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Abstract Given a pair of non-negative integers m and n, P(m,n) denotes a subset of 2-dimensional triangu-
lar lattice points defined by P(m,n) def {(ze; +ye2) | € {0,1,....m~1}, y € {0,1,...,n — 1}} where
e (1,0), ey def (1/2,v/3/2). Let Timn(d) be an undirected graph defined on vertex set P(m,n) satisfying
that two vertices are adjacent if and only if the Euclidean distance between the pair is less than or equal to d.
In this paper, we discuss a necessary and sufficient condition that Ty, »(d) is perfect. More precisely, we show
that [Vm € Z, Ty n(d) is perfect | if and only if d 2 v/n? — 3n + 3. Given a non-negative vertex weight vector
we Zf(m’"), a multicoloring of (Tr, »(d), w) is an assignment of colors to P(m, n) such that each vertex v € P(m,n)
admits w(v) colors and every adjacent pair of two vertices does not share a common color. We also give an efficient
algorithm for muliticoloring (Tm n(d), w) when P(m,n) is perfect. In general case, our results on the perfectness
of P(m,n) implies a polynomial time approximation algorithm for multicoloring (T, »(d), w). Our algorithm finds
a multicoloring which uses at most a(d)w + O(d®) colors, where w denotes the weighted clique number. When
d = 1,v/3,2,1/7,3, the approximation ratio a(d) = (4/3),(5/3), (5/3),(7/4), (7/4), respectively. When d > 1, we
showed that a(d) < (1 + Kf@—j . We also showed the NP-completeness of the problem to determine the

existence of a multicoloring of (T, »,(d), w) with strictly less than (4/3)w colors.
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1. Introduction

Given a pair of non-negative integers m and n, P(m,n)
denotes the subset of 2-dimensional integer triangular lattice

points defined by

z€{0,1,2,...,

o m— 1},
P(m,n) = {(161+y82) | y€{0,1,2,...,n -1} }

where e; < (1,0), e2 def (1/2,v/3/2). Given a finite set of
2-dimensional points Png and a positive real d, a unit disk
graph, denoted by (P, d), is an undirected graph with vertex
set P such that two vertices are adjacent if and only if the
Euclidean distance between the pair is less than or equal to
d. We denote the unit disk graph (P(m,n),d) by Tim n(d).

Given an undirected graph H and a non-negative integer
vertex weight w’ of H, a multicoloring of (H,w’) is an as-
signment of colors to vertices of H such that each vertex v
admits w’(v) colors and every adjacent pair of two vertices
does not share a common color. A multicoloring problem on
(H,w") finds a multicoloring of (H,w’) which minimizes the
required number of colors. The multicoloring problem is also
known as weighted coloring[4], minimum integer weighted
coloring [15] or w-coloring [12].

In this paper, we study weighted unit disk graphs on trian-
gular lattice points (Tm.n(d), w). First, we show a necessary
and sufficient condition that 7o, n(d) is a perfect graph. If
the graph is perfect, we can solve the multicoloring problem
easily. Next, we propose a polynomial time approximation
algorithm for multicoloring (Tom,n(d), w). Our algorithm is
based on the well-solvable case that the given graph is per-
fect. For any d 2 1, our algorithm finds a multicoloring

which uses at most

) e

1+

colors, where w denotes the weighted clique number. Table 1
shows the values of the above approximation ratio in case
that d is small.
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Table 1 Approximation ratio

d 1--- V3o | VT 12v3 | V13- | V19
ratio| 4/3 5/3 7/4 2 9/5 2
ratio | 11/6 2 13/7 1+2/V3

We also show the NP-completeness of the problem to deter-

mine the existence of a multicoloring of (T, (d), w) which

uses strictly less than (4/3)w colors.

The multicoloring problem has been studied in several
context. When a given graph is the triangular lattice
graph T, (1), the problem is related to the radio channel
(frequency) assignment problem. McDiarmid and Reed [9]
showed that the multicoloring problem on triangular lattice
graphs is NP-hard. Some authors (9], [12] independently gave
(4/3)-approximation algorithms for this problem. In case
that a given graph H is a square lattice graph or a hexago-
nal lattice graph, the graph H becomes bipartite and so we
can obtain an optimal multicoloring of (H,w’) in polyno-
mial time (see [9] for example). Hallddrsson and Kortsarz {5]
studied planar graphs and partial k-trees. For both classes,
they gave a polynomial time approximation scheme (PTAS)
for variations of multicoloring problem with min-sum objec-
tives. These objectives appear in the context of multiproces-
sor task scheduling. For coloring (general) unit disk graphs,
there exists a 3-approximation algorithm [6], (8], [14]. Here
we note that the approximation ratio of our algorithm is less
than 1 + 2/\/5 < 2.155 for any d 2 1.

2. Well-Solvable Cases and Perfectness

In this section, we discuss some well-solvable cases such
that the multicoloring number is equivalent to the weighted
clique number.

An undirected graph G is perfect if for each induced sub-
graph H of G, the chromatic number of H, denoted by x(H),
is equal to its clique number w(H). The following theorem
is a main result of this paper.

[Theorem 1] Whenn 2 1and d 2 1, we have the following;

Vm € Z4, Tm,n(d) is perfect ] if and only if
d2vn?=3n+3.

Table 2 shows the perfectness and imperfectness of Ty, n(d)

for small n and d.
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Table 2 Perfectness and imperfectness
d
n
1
2
3
4 Perfect
5
6 Imperfect

To show the above theorem, we introduce some definitions.
We say that an undirected graph has a transitive orientation
property, if each edge can be assigned a one-way direction in

such a way that the resulting directed graph (V, F') satisfies



that [(a,b) € F and (b,c) € F imply (a,c) € F]. An undi-
rected graph which is transitively orientable is called com-
parability graph. The complement of a comparability graph
is called co-comparability graph. It is well-known that every
co-comparability graph is perfect.

For any integer n 2 1, if d 2 vn? — 3n + 3,
then Tym n(d) is a co-comparability graph.

[Lemma 1]

Proof: When n £ 2, the statement is trivial. It suffices
to show that the complement of T), »(d) is a comparability
graph when n 2 3 and d 2 v/n? — 3n + 3. Let Trun(d) be
the complement of Tp, n(d). We direct each edge in T n(d)
as follows. For any edge e = {v1,v2} in Trm,.(d), we di-
rect the edge e from v; to v, when the z-coordinate of v
is strictly less than that of v;. We show that the obtained
directed graph, denoted by G’, satisfies the transitivity.
Clearly, G’ is acyclic. Assume that G’ contains a pair of
directed edges (vi,v2) and {v2,v3). We denote the position
of v; by (zi,y:) where z; and y; are the z-coordinate and the
y-coordinate, respectively. The definition of G’ implies that
71 < T2 < z3. In the following, we show that x; — z1 > d/2.
(Case 1) Consider the case that |y2 — y1| < (V3/2)(n — 1).
Then, it is clear that |y, —1| £ (v/3/2)(n—2). Since the dis-
tance between vy and v, is greater than d and n 2 3, we have
that x2 — 21 > /d? — |y2 —y1]2 2 /d? — (3/4)(n — 2)2 >
VA% = (3/4)(n? —3n +3) 2 \/d? — (3/4)d? = d/2.
(Case 2) Assume that |y — y1| = (V3/2)(n — 1). Since
v1,v2 € P(m,n), it is clear that |y2 — 11| = (v3/2)(n — 1).

Without loss of generality, we can assume that (z2,y2) =

(z1,31) + (z’e1 + (n — 1)ez) for some integer z’. Since 0 <
zr2—11 = (n—1)/2+z', we havez' > —(n—-1)/2. Ifz’' £ -1,
then |22 —21[2+|ya— [ = (&' +(n—1)/2)2+(3/4)(n—-1)? <
(-1+(n-1)/2)>+(3/9)(n - 1)) =n? - 3n+3 < d* and
it contradicts with the non-adjacency between v1 and vz on
Tinn(d). Thus the integrality of z’ implies that &’ = 0 and
|tz — 21| = (n=1)/24+ 2’ 2 (n—1)/2 = |y2 — 11|/V3. Then
the inequalities d* < |z2 — 21> + |y2 — 1 |* € |22 — 71| +
3jz; — z1)? = 4|z2 — 11| implies that d/2 < z3 — 1.
Similarly, we can show that z3 — z2 > d/2. Thus we have
x3 — x1 > d and the distance between v; and va is greater
than d. From the definition of G’, the digraph G’ contains
the edge (vi,v3). 1
The following lemma deals with the special case that
n=3d=1.
[Lemma 2] For any m € Z, and 1 £ Vd < V/3, the graph
Tyn.3(d) is perfect.
Proof: We only need to consider the case that d = 1, since
Tmn{d) = Trm,n(1) when 1 £ d < V3. Let H be an induced
subgraph of Tpn 3(1). When w(H) £ 2, H has no 3-cycle.
Then it is easy to show that H has no odd cycle and thus
x(H) = w(H), since H is bipartite. If w(H) 2 3, then it is

clear that w(H) = 3 and x(H) £ 3, since w(Tm3(1)) = 3
and Ty».3(1) has a trivial 3-coloring. 1
Note that though the graph T, 3(1) is perfect, the graph
Tin.3(1) is not co-comparability graph.

From the above, the perfectness of a graph satisfying the
conditions of Theorem 1 is clear. In the following, we discuss
the inverse implication. We say that an undirected graph G
has an odd-hole, if G contains an induced subgraph isomor-
phic to an odd cycle whose length is greater than or equal
to 5. It is obvious that if a graph has an odd-hole, the
graph is not perfect. In the following, we denote a point
(ze1 +yez) € P(m,n) by (z,y).

[Lemma 3] If 1 £ d < V7, then Ym 2 5, Tia(d) has at
least one odd-hole.
Proof: If 1 £ d < v/3, then a subgraph induced by

{(2,0), (1,1), (0,2), {0,3), (1,3}, {2,3), (3,2), (3,1), (3,0)}
is a 9-hole. If /3 £ d < 2, then a subgraph induced by
{ (3,0, (11), (0,2), (1,3), {2,3), (4,2}, {4, 1) }
is a 7-hole. If 2 £ d < /7, then a subgraph induced by
{(2,0), {0.2), (1,3), (3,2), (3,0) }

is a 5-hole. When 1 £ d < v/7, Ts.4(d) has at least one
odd-hole, and hence the proof is completed. ]
If 1 £ d < V13, then VYm 2 6, Trm5(d) has at
least one odd-hole.

Proof: If 1 £ d < /7, then odd-holes in the proof of

Lemma 3 are induced subgraph of Ts s(d). If v7 £ d < 3,
then a subgraph induced by

[Lemma 4]

{{2,0), (0,2), (1,4), {4,2), (4,0}

is a 5-hole. If 3 £ d < /13, then a subgraph induced by
{(3,0), (0,3), (2,4), (5,3), (5,0) }

is a 5-hole. When 1 < d < /13, Ts,5(d) has at least one

odd-hole, and hence the proof is completed. 1
For any integer n 2 4, if 1 £ d <

VnZ = 3n+ 3, then 3m € Z, Tm,n(d) is imperfect.

Proof: In the following, we show that Vn 2 4, if 1 £d <

vnZ Z3n + 3, then 3m € Zy, T n(d) has at least one odd-

hole, by induction on n. When n = 4,5, it is clear from

[Lemma 5]

Lemmas 3 and 4, respectively.

Now we consider the case that n = n’ 2 6 under the
assumption that if 1 £ d < /(W —1)2-3(n' —1)+3,
then 3m’ € Z;, Tyur nr—1(d) has at least one odd-hole. If
1€d</(n-1)2-3(n' - 1)+3 = +vnZ—-5n"+7, then

Tyn v (d) has at least one odd-hole, since T o/—1(d) is an

induced subgraph of Ty, /(d). In the remained case that



Vn'? =50+ 7 £ d < v/n'? — 3n’ + 3, the set of points

{{n'=3,0), (0,7'=2), (n'—4,n'—1), (2n'=7,n'-2), (2n'-6,0)}

is contained in P(m”,n’), if m"" = 2n’ — 5. It is easy to see
that the above five vertices induces a 5-hole of Trnrr s (d),
whenn' 26and V2 —5m +7<d<Vn?-3n"+3 |
Lemma 5 shows the imperfectness of every graph which vio-
lates a condition of Theorem 1. Thus, we completed a proof
of Theorem 1. From the above lemmas, the following is im-
mediate.

[Corollary 1] Let d > 1 be a real number. Then, Tm n(d)
is a co-comparability graph, if and only if n £ lﬂ@.
Next, we consider the multicoloring problems. Given
an undirected graph G = (V, E) and vertex weight vector
w € ZY, the multicoloring number x(G, w) is the least num-
ber of colors required in a multicoloring of (G, w). The
weighted cligue number w(G, w) is the weight of a maximum
weight clique in (G, w). It is clear that x{G,w) 2 w(G,w).
First, we describe a property which helps the multicoloring
case theoretically. We say that an undirected graph G has
an odd-antihole, if the complement of G contains an induced
subgraph isomorphic to an odd cycle whose length is greater
than or equal to 5.

[Lemma 6] Undirected graph G = (V, E) is perfect if and
only if [Vw € ZY, x(G,w) = w(G,w) ] holds.

Proof: Let Gy, = (Vy, Ey,) be a graph obtained from G by
replacing each vertex v with w(v)-clique. If two vertices u,v
of G, correspond to a unique vertex of G, we say that the
pair {u,v} belongs to a same class. It suffices to show that
G is perfect if and only if Gy is perfect. Since G is an in-
duced subgraph of G, the perfectness of G, implies that
G is perfect. Next we show that if Gy is not perfect then
G is not perfect. In (1], it was shown that if a graph is not
perfect, there exists an odd-hole or odd-antihole.

Consider the case that G, contains an odd-hole C. If C
contains a pair of vertices in a same class, it contradicts with
the assumption that C is an induced subgraph. Otherwise,
C is also an odd-hole of G and thus G is not perfect.

Consider the case that Gy, contains an odd-antihole C. We
only need to consider the case that C contains a pair of ver-
tices {u,v} in a same class. Clearly, u and v are adjacent
on Gy. Since the complement of C is an odd cycle, u has
a pair of vertices v/, u” such that neither {u,u’} nor {u,u"}
is adjacent pair. Since {u,v} belongs to a same class, both
{v,'} and {v, 4"} are non-adjacent pairs. Thus (u,v’,v,u"
forms a 4-cycle in the complement of C. It contradicts with
the assumption that C is an odd-antihole. i

By combining Theorem 1 and Lemma 6 we have the fol-
lowing.

[Theorem 2] When n 2 1, the following property holds;

[Vm € Zy and Yw € ZE"™ | x(Trnn(d), w) = w(Tin,n(d), w)]

if and only if d 2 v/nZ - 3n + 3.

Lastly, we discuss some algorithmic aspects. Assume that
we have a co-comparability graph G and related digraph H
which gives a transitive orientation of the complement of
G. Then each independent set of G corresponds to a chain
(directed path) of H. The multicoloring problem on G is es-
sentially equivalent to the minimum size chain cover problem
on H. Every clique of G corresponds to an anti-chain of H.
Thus the equality w(G) = x(G) is obtained from Dilworth’s
decomposition theorem [2]. It is well-known that the mini-
mum size chain cover problem on an acyclic graph is solvable
in polynomial time by using an algorithm for minimum-cost
circulation flow problem (see [13] for example).

In the following, we describe an algorithm for muiticoloring
an weighted graph (Tm,3(1),w). We denote the set of colors
by C* = {1,2,...,w"} where w* = w(Tin3(1),w). The fol-
lowing algorithm finds an assignment of colors ¢ : P(m,n) —
2€7 such that Vv € P(m,n), |c(v)] = w(v) and for every edge
{u,v} € T ,3(1), c(u) Nc(v) =0.

For any z € {0,1,...,m — 1}, we denote the points
re, + 2ez, rer + lei, xe; + 0e2 by tri1, Uzri1, vz, Te-
spectively. Thus {t1,t2,...,tm},
{u1,uz,...,um} and {vo,v1,...,vm-1} form a partition of
P(m,3). Without loss of generality, we can assume that
w(ve) = w(tm) = wlum) = 0.
signs colors to vertices in the following manner.
that we have a multicoloring ¢ : P’ — 2 where P’ =
{ti,ta, ... t;} U {us,ua, ..., u;} U {vo,v1,...,v;} satisfying
that Vi € {1,2,...,5}, c(t:)Se(v:) or c(ti)2c(vi). Next, we

assign colors to uj+1. Since w(vo) = w(tm) = w(um) = 0,

Our algorithm as-

Assume

we can assume that w(t;) 2 w(v;) without loss of generality.
Since {u;,tj, us+1} is a 3-clique, je(us )|+ |e(t;)] + wluj+1) £
w*. Thus there exists a -subset of colors Ci with |Ci| =
w(uj+1) and Ci is disjoint with c(u;) U c(t;). Then we set
c(uj+1) to C1. Next, we assign colors to t;11. there exists a
set of colors C2CC™ \ (c(t;) U c(uz41)) with [Cz| = w(tjta),
since {t;,uj+1,t;41} is a 3-clique. Then set c(t;+1) to Ca.
Lastly we assign colors to vjy1.

(Case 1) If w(tj+1) 2 w(v;+1), then set c(vj41) to a subset
of ¢(t;j+1) whose cardinality is w{vj+1).

(Case 2) Consider the case that w(t;41) < w(vj3+1) and
w(t;) + w(tj+1) 2 wlvy) + wlvi1):

Then there exists
a subset of colors CaCc(t;) \ c(vj) whose cardinality is
w(vj+1) — w(tj+1). We set c(vj41) = c(tj+1) UCs.

(Case 3) Consider the case that w(tj+1) < w(vsj+1) and
w(t;) + wltj1) < w(v;) + w(vss1). Then we set c(vj41) =
e(ti+1) U (et;) \ e(v;)) U Cs where Cy and v(t;) U c(usy1) U
¢(t;+1) are disjoint and w(v;41) = w(tj+1)+(w(t;)—w(v;))+



|Cy4l. Since {vj,u;4+1,v54+1} is a 3-clique, it is easy to see that

there exists such a subset of colors.

A naive implementation of the above procedure gives a
pseudo polynomial time algorithm, since the algorithm main-
tains the set of colors C* explicitly. If we represent the
assigned set of colors by the union of some intervals and
implement the above procedure carefully, we can obtain a

polynomial time algorithm with respect to m.
3. Approximation Algorithm

In this section, we propose an approximation algorithm
for multicoloring the graph (T »(d), w). When d = 1, Mc-
Diarmid and Reed [9] proposed an approximation algorithm
for (Tm,n(1), w), which finds a multicoloring with at most
(4/3)w(Ton,n (1), w) + 1/3 colors.

In the following, we propose an approximation algorithm
for (Tm,n(d), w) when d > 1. The basic idea of our algorithm
is similar to the shifting strategy [7].

[Theorem 3] When d > 1, there exists a polynomial time
algorithm for multicoloring (T »(d), w) such that the num-

ber of required colors is bounded by

e

N ( [&@J - 1)X(Tm,n(d))-

Proof: We describe an outline of the algorithm. For sim-

3+\/:d273J and K = L3+\/;d2~3J n

1+ W(Tmn(d), w)

plicity, we define K} = |
[72§dj4

First, we construct K, vertex weights wj for k ¢
{0,1,...,K2 — 1} by setting

0, y € {kk+1,....k+ | Zd] - 1} (mod Ka),

’
wi(z,y) = i
k(@y) K I.%?T!’—)J , otherwise.

Next, we exactly solve K, multicoloring problems defined by
K3 pairs

(Trm.n(d), w}), k € {0,1,..., K2 — 1} and obtain K> multi-
colorings. We can solve each problem exactly in polynomial
time, since every connected component of the graph induced
by the set of vertices with positive weight is a perfect graph
discussed in the previous section. Thus X(Tmn(d), w}) =
W(Tm,n(d),w}) for any k € {0,1,...,K, - 1}. Put w” =
w - ¥E5

or equal to Ki — 1.

Then each element of w” is less than
Thus we can find a multicoloring of
(Tm.n(d),w") from the direct sum of K; — 1 trivial color-
ings of Trn n(d).
(K1 — 1)x(Tm.n(d))colors. Lastly, we output the direct sum

The obtained multicoloring uses at most

of K2 + 1 multicolorings obtained above. The definition of

the weight vector wj implies that Yk € {0,1,..., K> — 1},
Kiw(Tmn(d),wy) £ w(Tma(d),w). Thus, the obtained
multicoloring uses at most (Kz/K1)w(Tmn(d), w) + (K1 —

1)x(Tm,n(d)) colors. 1
The following lemma gives the chromatic number of

Ton,n(d).

[Lemma 7] If m,n are sufficiently large, then x(Tym,n(d)) =

d : where d is the minimum Euclidean distance between two

points in P(m,n) subject to that distance being greater than

d. Clearly, d <d < [d+1].

Proof: See McDiarmid [9] for example. ]
When d is small, Table 1 shows the approximation ratio.

The following corollary gives a simple upper bound of the

approximation ratio.

[Corollary 2] For any d 2 1, we have

2
) <142
[3+ ;d2—3} - V3 + #A

Here we note that if we apply our algorithm in the case

1+

that d = 1, then the algorithm finds a multicoloring which
uses at most (4/3)w(Tm,n(1),w) + 6 colors.

4. Hardness Result

In this section, we discuss the hardness of our problem.
If we deal with a rational number d as an input data, then
the problem for multicoloring (Tin,»(d), w) is NP-hard, since
multicoloring of (Tn,n(1),w) is shown to be NP-hard by Mc-
Diarmid and Reed [9]. It is clear that even if we consider the
case that d is integer and we define the input size of d is
also d (not O(logd)), the problem remains NP-hard. Thus
we only need to consider the case that d is a constant. The
following lemma gives an idea of our proof of hardness.
[Lemma 8]
an induced subgraph of T, n(d).

Proof: Let ae; + bea be a farthest neighbor of (0,0) on
Tmn(d). Put ei = (a,b), €3 = (30— {éb,ga + $b), and
P' = {(ze| +ye3) € P(m,n) | = € Z, y € Z}. Then the sub-
graph of Ty, »(d) induced by P’ is a triangular lattice graph.
1

[Theorem 4] Let d be a constant rational number. Given
a pair (Tm(d),w),
whether (T, »(d), w) is multicolorable with strictly less than
(4/3)w(Tm,n(d), w) colors or not.

Proof: It is known to be NP-complete to determine the

For any d 2 1, the triangular lattice graph is

it is NP-complete to determine

3-multicolorability of a given 4-colorable weighted trian-
gular lattice graph (Tm.n(1),w)[9). We can reduce a 3-
multicolorability problem on Tim,»(1) to a 3-multicolorability
problem on T, »/(d), by copying the vertex weights of the

original problem onto a sparse triangular lattice defined in



£3
Table 3 Unit disk graphs on square lattice points

d

n

Perfect

—

] Imperfect

=W N e

the proof of Lemma 8. The obtained instance has O(mnd?)
vertices. Since d is a constant, the time complexity of the
reduction procedure is bounded by a polynomial of the input
size of (Tin,n (1), w). 1

5. Discussion

In this paper, we dealt with the triangular lattice. In the
following, we discuss the square lattice. Given a pair of non-
negative integers m and n, Q(m,n) def. {0,1,2,...,m -1} x
{0,1,2,...,n — 1} denotes the subset of 2-dimensional in-
teger square lattice points. We denote the unit disk graph
(Q(m,n),d) by Smn(d). In case that d < v/2, it is clear that
Sinn(d) = Si.n(1) and the graph is bipartite for any m and
n. If d = V2, we proposed a (4/3)-approximation algorithm
for multicoloring (Sy.»(v2),w) in our previous paper [11].
We also showed the NP-hardness of the problem.

Unfortunately, Theorem 1 is not extensible to the square
lattice case. Table 3 shows the perfectness and imperfectness
of unit disk graphs on the square lattice for small n and d.
The perfectness of Ty, 3(v/2) was shown in[11]. The graph
Sin.3(2) contains a 5-hole: {(0,0),(2,0),(2,1),(1,2),(0.2)}.
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