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Abstract In this paper we give an algorithm to generate all series-parallel graphs with at most m edges.
This algorithm generates each series-parallel graph in constant time on average.
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1 Introduction

It is useful to have the complete list of graphs with
a specified property. One can use such a list to
search for a counter-example to some conjecture, or
to experimentally measure an average performance
of an algorithm over all possible input graphs.

Many algorithms to generate a particular class of
graphs without repetition are already known [B80,
LNO1, LR99, M98, N02, N04, R78, W86]. Many
nice textbooks have been published on the subject
[G93, KS98, W89).

In this paper we give an algorithm to gener-
ate all series-parallel graphs having at most m
edges without repetition. For example, all series-
parallel graphs having four edges are shown in
Fig.1. Series-parallel grahs are important class of
recursively defined graphs having a nice tree struc-
ture.

One can generate series-parallel graphs by fol-
lowing the recursive definition. However such
method needs much running time, and may out-
put graphs with many repetitions. Our algorithm
generates each series-parallel graph without repe-
tition in constant time on average.

Se—0—0—0 0t

Figure 1: All series-parallel graphs G(s,t) with
m = 4.

The main idea of our algorithm is as follows.
We do not directly generate each series-parallel
graph. First, we assign a unique ordered tree
for each series-parallel graph. Then, we define a
tree, called “the family tree”(See Fig.2), so that
each ordered tree assigned above corresponds to a
distinct vertex of the family tree. By efficiently
traversing the family tree, we generate all series-
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Figure 2: The family tree Fj.

parallel trees without repetition. Using similar
method we can generate several planar structures
[LNO1, N02, N04]. In this paper we first extend
the method for more general graphs.

The rest of the paper is organized as follows. Sec-
tion 2 gives some definitions. Section 3 introduces
the family tree. Section 4 presents our algorithm.
Finally Section 5 is a conclusion.

2 Preliminaries

In this section we give some definitions.

Let G be a connected graph with n vertices and
m edges. A tree is a connected graph without cy-
cles. A rooted tree is a tree with one vertex r chosen
as its root. For each vertex v in a rooted tree, let
UP(v) be the unique path from v to the root r. If
U P(v) has exactly k edges then we say the depth of
v is k, and write dep(v) = k. The parent of v # r is

its neighbor on UP(v), and ancestors of v # r are
the vertices on UP(v) except v. The parent and
the ancestors of r are not defined. We say that if
v is the parent of u then w is a child of v, and if v
is an ancestor of u then u is a descendant of v. A
leaf is a vertex having no child. An ordered tree is
a rooted tree with a left-to-right ordering specified
for the children of each vertex. We denote by T'(v)
the ordered subtree of an ordered tree T" consisting
of a vertex v and all descendant of v preserving
the left-to-right ordering for the children of each
vertex.

A graph G(s,t) is a series-parallel graph with
terminals s and ¢, if (1) G consists of one edge
connecting s and ¢, or (2) G is derived from two or
more series-parallel graphs by one of the following
two operations.

Given k series-
GQ(SQ,tQ), ceay

e The series composition:
parallel graphs Gi(s1,t1),
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Gk (sg,tg), form a new graph G(s,t) by iden-
tifying s = s1,t = tg, and t; = s;41 for
1<j<k—1.

e The parallel composition: Given k series-
parallel graphs Gi(s1,t1), Ga(se,ta2), ...,
Gr(sk, tx), form a new graph G(s,t) by iden-
tifying s =s1 =s9 =--- = s, and t = t; =
ty = = t.

Note that the ordering Gi(s1,t1), Ga(s2,t2), ...,
Gr.(sk, tr) matters for the series composition, while
it does not matter for the parallel composition.

The recursive definition of the series-parallel
graph above naturally gives a tree T, called a
series-parallel tree, for each series-parallel graph
G(s,t). See some examples in Fig.3. Each leaf
in T corresponds to an edge of G(s,t), and each
non-leaf vertex in T corresponds to either series
or parallel composition. We say that each vertex
is normal, series, or parallel, respectively. We can
observe that if the root vertex is series vertex, then
every non-leaf vertex at even depth is also a series
vertex, while every non-leaf vertex at odd depth is
a parallel vertex. (The other case is similar.)

Note that a series-parallel graph G may have
many corresponding series-parallel trees, since we
can choose any ordering for child vertices of each
parallel vertex. We are going to assign a unique or-
dered tree for each series-parallel graph. We need
some definitions here.

Let T be an ordered tree with n vertices, and
(v1,v2,...,v,) be the vertices of T in preorder
[A95]. Let dep(v) be the depth of v. Then the
sequence L(T') = (dep(vy), dep(va), ..., dep(vy,)) is
called the depth sequence. Let Ty and Ty be two
ordered trees, and L(Ty) = (ai,as,...,a.) and
L(Ty) = (b1,ba,...,bq). Then we say that T3 is
heavier than Ty, if a; = b; foreachi =1,2,...,k—1
(possibly k = 1) and either ay, > by or ¢ >k —1=
d.

Now we assign the heaviest ordered tree H for
each series-parallel graph GG. We call such the heav-
iest ordered tree H the canonical tree of G. Fig.4
(a) shows a series parallel graph G, and Fig.4 (b)—
(d) show series-parallel ordered trees correspond-
ing to G, with their depth sequences. The depth
sequence of (b) is the heaviest, therefore neither
(¢) nor (d) is the canonical tree of G.

Let S,,, be the set of all canonical trees with at
most m leaves. Note that each tree in S,, corre-
sponds to each series-parallel graph having at most
m edges.

We have the following lemma.

Lemma 2.1 A series-parallel tree T is in Sy, if
and only if T has at most m leaves, and for every
consecutive child vertices v1 and vs of every parallel
vertex, L(T(v1)) > L(T(v2)) holds.

Proof. By contradiction. Omitted. o
We call the condition above “the left heavy con-
dition”.

3 The family tree

Assume m > 2. Let T' € S,,,, be a canonical tree.
We say a vertex v in T is un-removable if v satisfies
the following three conditions.

(col) v is normal,

(co2) v is the rightmost vertex in its siblings, and
(co3) v has exactly one sibling (except v).

See some examples in Fig.5. A leaf v is removable if
it is not un-removable. The last removable vertex
of T in preorder is called the last removable vertex
of T

Let uw be the last removable vertex of T, and v
the parent of u. Also let w be the parent of v if v
is not the root of T'.

We define a new tree P(T') as follows.

We have the following two cases, depending on
the number of child vertices of v.

Casel: v has exactly two child vertices.

Now v has two child leaves. We have the follow-
ing two subcases.

Casel—1: w has exactly two child vertices, and v
is the right child of w.

(r1) Then replace T(v) by one normal vertex.

Note that the new vertex is un-removable. (See
Fig.6(a).)
Casel—2: Otherwise. Now we have two cases (1)
w has exactly two vertices, and v is the left child
of w, or (2) w has three or more child vertices, and
v is the rightmost child of w.

(r2) Then replace T(v) by one normal vertex.
Note that the new vertex is removable. (See
Fig.6(b).)

Case2: v has three or more child vertices.

(r3) Remove u. (see Fig.6(c).)

Note that in all cases above, P(T) has one less
leaves than T'. We say that P(T) is the parent of
T, and T is a child of P(T). We have the following

lemma.

Lemma 3.1 If T is canonical then P(T) is also
canonical.
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Figure 3: Examples of series-parallel trees.

(0,1,2,2,8,3,1,2,2,1)

(a) (b)

(0,1,1,2,2,1,2,2,3,3)

(0,1,1,2,2,3,3,1,2,2)

() (d)

Figure 4: The depth sequences.

Proof. In P(T), only subtrees rooted at vertices
on the path between the root and the new ver-
tex loose the “weight ”. So we need to check the
left heavy condition for those subtrees. Since only
trivial trees, consisting of one un-removable ver-
tex, exist on the right of the subtrees above, the
left heavy condition holds in P(T). O

Repeatedly applying above operations to any
canonical tree T € S,,,, we have a sequence
P(T),P(P(T)), P(P(P(T))),...of canonical trees,
and the sequence eventually ends with the canon-
ical tree having only one (normal) vertex. We de-
note the trivial canonical tree by T7. See an exam-
ple in Fig.7.

By merging those sequences we have a tree Fj,
such that each vertex corresponds to a distinct
canonical tree in S,,, each edge corresponds to

some relation between some T and P(T'). We call
F,, the family tree of S,,. For instance Fj is shown
in Fig.2.

4 Algorithm

In this section we give an algorithm to construct
F,,. We only consider the case the root of T is par-
allel. The other case is omitted since it is similar.

Given a canonical tree T in S,,, if we have an
algorithm to generate all child canonical trees of
T, then in a recursive manner we can generate F,,
and which means we can generate all series-parallel
graphs having at most m edges. How can we gen-
erate all child canonical trees of a given canonical
tree 7 As we will soon see we can do this by “re-
versing” the operations (rl1)—(r3) in Section 3.

Let T be a canonical tree in S,,, i be the last
removable vertex of T, and RP = (rg,71,...,7k)
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Figure 5: Examples of un-removable and removable vertex.
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Figure 7: The removing sequence.
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Figure 6: Examples of operations (r1)—(r3).

be the path between the root rg and rp. We con-
struct three types of new trees T'[i], T4 [i], T, from
T as follows.

For i,0 < i < k — 1, we define T[] to be the
canonical tree derived from T by
(al) adding a new vertex x as the rightmost child
of r;. See some examples in Fig.8 (b)-(d). Note
that the last removable vertex of T7[i] is the new
vertex x.

U 450

For i,0 < i < k — 1, if r; has exactly two child
vertices, and the right child vertex w of r; is nor-
mal, then we define T’ [i] to be the canonical tree
derived from T by
(a2) replacing w by either a series or parallel ver-
tex z and add two normal child vertices to x. See
Fig.8 (e) and (f). Note that the last removable
vertex of Ty [¢] is the left child of vertex z.

By definition, r;_1 always has two normal child
vertices. We define T_ to be the canonical tree
derived from T by
(a3) replacing 7 by either a series or parallel ver-
tex = and add two normal child vertices to x. See
Fig.8 (g). Note that the last removable vertex of
T_ is the left child vertex of .

We can observe that each operation (al), (a2)
and (a3) is the reverse of (r3), (r2) and (rl), re-
spectively. Each derived tree has one more leaves
than T.

Define C(T) = {T[0],T[1],...,Tk — 1]} U
{T4[0], T+[1],..., T+ [k —1]}U{T_}, those are can-
didates for child trees of T. We can observe that
each child tree of T' € S, is in C(T), however, not
all trees in C(T) are child trees of T. For exam-
ple, the tree T [2] in Fig.8(f) is not a child tree of
T, since it is not a canonical tree, so T4 [2] & Sp,.
Thus we need to check whether each possible child
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Figure 8: The possible child series-parallel trees.
if T is not active at any in {0,1,...,k — 1}, then

tree is actually a child tree of T or not.
We now have the following lemma.

Lemma 4.1 Let T € S, T/ € C(T),
be the last removable vertex of T' and RP =
(ro,7r1,...,7K) be the path of T' between the root
ro and ry. Then T' is a child tree of T if and only
if L(T'(si41)) = L(T"(ri41)) holds for every paral-
lel vertex r;,0 < i < k, on RP, where s;;+1 is the
child of r; preceding r;11.

Proof. Since T' € S,,,, the left heavy condition has
held in 7. In T” some subtrees may be heavier than
in T. So we must check if left heavy condition still
holds or not. The claim checks all of these possible
changes to destroy the left heavy condition. a

If we generate each tree in C(T) then check
whether it is actually a child tree or not based
on the lemma above, then we need much running
time. However we can improve the running time
as follows. We need some definition here.

Let T be a canonical tree in S,,, r; be the last
removable vertex of T. RP = (rg,r1,...,7) be the
path of T' between the root rg and ri. Let T). be the
tree derived from T by removing all un-removable
vertices. We say that T is active at depth i, 0 <
1< k—1,if

(i) r; is a parallel vertex.

(ii) r; has the child vertex s;+1 preceding r;y1.

r(sit1))-

Intuitively, if T is active at depth i, then we are
copying subtree T'(r;41) from T'(s;41). We say that
the copy-depth of T is c if T is active at depth ¢ but
not active at each i € {0,1,...,¢c— 1}. Especially

(iii) L(Ty(ri41)) is a prefix of L(T,

we define the copy depth of T is k.

Now we are going to check each tree in C(T) is
actually a child tree of T" or not. Let ¢ be the copy-
depth of T. Assume that the root vertex of T is
parallel vertex. (The other case is similar.)

First we consider for T[i], 0 < i < k.

Case T7i]

We have the following four cases.

Case 1: T has m leaves.

Then T corresponds to a leaf in F,,,. Hence T' has

no child tree.

Case 2: Otherwise, ¢ = k.

In this case L(T;(Si+1)) > L(T(riy1)) holds for

each parallel vertex r;. Now T'[0],T[1],...,T[k—1]

are all child trees of T. In each tree T'[i], the last

removable vertex is x. The copy-depth of T'[i] is

i for each even i, (that is a parallel vertex) and

i+ 1 for each odd i. For example, a tree T and

some child trees are shown in Fig.9. In T[2], (i)

ro is parallel vertex, (ii) ro has the child vertex y

preceding r3, (iii) L(T,(r3)) is a prefix of L(T(y)).

Hence T[2] is active at depth 2 and the copy depth

of T'[2] is 2. In T'[3], r3 is not parallel vertex. Hence

r3 is not active and copy depth of T[3] is k = 4.

Case 3: Otherwise, L(T;(rct1)) = L(Tr(Sc+1))-

(Intuitively the copy has completed.)

In this case T[0], T[1],...,T[c] are child trees of T

The copy-depth of T[] is i for each even i, and i+1

for each odd i. T[c+1],T[c+2],...,T[k — 1] are

not child trees of 7.

Case 4: Otherwise. (Intuitively the copy has not

completed yet.)

Now L(T,(s¢+1)) = L(T-(r¢+1)) holds.

Let L(T(Sct1)) = (dep(uy), dep(uz), ..., dep(un),
s deplun)), L(Ty(resn)) = (dep(o), dep(vn),
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Figure 9: Illustrations for T'[i].

..., dep(vy)), and set d = dep(upry1). (Intu-
itively we are copying T}.(r¢4+1) from T).(sc4+1) and
Uns41 18 the next vertex to be copied.) In this case
T[0],T[1],...,T[d — 1] are child trees of T. For
i=0,1,...,d — 2, The copy-depth of T'[i] is ¢ for
each even 4, and i + 1 for each odd i. The copy-
depth of T}[d — 1] is remains at c.
Next we consider for T, [i], 0 <i <k — 1.

Case T[]

We have the following four cases.

Case 1: T has m leaves.

Then T corresponds to a leaf in F,,,. Hence T has
no child tree.

Case 2: Otherwise, ¢ = k.

In this case L(T;(si+1)) > L(Ty(riy1)) holds for
each parallel vertex r;. We have the following two
subcases.

Case 2-1: For each 7,0 < ¢ < k — 2, such that
r; has exactly two child vertex, and the right child
vertex w of r; is normal, T[] is a child tree of
T. In T,[i] the last removable vertex is the left
child vertex of the new vertex replacing w. The
copy-depth of T, [i] is ¢ for each even ¢, and i + 2
for each odd ¢. For example, see Fig.10. In T [2],
L(T-(r3)) is a prefix of L(T(y)). Hence T4 [2] is
active at depth 2 and the copy depth of T [2] is
2. In T4[1], ro has no child vertex preceding rs.
Hence r9 is not active, and the copy depth of 7' [1]
is k= 3.

Case 2-2: Fori,i =k — 1.

If ri—y is series vertex, T4 [k — 1] is a child tree
of T and the copy-depth of Ty [k — 1] is k+ 1. If
rip_1 is parallel vertex, ry_1 has exactly two child
vertices and ry, is the left child. (Otherwise ry, is the
right most child of r,_1, and L(T,(rx)) is a prefix
of L(T,(si)), hence copy depth of T is k — 1. A
contradiction.) In this case the left heavy condition

T T+[ 1]

T+[ 2]

Un-renovabl e vertex O The | ast renovabl e vertex

Figure 10: Illustrations for T’ [4].

does not hold in T [k — 1]. Hence T4 [k — 1] is not
a child tree of T'.

Case 3: Otherwise, L(T;(rct1)) = L(Tr(Sct1))-
(Intuitively the copy has completed.)

For each i,0 < i < ¢ — 1, such that r; has exactly
two child vertices, and the right child vertex w of
r; is normal, T [¢] is a child tree of T. In T [¢] the
last removable vertex is the left child vertex of the
new vertex replacing w. The copy-depth of T7 [i]
is ¢ for each even 4, and 7 + 2 for each odd i.

For i,7 = ¢, r; has at least two child vertices
ri+1 and s;41 preceding r;41. Hence r; does not
has un-removable child vertex, and T [7] does not
exist.

Case 4: Otherwise. (Intuitively the copy has not
completed yet.)

Now L(T:(Sct+1)) = L(T-(ret1)) holds.  Let
L(T7'(SC+1)) = (dep(ul)a dep(U'Q)v s 7dep(un/)7 B
dep(unr)), L(Tr(re1)) = (dep(vi), dep(v2), ...,
dep(vy/)), and set d = dep(up/4+1). (Intuitively we
are copying T, (rc+1) from T,.(sc41) and w,4q is
the next vertex to be copied.) For each i,0 < i <
d — 2, such that r; has exactly two child vertices,
and the right child vertex w of r; is normal, T7 [i]
is a child tree of T. For ¢ > d — 1, T'[i] is not a
child tree of T, since the left heavy condition does
not hold at ¢. The copy-depth of T [i] is 4 for each
even i, and i + 2 for each odd i.

Next we consider for 7.

Case T[]

We have the following four cases. Note that 7y is
the last removable vertex of T'.

Case 1: T has m leaves.

Then T corresponds to a leaf in F},,. Hence T has
no child tree.

Case 2: Otherwise, ¢ = k.

In this case T_ is a child tree of T, and the copy

g47d
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depth of T_ is k + 1.

Case 3: Otherwise, L(T;(rc+1)) = L(Tr(Sc+1))-
(Intuitively the copy has completed.)

In this case T_ is not a child tree of T'.

Case 4: Otherwise. (Intuitively the copy has not
completed yet.)

Now L(T(S¢+1)) > L(T(rct1)) holds.

Let L(T-(Sc+1)) = (dep(u1), dep(ug),. . ., dep(uy),
. dep(ugr)),

L(T,(res1)) =(dep(vn), dep(vs).. .. dep(vn)). (In-
tuitively we are copying Tp(cet1) from T,.(Set1)
and w, 41 is the next vertex to be copied.) We
have the following two subcases.

Case 4-1: dep(uyn/) + 1 = dep(un/41).

In this case T_ is a child tree of T', and the copy
depth of T remains at c.

Case 4-2: Otherwise.

T_ is not a child tree of T.

Based on the case analysis above we have the
following theorem.

Theorem 4.2 Given m, one can generate all
series-parallel graphs with at most m edges with-
out repetition in O(|Sy,|) time.

5 Conclusion

In this paper we have given a simple algorithm to
generate all series-parallel graphs with at most m
edges. Our algorithm first defines a family tree
such that each vertex corresponds to each series-
parallel trees with at most m leaves, then outputs
each graph without repetition by traversing the
family tree.
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