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概要　ハイパーグラフ H = (V,F) と [0, 1]-値ベクトル a ∈ [0, 1]V が与えられた時、H に関する a の
大域丸めとは二値ベクトル α ∈ {0, 1}V で、全てのハイパーエッジ F に対して |

∑
v∈F (a(v)− α(v))| < 1

が成り立つものの事を言う。本論文では、a の大域丸め全体の集合の幾何学的及び組合せ的性質を考察す
る。　具体的には、ハイパーグラフが最短路公理を満たすとき、大域丸めの集合が単体をなすことを予想
し、幾何的な領域空間や、直並列グラフの最短路ハイパーグラフに対してこの予想を示す。
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Abstract. Given a hypergraphH = (V,F) and a [0, 1]-valued vector a ∈ [0, 1]V , its global rounding
is a binary (i.e.,{0, 1}-valued) vector α ∈ {0, 1}V such that |

∑
v∈F (a(v) − α(v))| < 1 holds for each

F ∈ F . We study geometric (or combinatorial) structure of the set of global roundings of a using
the notion of compatible set with respect to the discrepancy distance. We conjecture that the set
of global roundings forms a simplex if the hypergraph satisfies “shortest-path” axioms, and prove it
for some special cases including some geometric range spaces and the shortest path hypergraph of a
series-parallel graph.

1 Introduction

Rounding problem is a central problem in com-
puter science and computer engineering. Given a
real number a, its rounding is either its floor �a	
or ceiling 
a�. Then, we want to consider how to
round a set of n real numbers each of which is as-
signed to an element of a set V = {v1, v2, . . . , vn}
with a given structure. We can assume that each
number is in the range [0, 1], so that the input set
can be considered as a ∈ [0, 1]V and the output
rounding is α ∈ {0, 1}V . Throughout this paper,
we use a Greek (resp. bold) character for repre-
senting a binary (resp. real-valued ) function on
V .
We assume that the structure on V is repre-

sented by a hypergraph H = (V,F) where F ⊂
2V is the set of hyperedges. For simplicity, we as-
sume without loss of generality that F contains
all the singletons. We say α is a global rounding
of a iff wF (α) =

∑
v∈F α(v) is a rounding (i.e.,

either floor or ceiling) of wF (a) =
∑

v∈F a(v) for
each F ∈ F . Let ΓH(a) be the set of all global
roundings of a.
We can rephrase the global rounding condi-

tion as DH(a, α) < 1, where DH is the discrep-
ancy distance between a and b in [0, 1]V defined
by

DH(a,b) = max
F∈F

|wF (a)−wF (b)|.

Thus, ΓH(a) is the set of integral points in the
open unit ball about a by considering DH as
the distance. ΓH(a) 
= ∅ for every a iff H is
unimodular [5]. However, except for the above
unimodular condition for the nonemptiness and
some results on its cardinality, little is known
on the structure of ΓH(a). We remark that
supa∈[0,1]V minα∈{0,1}V DH(a, α) is the linear dis-
crepancy of H, and considered as a key concept in
hypergraph theory and combinatorial geometry
[5, 7, 10]. In this paper, we study the geometric
property of ΓH(a).
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We say that a hypergraph H has the simplex
property if ΓH(a) is (the vertex set of) a simplex
(possibly a degenerate one or empty) regarding
it as a set of n-dimensional points for any a ∈
[0, 1]V . Our main aim is to investigate classes of
hypergraphs that have the simplex property.
The global rounding condition is directly writ-

ten in an integer programming formula, and thus
from the viewpoint of mathematical programming,
we have interesting classes of integer program-
ming problems for which the solution space is a
simplex while the corresponding LP polytope is
not always a simplex.
The simplex property is motivated by recent

results on µ(H) = maxa∈[0,1]V |ΓH(a)|, which is
the maximum number of global roundings. µ(H)
can never become less than n+ 1 for any hyper-
graph since n unit vectors and the zero vector
always form ΓH(a) for a suitable a. In general,
µ(H) may become exponential in n. However,
Sadakane et al.[12] discovered that µ(In) = n+1
where In is the hypergraph on V = {1, 2, .., n}
with the edge set {[i, j]; 1 ≤ i ≤ j ≤ n} consisting
of all subintervals of V . A corresponding global
rounding is called a sequence rounding, which is a
convenient tool in digitization of a sequence ana-
logue data.
Given this discovery, it is natural to ask for

which class of hypergraphs the property µ(H) =
n+ 1 holds. Moreover, there should be combina-
torial (or geometric) reasoning why µ(H) = n+1
holds for those hypergraphs. Naturally, the sim-
plex property implies that µ(H) = n + 1 since
a d-dimensional simplex has d + 1 vertices, and
indeed In has the simplex property.

Shortest paths and range spaces

In has n(n + 1)/2 hyperedges, and the authors
do not know any hypergraph with less than n(n+
1)/2 hyperedges (including n singletons) that has
the simplex property. Thus, it is reasonable to
consider some natural classes of hypergraphs with
n(n+ 1)/2 hyperedges.
Consider a connected graph G = (V,E) in

which each edge e has a positive length �(e). We
fix a total ordering {v1, v2, . . . , vn} on V . This
ordering is inherited to any subset of V . For

each pair (vi, vj) of vertices in V such that i < j,
let p(vi, vj) be the shortest path between them.
If there are more than one shortest paths be-
tween them, we consider the lexicographic order-
ing among the paths induced from the ordering
on V , and select the one with the first one in this
ordering. Let P (vi, vj) be the set of vertices on
p(vi, vj) including the terminal nodes vi and vj .
We also define P (v, v) = {v} for each v ∈ V . Let
F(G) = {P (vi, vj) : 1 ≤ i ≤ j ≤ n}, and call
H(G) = (V,F(G)) the shortest-path hypergraph
associated with G.
It is conjectured that µ(H(G)) = n+1 if G is

a connected graph with n vertices [1]. Note that
H(G) = In if G is a path. The conjecture has
been proved for for trees, cycles, and outerplanar
graphs [1, 13]. However, those proofs are compli-
cated and case dependent. We try to establish a
more structured theory considering the following
deeper conjecture.

Conjecture 1.1 For any connected graph G, H(G)
satisfies the simplex property.

This conjecture was proposed in [1] by the
authors where the simplex property was called
“affine independence property” since vertices of
a simplex are affine independent as a set of vec-
tors. So far, the conjecture has been proved only
for trees, unweighted complete graphs, and un-
weighted (square) meshes. We prove that the
simplex property is invariant under some graph-
theoretic connection operations, and as a conse-
quence, we show that the conjecture holds for
series-parallel graphs.
In addition to significantly extending the ver-

ified classes of hypergraphs for both of the weaker
and stronger conjectures, our theory also simpli-
fies the proofs of known results. For example,
that the weaker conjecture holds for cycles is one
of the main results of [1] and its proof therein
is quite involved. In our framework, it is almost
trivial that the stronger conjecture holds for cy-
cles (see Section 3).
From a computational-geometric viewpoint,

In can be considered as the 1-dimensional range
space corresponding to intervals, and thus we try
to extend the theory to geometric range spaces.
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We generalize the argument to axiomatic shortest-
path hypergraphs (defined later), and prove the
simplex property for some geometric range spaces
such as the space of isothetic right-angle triangles.

Algorithmic implication

The theory is not only combinatorially interesting
but is applied to algorithm design on the round-
ing problems. The algorithmic question of how
to obtain a low-discrepancy rounding of given a
is important in several applications. For exam-
ple, consider the problem of digital halftoning
in image processing, where the gray-scale value
of each pixel has to be rounded into a binary
value. This problem is formulated as that of ob-
taining a low-discrepancy rounding, in which the
hypergraph corresponds to a family of certain lo-
cal sets of pixels, and several methods have been
proposed[2, 3, 11]. Unfortunately, for a general
hypergraph, it is NP-complete to decide whether
a given input a has a global rounding or not,
and hence it is NP-hard to compute a rounding
with the minimum discrepancy. Thus, a practical
approach is to consider a special hypergraph for
which we can compute a low-discrepancy round-
ing efficiently.
It is folklore that the unimodularity condition

means that the vertices of the ball (w.r.t. DH) are
integral, and an LP solution automatically gives
an IP solution. Thus, a global rounding always
exists and can be computed in polynomial time
if H is unimodular, and therefore in the litera-
ture [2, 3, 8] unimodular hypergraphs are mainly
considered.
Here, we consider another case where an inte-

ger programming problem can be solved in poly-
nomial time: If the number of integral points in
the solution space is small (i.e. of polynomial
size), and there is an enumeration algorithm that
is polynomial in the output size (together with
the input size), we can solve the problem in poly-
nomial time. We show that enumeration of all
global roundings can be done in polynomial time
for several (non-unimodular) hypergraphs with
the simplex property by applying this framework.

2 Combinatorial and linear al-
gebraic tools

2.1 Compatible set

The set of binary functions on V can be regarded
as the n-dimensional hypercube Cn = {0, 1}n,
where n = |V |. Consider an integer-valued dis-
tance f on Cn. We call a subset A of Cn a com-
patible set with respect to f if f(x, y) = 1 for any
pair x 
= y of A. In other words, A is a compatible
set if and only if it is a unit diameter set. Prop-
erty of a compatible set is highly dependent on
f : If f is the L∞ distance, the hypercube itself is
a compatible set, while the cardinality of a com-
patible set for the Hamming distance is at most
two. By definition, DH gives an integer-valued
distance on the hypercube Cn.

Definition 1 A set of binary functions on V is
called H-compatible if it is a compatible set with
respect to DH. In other words, |wF (α)−wF (β)| ≤
1 holds for every hyperedge F of H for any ele-
ments α and β of the set.

ΓH(a) is always an H-compatible set, since
the DH distance between two global roundings
must be integral and less than 2. Conversely, any
maximal H-compatible set is ΓH(g), where g is
the center of gravity of the compatible set. Thus,
it suffices to show the simplex property for com-
patible sets instead of sets of global roundings.

2.2 General properties

The simplex property is monotone, that is,

Lemma 2.1 If H = (V,F) has the simplex prop-
erty and F ⊂ F ′ then H′ = (V,F ′) does, too.

Recall that a set A = {a1,a2, . . . ,am} of vec-
tors is affine dependent if and only if there are
real numbers c1, c2, . . . , cm satisfying (1) at least
one of them is non-zero, (2)

∑
1≤i≤m ci = 0, and

(3)
∑

1≤i≤m ciai = 0.
A set A of binary assignments on V is called

minimal affine dependent if it is an affine depen-
dent set as a set of vectors in the n-dimensional

3

研究会Temp
テキストボックス
－37－



real vector space (n = |V |) and every proper sub-
set of it is affine independent.
For a binary assignment α on V and a subset

X of V , α|X denotes the restriction of α on X.
Given a set A of binary assignments on V , its
restriction to X is A|X = {α|X : α ∈ A}. Note
that the set is not a multi-set, and we only keep a
single copy even if α|X = β|X for different α and
β in A.
For assignments α on X and β on Y α⊕ β is

an assignment on V = X ∪ Y obtained by con-
catenating α and β: That is, α ⊕ β(v) = α(v) if
v ∈ X, and α ⊕ β(v) = β(v) if v ∈ Y . By defini-
tion, α⊕β is only defined if α(v) = β(v) for each
v ∈ X ∩ Y . The following is our key lemma:

Lemma 2.2 Let A be a minimal affine depen-
dent set on V , and let V = X ∪ Y . If A|X and
A|Y are affine independent, then A|X∩Y has only
one assignment.

Proof: Since A is affine dependent, there ex-
ists a constant c(α) for each α ∈ A such that∑

α∈A c(α) = 0 and
∑

α∈A c(α)α = 0, and at
least one c(α) is nonzero. We consider projection
of these formulae to X to have formulae∑

β∈A|X C(β) = 0 and
∑

β∈A|X C(β)β = 0, where
C(β) =

∑
α∈A,α|X=β c(α). Because of affine inde-

pendence of A|X , C(β) = 0 for each β ∈ A|X .
Let us consider τ ∈ A|X∩Y . Let A(τ) = {α ∈ A :
α|X∩Y = τ}, and AX(τ) = {β ∈ A|X : β|X∩Y =
τ}. We select τ such that there exists α ∈ A(τ)
satisfying c(α) 
= 0. Let η =

∑
α∈A(τ) c(α)α.

Then, η|X =
∑

β∈AX(τ)C(β)β, and it is 0 since
C(β) = 0 for each β. Similarly η|Y = 0. Thus,
η = 0. Moreover,

∑
α∈A(τ) c(α) =

∑
β∈AX(τ)C(β)

and hence it is 0. This means that A(τ) is affine
dependent. Because of minimality of A, A =
A(τ), and we have the lemma. ✷

Given a subset S of V , we can consider the
induced hypergraph H|S = (S,F ∩ 2S). Natu-
rally, if a set A of binary assignments on V is
compatible for H, A|S is compatible for H|S .
By definition, a subset of a compatible set is

also a compatible set. Thus, the concept of mini-
mal affine dependent compatible set (possibly an
empty set) is well defined. We have the following
corollary of Lemma 2.2:

Corollary 2.3 Consider a hypergraph H = (V,F)
and a minimal affine dependent compatible set A.
Suppose that V = X ∪ Y and each of H|X and
H|Y has the simplex property. Then, for any pair
α and α′ in A, α(v) = α′(v) for each v ∈ X ∩ Y .

Definition 2 A vertex v of a hypergraph H is
called a double-covered vertex if there exist suit-
able subsets X and Y such that V = X ∪ Y ,
v ∈ X∩Y , and both of H|X and H|Y have the sim-
plex property. We say S ⊂ V is double-covered if
every element of S is double-covered.

Definition 3 For a subset S of vertices of a hy-
pergraph H = (V,F), a set A of assignments on
V is called S-contracted if α(v) = 0 for each pair
v ∈ S and α ∈ A.

Theorem 2.4 Let H = (V,F) be a hypergraph,
and let S ⊂ V be a double-covered set. Then, if
every S-contracted compatible set is affine inde-
pendent, H has the simplex property.

Proof: Assume on the contrary that H does
not have the simplex property. Thus, we have an
affine dependent compatible set, and hence have a
minimal affine dependent compatible set A. From
Corollary 2.3, we can assume that all assignments
of A take the same value on each element of S.
Thus, if we replace the value to 0 at every v ∈ S,
the revised set Ã is also compatible and minimal
affine dependent, since we subtract the same vec-
tor from each member of A to obtain Ã. However,
Ã is S-contracted, and hence contradicts the hy-
pothesis. ✷

Corollary 2.5 If V itself is double-covered, H =
(V,F) has the simplex property.

2.3 Axiomatic shortest path hypergraph

Definition 4 A hypergraph H = (V,F) is called
an ASP (axiomatic shortest path) hypergraph if
F = {f(u, v)|u, v ∈ V ×V } satisfies the following
conditions: (1): f(u, u) = {u}.
(2): f(u, v) = f(u′, v′) if and only if (u, v) =
(u′, v′) as unordered pairs (one-to-one property).
(3): For any s, t ∈ f(u, v), f(s, t) ⊂ f(u, v) (mono-
tonicity).
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Definition 5 Given an ASP hypergraph H = (V,F),
a subset S of V is called a shortest-path-closed
subset (SPC subset) if f(u, v) ⊆ S for any pair u
and v in S.

Lemma 2.6 Given an ASP hypergraph H = (V,F)
and an SPC subset S of V , H|S is also an ASP
hypergraph.

3 Shortest path hypergraphs

Definition 6 A subgraph G′ = (V ′, E′) of G =
(V,E) is called an SPC subgraph if any shortest
path in G′ is a shortest path in G.

Lemma 3.1 If G′ = (V ′, E′) is an SPC subgraph
of G = (V,E), V ′ is an SPC subset of V with
respect to H(G), and H(G)|V ′ = H(G′).

Lemma 3.2 Consider H = H(G) for G = (V,E).
Let G1 = (V1, E1) and G2 = (V2, E2) be SPC sub-
graphs such that V1∪V2 = V . Then, if both H(G1)
and H(G2) have the simplex property, each vertex
in V1 ∩ V2 is double-covered.

Proposition 3.3 If G is a cycle, H(G) has the
simplex property.

Proof: We give a cyclic ordering v1, v2, . . . , vn of
the vertices. For the vertex v1, let V1 = {v1, v2, v3,
. . . , vk} and V2 = {vk+1, vk+2, . . . , vn, v1} where
k is the largest index for which the shortest path
from v1 to vk goes through v2. Let G1 and G2 are
induced subgraphs associated with V1 and V2, re-
spectively. SinceG1 andG2 are paths, it is known
[1] that H(G1) and H(G2) have the simplex prop-
erty. It is clear the G1 andG2 are SPC subgraphs,
and V1 ∩ V2 = {v1}, and V1 ∪ V2 = V . Thus,
from Lemma 3.2, v1 is double covered. This ar-
gument holds for any cyclic ordering, and thus
every vertex of V is double-covered. Thus, from
Corollary 2.5, H(G) has the simplex property. ✷

A graph G = (V,E) is a series connection of
two subgraphs G1 = (V1, E1) and G2 = (V2, E2)
if there exists a vertex (joint vertex) v such that
V = V1 ∪ V2, V1 ∩ V2 = {v}, and E1 ∪E2 = E.

Theorem 3.4 ([1]) Let G be a series connection
of two connected graphs G1 and G2. Then, if
both H(G1) and H(G2) have the simplex property,
H(G) does.

Definition 7 A connected graph G = (V,E) has
a 3-parallel decomposition if there exist two ver-
tices u and v such that G is decomposed into
nonempty connected graphs G1 = (V1, E1), G2 =
(V2, E2), and G3 = (V3, E3) such that (1) V =
V1 ∪ V2 ∪ V3, (2) V1 ∩ V2 = V2 ∩ V3 = V1 ∩ V3 =
{u, v}, and (3) E is the disjoint union of E1, E2,
and E3. (see Fig. 1).

u

v

G1

G2

G3

Figure 1: 3-parallel decomposition of G.

Consider a family Ψ of connected graphs, and
assume that it is closed under the subgraph oper-
ation; that is, any connected subgraph of G ∈ Ψ
is also in Ψ. A graph G ∈ Ψ is a minimal coun-
terexample for the simplex property in Ψ if H(G)
does not satisfy the simplex property but H(G′)
has the simplex property for every connected sub-
graph G′ of G.

Theorem 3.5 A minimal counterexample G for
the simplex property in Ψ is 2-connected, and does
not have a 3-parallel decomposition.

Proof: 2-connectivity follows from Theorem 3.4.
Thus, we assume that G has a 3-parallel decom-
position at u and v, and derive a contradiction.
We define the following three subgraphs of G:
G(1,2) is the union of G1 and G2, G(1,3) is the
union of G1 and G3, and G(2,3) is the union of
G2 and G3. These graphs are connected and
hence satisfy the simplex property because of the
minimality of G. By symmetry, we can assume
that the shortest path between u and v is in
G1. Then, both G(1,2) and G(1,3) are SPC sub-
graphs. Thus, H(G)|V (G(1,2)) = H(G(1,2)) and
H(G)|V (G(1,3)) = H(G(1,3)), where V (G(i,j)) is the
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vertex set of G(i,j). Thus, it is clear that each
vertex of G1 is double-covered.
A vertex x in V (G(2,3)) is called biased if either

the shortest path in G from x to u goes through v
or the shortest path from x to v goes through u.
We claim that a biased vertex is double-covered.
Without loss of generality, we assume that x is
a vertex of G2 and the shortest path p from x
to v goes through u. Then, any vertex of G2 on
p is also biased, and G(1,3) ∪ p is an SPC sub-
graph. Thus, v is in the intersection of two SPC
subgraphsG(1,3)∪p and G(1,2), and hence double-
covered. Thus, S = V (G1)∪B is double-covered,
where B is the set of all biased vertices.
Now, we are ready to apply Theorem 2.4. Con-

sider an arbitrary S-contracted compatible set A
of H(G). We claim that A is also H(G(2,3)) com-
patible. If this claim is true, A must be affine in-
dependent (since H(G(2,3)) has the simplex prop-
erty), and we can conclude that H(G) has the
simplex property from Theorem 2.4, so that we
have contradiction.
We give a proof for the claim. Let α and β

be any two members of A. Consider any shortest
path p of G(2,3). Let x and y be endpoints of p,
and let P be the vertex set of the path. It suffices
to show the compatibility |α(P )− β(P )| ≤ 1.
If all the vertices on p are in S, α(P ) =

β(P ) = 0, and the compatibility condition is triv-
ial. Thus, we assume there exist vertices in V \S
on p. Let x0 be the nearest vertex in (V \ S)∩P
to x. The subpath p0 of p between x0 and y is
the shortest path in G(2,3) between them. Let P0

be the set of vertices on it.
Consider the shortest path q with respect to

G between x0 and y. If it contains both u and v
on it, either the shortest path between x0 and u
contains v or that between x0 and v contains u.
Thus, x0 must be biased, and hence in S, contra-
dicting our hypothesis. Therefore, without loss of
generality, we can assume q does not contain v.
This means that q contains no vertex of G1 \{u},
since otherwise q must go through u twice. Thus,
q is in G(2,3), and hence q = p0 since the shortest
path between given two vertices is unique in our
definition of the shortest path hypergraph. Thus,
from the compatibility on a shortest path of G,

|α(P0) − β(P0)| ≤ 1. Since assignment on each
vertex of S is 0 for each of α and β, we have the
compatibility |α(P ) − β(P )| ≤ 1 on p. Thus, A
is H(G(2,3)) compatible, and we have the claim.
✷

Thus, the simplex property holds for a graph
that is constructed by applying a series of 3-parallel
connections and series connections from pieces
(such as paths, cycles, unit edge-length complete
graphs, and unit edge-length meshes) for which
the simplex property is known to hold. We give
a typical example in the following: A graph is
series-parallel if it does not have a subdivision of
the complete graph K4 as its subgraph. Here, a
subdivision of a graph is obtained by replacing
edges of the original graph with chains. A con-
nected graph is outerplanar if and only if it has
a planar drawing in which every vertex lies on
the outerface boundary. An edge that is not on
the outerface boundary is called a chord. A se-
ries parallel graph is planar, and an outerplanar
graph is series-parallel.

Theorem 3.6 If G is series-parallel, H(G) has
the simplex property.

Proof: Clearly, the family of connected series-
parallel graphs is closed under the subgraph oper-
ation, and we consider its minimal counterexam-
ple G. By Theorem 3.5, G is 2-connected. If G is
not outerplanar, G has a vertex v in the interior
of the outerface cycle C. Since G is 2-connected,
v is connected to at least two vertices of C with-
out using edges on C. If v is connected to three
vertices of C, the union of these paths and C con-
tains a subdivision of K4, and we have contradic-
tion. Thus, v is connected to exactly two vertices
u1 and u2 of C, and we have 3-parallel decompo-
sition at u1 and u2. Thus, Gmust be outerplanar.
If G has a chord, G has 3-parallel decomposition
at the end vertices of the chord. Thus, G does
not have a chord. However, a 2-connected out-
erplanar graph without a chord must be a cycle,
and we have already shown the simplex property
for cycles. Thus, we have the theorem. ✷

As a corollary, we have µ(G) = n + 1 for a
series-parallel graph, extending the result for an
outerplanar graph given in [13].
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Moreover, it can be observed that any (non-
cycle) 2-connected series parallel graph has a 3-
parallel decomposition in which two of the com-
ponents are paths from a classification of sub-
structures of series parallel graphs given by Juvan
et al. [9] (also see [14]). Using this observation
and the argument given in [13] for outerplanar
graphs, we have the following (we omit details in
this version):

Theorem 3.7 We can enumerate all the global
roundings of an input a for the shortest path hy-
pergraph of a series-parallel graph with n vertices
in O(n3) time.

4 Geometric problems

We consider some geometric hypergraphs that are
ASP hypergraphs. Consider a set V of n points
on a plane. For each pair u = (xu, yu) and v =
(xv, yv) of points, uv is the line segment con-
necting them. Let B(u, v) be the region below
the segment uv; that is, B(u, v) = {(x, y)|x ∈
[xu, xv ], y − yu ≤ yv−yu

xv−xu
(x − xu)} if xu 
= xv. If

xu = xv, we define B(u, v) = uv. Let R(u, v) be
the closed isothetic rectangle which has u and v in
its diagonal position, and let T (u, v) = B(u, v) ∩
R(u, v) be the lower right-angle isothetic triangle
which has uv as its longest boundary edge. We
define T (u, u) = R(u, u) = B(u, u) = uu = {u}.
We consider hypergraphs S = (V, {V ∩ uv :

u, v ∈ V }), B = (V, {V ∩ B(u, v) : u, v ∈ V }),
R = (V, {V ∩ R(u, v) : u, v ∈ V }), and T =
(V, {V ∩ T (u, v) : u, v ∈ V }). See Fig. 2 to get
intuition.

u

v

u

v

Figure 2: B(u, v) (left) and T (u, v) (right).

Lemma 4.1 S, B, and T are ASP hypergraphs
for any point set V . R is an ASP hypergraph if
there are no four points of V forming corners of
an isothetic rectangle.

4.1 Simplex property of range spaces

Theorem 4.2 Each of B, T and S have the sim-
plex property. If there are no four points of V
forming corners of an isothetic rectangle, R has
the simplex property.

Proof: We prove the simplex property by induc-
tion on the number of horizontal lines and that of
vertical lines on which V lies. We only deal with
T here because of space limitation. If V lies on
a horizontal line �, the problem is reduced to the
sequence rounding problem. We assume that the
statement holds if the point set lies on less than
M horizontal lines or less than N vertical lines.
Suppose that V lies onM horizontal lines and

also lies on N vertical lines. Let X≥2 = V \ X1

and X≤N−1 = V \XN . They are SPC subsets of
V . Let T + = T |X≥2

and T − = T |X≤N−1
. From

Lemma 2.6, they are ASP hypergraphs, and by
induction hypothesis, have the simplex property.
Thus, X≥2 ∩X≤N−1 = V \ (X1 ∪XN ) is double-
covered.
Similarly, we can see that V \ (Y1 ∪ YM ) is

double-covered. Since union of two double-covered
sets is also double-covered, S = [V \ (X1 ∪XN )]∪
[V \ (Y1 ∪ YM )] is double-covered. Thus, we can
apply Theorem 2.4, and consider the restriction
of T to V \ S. Any point in V \ S must be at
a corner of the minimum enclosing isothetic rect-
angle of V , thus V \S has at most four points, for
which we can directly show the simplex property
of the restriction of T . Thus, T has the simplex
property. ✷

We remark that R is smaller than the range
space corresponding to all isothetic rectangles.
However, since R has the simplex property, the
range space of all isothetic rectangles also has the
simplex property because of Lemma 2.1. Simi-
larly, since T has the simplex property, the range
space of all isothetic right-angle triangles has the
simplex property.
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4.2 Enumeration Algorithms

We can design a polynomial-time algorithm for
enumerating all the global roundings of an input
real assignment a for each of B, R, S, and T . We
briefly explain the algorithm for T . Basically, we
can apply a building-up (or divide-and-conquer)
strategy, in which we first compute the restric-
tions on X≥
n/2� and X≤
n/2�−1 recursively, and
check the rounding condition for T on each pos-
sible concatenated rounding. It takes O(n2) time
for testing each concatenated rounding by using
an efficient range-searching method, and hence
the total time complexity becomes O(n4). This is
highly contrasted to the fact that it is NP hard to
decide the existence of a global rounding for the
family of all 2× 2 square regions in a grid [3, 4].
If we consider R, the linear discrepancy is

known to be O(log3 n) and Ω(log n) [6] , and
hence it is expected that a given input may have
no global rounding. Thus, we may consider a
heuristic algorithm for computing a nice (not nec-
essarily global) rounding by using the building-
up strategy in which we select K best roundings
(with respect to the discrepancy) from those ob-
tained by concatenating pairs of assignments con-
structed in the previous stage to proceed to the
next stage. Our theorem implies that if we set
K ≥ n+ 1, we never miss a global rounding if it
exists.

5 Concluding remarks
If we can replace 3-parallel decomposition with
2-parallel decomposition in Theorem 3.5, we can
prove the conjecture, since any 2-connected graph
is decomposed into e and G\{e} at the endpoints
of any edge e. However, it is not known whether
µ(H(G)) is polynomially bounded in general. An-
other interesting question is whether there is a
hypergraph with the simplex property with less
than n(n+1)/2 hyperedges (including singletons).
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