € F iff {¢(u),¢(v)} € E' for every pair of vertices u and v. Given graphs G and
G', graph isomorphism problem is the problem to determine if G is isomorphic to G’

2.1 Interval graph representation

A graph (V, E) with V' = {vy, va, - - -, v,, } is an interval graph if there is a set of intervals T = {I,,, I,,,, -, I, }
such that {v;,v;} € Eiff I,, N I, # 0 for each i and j with 1 <i,j < n. We call the set Z of intervals
interval representation of the graph. For each interval I, we denote by R(I) and L(I) the right and left
endpoints of the interval, respectively (hence we have L(I) < R(I) and I = [L(I), R(I)]).

A graph G = (V| E) is a probe interval graph if V can be partitioned into subsets P and N (cor-
responding to the probes and nonprobes) and each v € V can be assigned to an interval I, such that
{u,v} € E iff both I, N I, # 0 and at least one of u and v is in P. In this paper, we assume that P
and N are given, and then we denote by G = (P, N, F). By definition, N is an independent set, G[P)]
is an interval graph, and G[P U {v}] is also an interval graph for any v € N. Let G = (P,N,F) be a
probe interval graph. Let ET be a set of edges {t1,#2} with 1,75 € N such that there are two probes
v and vy in P such that {vi,t1} € E, {v1,ta} € F, {vy,t1} € E, {va,t2} € E, and {v1,v3} € E. In the
case, we can know that intervals ¢; and ¢ have to overlap without experiment. Each edge in Et is called
an enhanced edge, and the graph Gt := (P, N, E U E*) is said to be an enhanced probe interval graph.
It is known that a probe interval graph is weakly chordal [11], and an enhanced probe interval graph is
chordal [13, 15]. For further details and references can be found in [2, 10].
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For given probe interval graph G, an interval graph G’ is said to be affirmative iff G’ gives one possible
interval representations for GG. In general, for a probe interval graph G, there are several non-isomorphic
affirmative interval graphs. For given probe interval graph G = (P, N, F), the affirmative interval graph
G is also said to be affirmative to the corresponding enhanced probe interval graph Gt = (P, N, FEUE™).

2.2 PO-trees and MPQ-trees

P Q-trees were introduced by Booth and Lueker [1], and which can be used to recognize interval graphs
as follows. A PQ-tree is a rooted tree 1" with two types of internal nodes: P and @, which will be
represented by circles and rectangles, respectively. The leaves of T' are labeled 1-1 with the maximal
cliques of the interval graph G. The frontier of a PQ-tree T is the permutation of the maximal cliques
obtained by the ordering of the leaves of T' from left to right. PO-tree T and T" are equivalent, if one
can be obtained from the other by applying the following rules a finite number of times; (1) arbitrarily
permute the successor nodes of a P-node, or (2) reverse the order of the successor nodes of a @-node. In
[1], Booth and Lueker showed that a graph G is an interval graph iff there is a PQ-tree T" whose frontier
represents a consecutive arrangement of the maximal cliques of G. They also developed an O(|V| + |E])
algorithm that either constructs a PQ-tree for G, or states that G is not an interval graph.

Lueker and Booth [8], and Colbourn and Booth [3] developed labeled PQ-trees in which each node
contains information of vertices as labels. Their labeled P Q-trees are canonical; given interval graphs
G1 and G2 are isomorphic iff corresponding labeled PQ-trees 71 and 7% are isomorphic. Since we can
determine if two labeled PQ-trees T and 75 are isomorphic, the isomorphism of interval graphs can be
determined in linear time.

MPQ-trees are developed by Korte and Mohring to simplify the construction of PQ-trees [7].The
MPQ-tree T* assigns sets of vertices (possibly empty) to the nodes of a PQ-tree T representing an
interval graph G = (V, E). A P-node is assigned only one set, while a Q-node has a set for each of its
sons (ordered from left to right according to the ordering of the sons).

For a P-node P, this set consists of those vertices of G contained in all maximal cliques represented
by the subtree or P in T, but in no other cliquest. For a Q-node Q, the definition is more involved. Let
Q1, +,Qm (m > 3) be the set of the sons (in consecutive order) of Q, and let 7} be the subtree of T
with root ();. We then assign a set S;, called section, to Q for each Q;. Section S; contains all vertices
that are contained in all maximal cliques of 7; and some other 7}, but not in any clique belonging to
some other subtree of 7' that is not below Q.

In [7], Korte and Md&hring showed linear time algorithms that construct an MPQ-tree for given
interval graph. Although it does not shown explicitly, the MP Q-tree is essentially the same as the
labeled P Q-tree in [3], and hence the graph isomorphism problem can be solved in linear time using the
MP Q-trees.

The property of MP Q-trees is summarized as follows [7, Theorem 2.1]:

Theorem 2 Let T* be the canonical MPQ-tree for given interval graph G = (V| E). Then

(a) T* can be obtained in O(|V| 4+ |F|) time and O(|V]) space.

(b) Each maximal clique of G corresponds to a path in 7* from the root to a leaf, where each vertex
v € V is as close as possible to the root.

(c¢) In T*, each vertex v appears in either one leaf, one P-node, or consecutive sections S;, Siy1, -- -,
Si4; (with 7 > 0) in a Q-node.

(d) The root of T* contains all vertices belonging to all maximal cliques, while the leaves contain the
simplicial vertices.

Lemma 3 Let Q be a Q-node in the canonical MPQ-tree. Let Sy, -+, Sy (in this order) be the sections
of @, and let U; denote the set of vertices occurring below S; with 1 < i < k. Then we have the following;

(a) Si—inS; #0 for2<i<k,

(1’)) S1 C Sy and Sy C Sg—1,

tWe will use P,Q, and N for describing a P-node, Q-node, any node, respectively to distinguish probe set P and
nonprobe set N.
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Figure 1: Given probe interval graph G
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Figure 2: The MPQ-tree of G — ¢

(c) Uy # 0 and Uy, # 0,

(d) (Siﬂ5i+1)\51 ?5(0 and (Si_lmSi)\Sk #@for 2<i<k-1,
(e) Sic1 #S;with2<i<k—1, and

(f) (Si—l U Ui—l) \ S; # 0 and (Sz @] Uz) \ Si_1 75 0 for 2 <i<k.

Given enhanced probe interval graph Gt = (P, N, F U E*), let u and v be any two nonprobes with
{u,v} € ET. Then, we say that u intersects v if I, NI, # 0 for all affirmative interval graphs of G*. The
nonprobes u and v are independent if I, N T, = 0 for all affirmative interval graphs of G*. Otherwise, we
say that the nonprobe u potentially intersects v. If u potentially intersects v, we cannot determine their
relation without experiments.

2.3 Extended MPQ-trees

If given graph is an interval graph, the corresponding MP Q-tree is uniquely determined up to isomor-
phism. However, for a probe interval graph, this is not in the case. For example, consider a probe interval
graph G = (P, N, E) with P = {1,2,3,4,5,6,7,8,9} and N = {a,b,c,d, e, f, g} given in Figure 1. If the
graph does not contain the nonprobe g, we have the canonical MPQ-tree in Figure 2. However, the
graph is a probe interval graph and we do not know if ¢ intersects b and/or ¢ since they are nonprobes.
According to the relations between g and b and/or ¢, we have four possible MP Q-trees that are affirma-
tive to G shown in Figure 3, where X is either {1,2,7,8},{1,2,7,8,¢c},or {1,2,7,8,b,c}. We call such a
vertex ¢ floating leaf (later, it will be shown that such a vertex has to be a leaf in an MP Q-tree). For a
floating leaf, there is a corresponding @-node (which also will be shown later). Thus we extend the notion
of a @-node to contain the information of the floating leaf. A floating leaf appears consecutive sections
of a @-node C? as the ordinary vertices in Q To distinguish them, we draw them over the corresponding
sections; see Figure 4. Further details will be discussed in Section 3.

274777 172777 172757 172757 274777 172777 X 172757 172757
8,b 8,b 7,8,¢ 7,c,d 8,b 8,b 7,8,¢ 7,c,d
la] 9]

Figure 3: Four MP Q-trees of G
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Figure 4: The extended MP Q-tree of G

3 Construction of Extended MP Q-tree of Probe Interval Graph

Let G = (P,N,E) be a given probe interval graph, and Gt = (P, N, E' U E*t) be the corresponding
enhanced probe interval graph, where Et is the set of enhanced edges. Then the outline of the algorithm
is as follows.

A0. Given probe interval graph G = (P, N, E), compute the enhanced probe interval graph Gt =
(P,N,EUEY);

Al. Partition N into two subsets Ng := {u|u is simplicial in Gt} and N* := N \ Ng;

A2. Construct the (ordinary) MPQ-tree T* of G* = (P, N*, E*), where E* is the set of edges induced
by PU N* from G7;

A3. Embed each nonprobe v in Ng into the (extended) MP Q-tree T™.

For example, for the graph G = (P,N,E) in Figure 1, E* = {{c,d},{c, f}}, Ns = {a,e,g}, and
N* = {b,c,d, f}. The following observation is obtained by definition:

Observation 4 Let v be a nonprobe in Ng. Then for any two vertices uy,us € Ng+(v), Iy, N Tu, # 0.

3.1 Construction of MPQ-tree of G*

Let G* = (P, N*, E*) be the enhanced probe interval graph induced by P and N*. The following lemma
plays an important role in this subsection.

Lemma 5 Let u and v be any nonprobes in N*. Then there is an interval representation of G* such
that I, N I, # 0 if and only if {u,v} € E*t.

The definition of (enhanced) probe interval graphs and Lemma 5 imply the main theorem in this
section:

Theorem 6 The enhanced probe interval graph G* = (P, N*, E*) is an interval graph.
Corollary 7 The canonical MPQ-tree T of G* can be computed in linear time.

Hereafter we call the graph G* = (P, N*, E*) the backbone interval graph of Gt = (P,N,E U ET). In
the canonical MP Q-tree 1™, for each pair of nonprobes u and v, their corresponding intervals intersect
iff {u,v} € Et. This implies the following observation.

Observation 8 The canonical MPQ-tree T* gives us the possible interval representations of G* such
that two nonprobes in N* do not intersect as possible as they can.

For example, for the graph G = (P, N, E) in Figure 1, the canonical MP Q-tree of the backbone interval
graph G* = (P, N*, E*) is described in Figure 5. In the MPQ-tree, Iz N Iy = 0.

3.2 Embedding of Nonprobes in Ng

Lemma 9 For each nonprobe v in Ng, all vertices in N(v) are probes.

Lemma 10 For any probe interval graph G, there is an affirmative interval graph G’ such that every
nonprobe v in Ng of G is also simplicial in G’.
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Figure 5: The canonical MP Q-tree 1™ of G*

By Lemma 10 and Theorem 2(d), we have the following corollary.

Corollary 11 For any probe interval graph G, there is an affirmative interval graph G’ such that every
nonprobe v in Ng of G is in a leaf of the MP Q-tree of G'.

Our embedding is a natural extension of what due to Korte and Méhring [7]. Each node N (including
Q-node) of the current tree 7* and each section S of a @-node is labeled according to how the nonprobe
v in N is related to the probes in N or S. Nonprobes in N or S are ignored. The label is 0o, 1, or 0 if »
is adjacent to all, some, or no probe from N, or S, respectively. Empty sets (or the sets containing only
nonprobes) obtain the label 0. Labels 1 and oo are called positive labels.

Lemma 12 For a nonprobe v in Ng, all nodes with a positive label are contained in a unique path of
.

Let P’ be the unique minimal path in T* containing all nodes with positive label. Let P be a path
from the root of the MPQ-tree T* to a leaf containing P’ (a leaf is chosen in any way). Let N, be the
lowest node in P with positive label. (That is, N, is the node of the largest depth in P".) If P contains
nonempty P-nodes or sections above N, with label 0 or 1, let N* be the highest such P-node or @-node
containing the section. Otherwise put N, = N*.

When N, # N*, we have the following lemma:

Lemma 13 We assume that N, # N*. Let @ be any O-node with sections Sy, -, Sy in this order
between N, and N*. If @) is not N*, all neighbors of v in @) appear in either S1 or Sj.

Note that Lemmas 12 and 13 correspond to [7, Lemma 4.1]. However, Lemma 13 does not hold at
the node N*. We are now ready to use the same bottom-up strategy from N, to N* asin [7]. In [7], the
ordering of vertices are determined by LexBFS. In our algorithm, the step A3 consists of the following
substeps;

A3.1. while there is a nonprobe v such that N, # N* for v, embed v into T™;
A3.2. while there i1s a nonprobe v such that N, = N* for v and v is not a floating leaf, embed v into

.

)

A3.3. embed each nonprobe v (such that N, = N* and v is a floating leaf) into 7.
In the embedding, we have the following assertions:

Assertion 14 (1) Each nonprobe in Ng has no intersection with unnecessary nonprobes,
(2) each leaf contains at most one nonprobe from Ng, and

(3) each nonprobe in Ng is in a leaf.

All templates for embedding are omitted due to space limitation.

Example 15 For the graph G = (P, N, F) in Figure 1 with its backbone interval graph in Figure 5, the
extended MP Q-tree T is shown in Figure 4. Note that we can know that e intersects both of ¢ and d
with neither experiments nor enhanced edges. We also note that I, and I; could have intersection, but
they are standardized according to Assertion 14(1).
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3.3 Analysis of Algorithm

We first show the correctness. Since the correctness of steps AQ, Al, and A2 are immediately, we
concentrate on step A3. First, the templates cover all formally distinct cases. All templates for the case
N, = N* with the help-templates H1 and H2 in [7] are easily shown to be correct. Thus we consider the
case N, # N*.

Theorem 16 When N, #* N*, v is not a floating leaf.
We have the following corollary which corresponds to Corollary 4.4 in [7]:

Corollary 17 When N, * N*, all nodes properly between N, and N* on the path P will become inner
sections of a @-node after embedding of v.

Theorem 18 The resulting extended MP Q-tree is canonical up to isomorphism.

We next show the time complexity.

Theorem 19 For given probe interval graph G = (P, N, E), let T be the canonical extended MPQ-
tree, and Gt = (P, N, EU E™) be the corresponding enhanced interval graph. Let E be the set of edges
{v1,v2} joining nonprobes v; and vy which is given by 7", more precisely, we regard 1" as an ordinary
MP Q-tree, and the graph G = (PU N, EU E* U E) is the interval graph given by 7. Then 7' can be

computed in O((|P| + |N|)(|E| + |[ET| + ‘E‘)) time and O(|P| + |[N|* + |E|) space.

Corollary 20 The graph isomorphism problem for the class of (enhanced) probe interval graphs is
solvable in O(n?®) time, where n is the number of vertices.

4 Applications

We show two applications of the canonical extended MP Q-trees for probe interval graph. Given canonical
extended MPQ-tree T, using a standard depth first search technique, we can compute in linear time if
each subtree in T' contains only nonprobes. Thus, hereafter, we assume that each section S; knows if its
subtree contains only nonprobes or not.

4.1 Relationship between nonprobes
First we consider the following problem:

Input: An enhanced probe interval graph Gt = (P,N,EU E*) and the canonical extended MP Q-tree
T.

)

Output: Mappin from each pair of nonprobes u,v with {u,v Et to “intersecting”, “potentiall
P pping P P ) ) g, P Yy
intersecting”, or “independent”;

We denote by E; and £, the set of the pairs of intersecting nonprobes, and the set of the pairs of
potentially intersecting nonprobes, respectively. That is, each pair of nonprobes u, v is either in B+, E;,
E,, or otherwise, they are independent.

Theorem 21 The sets E; and E, can be computed in O(|E| + |E*| + |E;| 4+ |Ep|) time for given
enhanced probe interval graph Gt = (P, N, E U E™) and the canonical extended MP Q-tree T

By Theorem 21, we can find the “best” nonprobe to fix the structure of the DNA sequence:

Corollary 22 For given enhanced probe interval graph Gt = (P, N, EUE") and the canonical extended
MPQ-tree T, we can find the nonprobe v that has the most potentially intersecting nonprobes in O( |E| +
|ET] + |Ei| + |Ep|) time.
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4.2 Enumeration of all affirmative interval representations

We next consider the following problem:
Input: A probe interval graph G = (P, N, E) and the canonical extended MP Q-tree T

Output: All affirmative interval graphs.

Theorem 23 For given enhanced probe interval graph G = (P, N, E) and the canonical extended MP Q-
tree 1", all affirmative interval graphs can be enumerated in polynomial time of |P| + |N| + |M]|, where
M is the number of the affirmative interval graphs.
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