2005—AL—102
2005,79,16

RN R0 (®)

[PSJ SIG Technical Report

iR

By | T — 2B B ERNT Y A A ET < B RREHE
BAMT!, REM, RTEIC, AWK, BEFDE

B, 77 AVBEORNERELI—YHTHETEY Ty —2 a s hiE<BEELTVWS. Z0L5BT7TYr—
arTiR, REOHEMEERLZNS 2 Xy U=/ Rz HHER TS 2 LT, REROBENTEEE RS, LML
Fy b TR FEET ZEMENZNEE RFEORRREMIIM DT 20, BDELRIERERNEMTS. 5T, 2v
T =7 ROBREEEE XY N T — 7 OBREICHL TEDICRET 3 EMNBETH L. AHETIE, BB T2
Fy hT=JIZBNT, BRREKE /— K KO—EHSIEOMBEIIOWTERL, £BR/NTY 1 ACESV: Tk
ERRTD. I, RERFENBOBRREEE /—REKCHL THREQKICREDIIEEL Ial— itk TRd

A Biologically Inspired Approach to Replica Control in Dynamic Networks

Tomoko Suzuki' , Taisuke Izumi' , Fukuhito Ooshita! , Hirotsugu Kakugawa! ,
Toshimitsu Masuzawa!

Resource replication is a crucial technique for improving system performance of distributed application with
shared resources. A larger number of replicas require shorter time to reach a replica of the requested resource, but
consume more storage of hosts. Therefore, it is indispensable to adjust the number of replicas appropriately for its
application. This paper considers the problem for-controlling the density of replicas adaptively in dynamic networks.
The goal of the problem is to adjust the number of replicas to a constant fraction of the current network size. This
paper proposes algorithm inspired by the single species population model, which is a well-known population ecology
model. The simulation results show that the proposed algorithm realize self-adaptation of the replica density in

dynamic networks.

1 Introduction

One of the most important advantages distributed
applications inherently have is resource sharing. ‘A
well-known example is file sharing on peer-to-peer
networks [7, 6]. In such applications, each resource is
accessed frequently by a significant number of users
distributed over the whole network.

For such applications with shared resources, re-
source replication is a crucial technique for improv-
ing system performance and availability: replicas of
an original resource are distributed over the network
so that each user can get the requested resource by
accessing a nearby replica. Resource replication can
reduce communication latency and consumption of
network bandwidth, and can also improve availabil-
ity of the resources even when some of the replicas
are unavailable.

In systems using resource replication, generally,
a larger number of replicas require shorter time to
reach a replica of the requested resource, but con-
sume more storage of hosts. Therefore, it is indis-
pensable to adjust the number of replicas appro-
priately for its application. For example, resource
searching protocol PWQS has tradeoff between the
reach time and the number of replicas, and requires
replicas of each resource in numbers proportional to

PRIRAZREFMBHEFAN I 2 — 591 T 28K
Department of Computer Science,Graduate School of
Engineering Science, Osaka University

the network size (i.e., the number of hosts) to attain
good performance [9].

However, in dynamic networks such as peer-to-
peer networks, the appropriate number of replicas
for its application changes with tirne, since network
size varies with time. In addition, it is unrealistic to
assume that each node knows the network size and
the number of replicas on the network. Therefore,
adjustment of the number of replicas for dynamical
change of network size is not an easy task and re-
quires investigation. T '

Biological systems inherently have self-* prop-
erties , such as self-adaptation, self-configuration,
self-optimization and self-healing, to realize envi-
ronmental adaptation. Thus, several bio'logica.l‘ly-
inspired approaches have succeeded in realizing
highly adaptive distributed systems. Success-
ful projects include Bio-Networking project[2] and
Anthill project[1]. These projects adopt biologically-
inspired approaches to provide highly adaptive plat-
form for mobile-agent-based compiuting[4, 12]. In
our precedence work, we also focus on biological sys-
tem to control mobile agent population in dynamic
networks[13]. Our algorithms are inspired by the
well-known the single species population model and
can adequately adjust the agent population in dy-
namic networks. .

Contribution of this paper. In this paper, we
first formulate the replica density control problem
in dynamic networks, and present a biologically-

五味
テキストボックス

inspired solution for the problem. The replica den-
sity control problem requires to adapt the number of
replicas to a given constant fraction of the current
network size.

We propose a distributed solution for the problem
using mobile agents. Mobile-agent-based distributed
computing is one of the most promising paradigms to
support autonomic computing in a large scale of dis-
tributed system with dynamics and diversity[10, 11].
Mobile agents are autonomous programs that can
migrate from one node to another on the network,
and traverse the distributed system to carry out a
sophisticated task at each node.

To realize self-adaptation of the replica density,
we borrow an idea from the single species popula-
tion model, which is a well-known population ecology
model. This model considers population of a single
species in an environment such that individuals of
the species can survive by consuming food supplied
by the environment. The model is formulated by
the logistic equation and shows that the population
automatically converges to and stabilizes at some
number depending on the amount of supplied food.

In the proposed algorithm, replicas of a resource
are regarded as individuals of a single species, and
agents created by nodes supply food for replicas.
The algorithm try to adjust the number of replicas to
a constant fraction of the network size by controlling
the amount of food supplied by agents. The simula-
tion results of the algorithm show that the proposed
strategy can adequately adjust the replica density.

The rest of this paper is organized as follows. In
Section 2, we present the model of distributed sys-
tems, and define the replica density control problem.
In Sections 3 and 4, we propose the distributed solu-
tion for the problem and show its simulation results.
Section 5 concludes the paper.

2 Preliminaries

2.1 System Models

Dynamic networks. In this paper, we consider
dynamic networks such that its node set and its link
set vary with time. To define dynamic networks, we
introduce discrete time and assume that each time is
denoted by a non-negative integer in a natural way:
time 0 denotes the initial time, time 1 denotes the
time immediately following time 0 and so on.
Formally, a dynamic network at time ¢ is denoted
by N(t) = (V(t), E(t)) where V(t) and E(t) are re-
spectively the node set and the link set at time ¢.
A link in E(t) connects two distinct nodes in V'(¢)
and a link between nodes u and v is denoted by ey,
or e,,. We also use the following notations to rep-
resent the numbers of nodes and edges at time ¢:

n(t) = [V(t)| and e(t) = |E(?)].

Mobile agent systems. A mobile agent is an au-
tonomous program that can migrate from one node
to another on the network. In dynamic networks,
agents on node u € V() at time ¢ can start migrat-
ing to node v € V(t) only when link e,,, is contained
in E(t). The agent reaches v at time t+A only when
the link e,, remains existing during the period from
t tot+ A, where A is an integer representing migra-
tion delay between the nodes. The agent migrating
from u to v is removed from the network when the
link e, disappears during the period from ¢ to t+A.

Each of nodes and agents has a local clock that
runs at the same rate as the global time. However,
we make no assumption on the local clock values:
the difference between the local clock values in the
system is unbounded.

An agent and a node can interact with each other
by executing operations: agent p on node u can
change its state and the state of u depending on
the current states of p and u, and node u can change
its state and the states of the agents residing on u
depending on the current states of u and the agents.
Besides the above operations, each agent can execute
operations to create new agents and to kill itself and
each node can also execute operations to create new
agents.

When agents reside on a node, the agents and the
node have operations they can execute. For execu-
tion semantics, we assume that the agents and the
node execute their operations sequentially in an ar-
bitrary order. We also assume that the time required
to execute the operations can be ignored, that is, we
consider all the operations are executed sequentially
but at an instant time.

2.2 Replica Density Control

For an application with shared resource, resource
replication is crucial technique for improving sys-
tem performance. Resources are items shared by the
nodes on the network; files, documents, and so on.
Replicas are copy of an original resource. In such
systems, generally, a larger number of replicas lead
to better performance, but consume more storage of
hosts. Thus, it is required to control the number of
replicas appropriately for its application.

In this paper, we consider the replica density con-
trol problem. Each node has zero or more replicas.
We consider a original resource as its replica. Each
node v can make same replicas from a replica on
node v and delete replicas on node v. The goal of
the problem is to control the number of replicas of
a resource so that the ratio between the number of
replicas and the number of nodes (called network

size hereinafter) is kept to be a given constant. Let
r(t) be the number of replicas on the network N(t)
at time ¢: r(t) is sum of the number of original re-
sources and the number of its replicas. The problem
is defined as follows.

Definition 2.1

The goal of the replica density control problem is
to adjust the number of replica r(t) at time t to
satisfy the following equality for a given constant
6 (0<d<1).

r(t) =6 - n(t)

In this paper, we propose distributed solution for
the replica density control problem. In the dis-
tributed solution, we assume that the constant § is
initially given to every node.

We consider distributed systems such that repli-
cas are distributed over the networks and nodes can
leave or join the networks. In such environment, it
is obviously impossible to keep satisfying the above
equation all the time. Thus, our goal is to propose
distributed solution that realize quick convergence
to and stability at the target number.

3 Replica Density Control Al-
gorithm

In this section, we present a distributed solution for
the replica density control problem. This algorithm
is inspired by the single species population model
(the logistic model), which is well-known in the field
of the population ecology.

3.1 Single Species Population Model

In this subsection, we introduce the single species
population model in the population ecology as the
basis of our algorithm. This model considers an en-
vironment with a single species such that individuals
of the species can survive by consuming food sup-
plied by the environment. The model formulates the
population growth of the species in the environment,
and shows that the population (i.e., the number of
individuals) in the environment automatically con-
verges to and stabilizes at some number depending
on the amount of food supplied by the environment.

We present more details of the single species pop-
ulation model. Each individual of the species peri-
odically needs to take a specific amount of food to
survive. That is, if an individual can take the spe-
cific amount of food then it can survive. Conversely,
if an individual cannot take the specific amount of
food then it dies. Moreover, in the case that an in-
dividual can take a sufficient amount of extra food,

then it generates progeny. Consequently, the follow-
ings hold: The shortage of supplied food results in
decrease in the population. Conversely, the excessive
amount of food results in increase in the population.

The single species population model formulates
the above phenomena as follows: Let p(t) be the
population at time ¢. The single species popula-
tion model indicates that the population growth rate
at time ¢ is represénted by the following nonlinear
first-order differential equation known as the logistic
equation|8):

E2O) — pie)-9(t) = p(Ok - £u(®)~ k- £ -ple),

where f,(t) is the amount of food supplied by the
environment at time ¢, and f is the amount of food
consumed by one individual to survive.

The per capita growth rate g(t) at time ¢ is repre-
sented by

9(t) = k(fa(t) — f - p(2)).

The expression f,(t) — f - p(t) represents the dif-
ference between the amounts of supplied food and
consumed food. When the supplied food exceeds
the consumed food, g(t) takes a positive value pro-
portional to the difference, that is, the positive per
capita growth rate g(t) is proportional to the amount
of the surplus food. A scarcity of the supplied food
causes a negative value of g(t) proportional to the
difference, that is, the negative per capita growth
rate g(t) is proportional to the shortage of the sup-
plied food.

The logistic equation has two equilibrium points of
the population size p(t): p(t) = 0 and p(t) = f.(t)/f.
That is, the population remains unchanged, when
the population size is at the equilibrium points. The
equilibrium point p(t) = f,(t)/f represents the max-
imum population that the environment can keep,
and is called the carrying capacity of the environ-
ment.

If the population is larger (resp. smaller) than
the carrying capacity then the population decreases
(resp. increases). Once the population reaches the
carrying capacity, then it remains unchanged. Con-
sequently, the single species population model im-
plies that the population eventually converges to and
stabilizes at the carrying capacity. Notice that the
carrying capacity depends on the amount of food
supplied by the environment.

3.2 Algorithm for Replica Density
Control

In this subsection, we present an algorithm for the
replica density control problem. The algorithm is in-

spired by the single species population model: repli-
cas regarded as individuals of a single species, and
a network is regarded as an environment. That is,
replicas need to consume food to survive and the
food is supplied by agents that created by nodes of
the network.

In the algorithm, we introduce time interval of
some constant length denoted by CYCLE. Behavior
of each node can be divided into series of the time
interval and each replica a node has is decided in-
dividually its next state every the time interval. It
should be noticed that the start time of the inter-
vals at different nodes need not be synchronized and
that next states of different replicas can be decided
at different times.

Figure 1 shows the detailed behavior of nodes and
agents in the replica density control algorithm.

The behavior of nodes and agents is simple: each
node creates a new agent every CYCLE time units
(i-e., at the beginning of each time interval). Each
agent has a specific amount of food on the initial
state and traverses the network with the food. Each
agent makes a random walk independently: an agent
migrates from one node to one of its neighboring
nodes with equal probability. When an agent visits
node v, node v feeds replicas on node v with food
the agent has. The replica can exist during the next
time interval if it can be fed a specific amount of
food, denoted by RF, during the current time inter-
val. The replica is deleted if it cannot be fed food of
amount RF during the time interval.

In addition, each node makes a new replica of
replica 7 if the replica i is fed surplus food of amount
RF. This idea derives from the fact that the positive
per capita growth g(t) in the single species popu-
lation model is proportional to the amount of sur-
plus food. This scheme is realized in the following
way: each agent stores the surplus food into vari-
able. surplus_food and continues a random walk af-
ter CYCLE time units from its creation time. When
an agent that has surplus food visits node v, node
v feeds replicas on node v with the surplus food the
agent has. If the total amount of surplus food the
replica on node v is fed is RF, node v makes one new
replica of the replica by consuming the surplus food.
If the agent has no food and no surplus food, it kills
itself (i.e., removes itself from the network).

Now, we consider the amount of food F' that each
agent should supply. Since each node creates one
agent every CYCLE time units, the amount F - n(t)
of food are supplied on the whole network. The goal
of the replica density control problem is to adjust
the number r(t) of replicas to § - n(t). Remind that
the single species population model shows that the
number of individuals converges and stabilizes at the
carrying capacity fo(t)/f. Thus, the algorithm tries

to adjust r(t) to é - n(t) by adjusting the carrying
capacity to ¢ - n(t). Since f,(t) corresponds to the
total amount of supplied food on the whole network
n(t)-F and f corresponds to the amount of food RF,
the following equation should be satisfied:

ﬁ'T(t):n(:z)—FF: “n(t).

From this equation, each agent should supply food
of amount F = ¢ - RF.

4 Simulation results

In this section, we present simulation results to show
that the proposed algorithm can adjust the replica
density.

In the simulation, we assume that each agent re-
peatedly executes t.he following actions: each agent
stays at a node for one time unit, and then migrates
to one of its neighboring nodes by a random walk.
We also assume that the migration delay between
any pair of neighboring nodes is two time units. The
following values are initialized randomly:

o the initial locations of agents

e the initial values of the local clocks(i.e.,
time,, timep)

o the creation time of replicas on each node v (i.e.,
create_time; (< time,))

e the initial amounts of food that agents have
(i.e., food,)

e the initial amounts of food that replicas have
fed in the current time interval (i.e., eat_food;).

The initial amounts of surplus food that agents
have (i.e., surplus_food,) and the initial amounts
of surplus food that replicas have fed (i.e.,
eat_surplus_food;)are set to 0.

In the simulation, a new replica created by a node
is allocated on the node selected randomly with
probability proportional to their degrees. In real
systems, replica allocation is very important to get
good performance. In this paper, however, we focus
on control of replica density rather than how to allo-
cate replicas effectively on the network. The above
allocation can be realized as follows: an agent picks
up a new replica on a node, and drops the replica on
the visited node after it traverses the network by a
random walk during random time units.-

We present the simulation results for random net-
works and scale-free networks. - Scale-free networks
are a specific kind of networks such that some nodes
have a tremendous number of connections to other

Behavior of node v
time, : local clock time

create_time,; : creation time of replica 1
/* the time at which i is made */
create one agent
e for each replica i on node v

— on agent p’s arrival at node v
if (eat_food,; < RF) then

eat_food,; := eat_food,; +y

food, := food, —y
if (surplus_food, > 0) then

eat_surplus_food,; := 0

holds)

else eat_food,; :==0

Behavior of agent p

surplus_food, : the amount of surplus food
time, : local clock time

e when p is created
food, := 6 - RF
surplus_food, := 0.0
time, :=0

surplus_food, := food,
food, := 0.0

kill itself

/* its value automatically increases at the same rate as the global time */
eat_food,; : the amount of food that replica i consumes from food of agents
eat_surplus_food,; : the amount of food that replica i consumes from surplus_food of agents

e at the beginning of each time interval (i.e., then time, mod CYCLE =0 holds)

y := min{RF — eat_food,,, food,}

v’ := min{RF — eat_surplus_food,;, surplus_food, }
eat_surplus_food,; := eat_surplus_food,; + vy’
surplus_food, := surplus_food, — y’
if (eat.surplus_food,; = RF) then
make a new replica of i (create_time of the replica is time,)

— at the end of each time interval (i.e., when time, + create_time,; mod CYCLE =0
if (eatfood,; < RF) then delete i

/*i survives into the next time interval =/

food, : the amount of food that p supplies to replicas

/* its value automatically increases at the same rate as the global time */

/*p makes a random walk on the network %/

e at the end of time interval (i.e., when time, = CYCLE holds)

o when all food are consumed (i.e., when (food, = 0.0 A surplus_food, = 0.0) holds)

Figure 1: Behavior of node v and agent p

nodes, whereas most nodes have just a handful. The
degree distribution follows a power law of k: the
number of nodes with degree k is proportional to
k=", where r is a positive constant. A scale-free net-
work is said to be a realistic model of actual network
structures (3, 5].

Simulation results for static networks. Figure 2
shows experimental results for ”static” random net-
works and "static” scale-free networks where nodes
and links of the networks remain unchanged. In the
simulation, the number n(¢) of nodes is fixed at 500
during the simulation. Random graphs with n nodes
are generated as follows: each pair of nodes is con-
nected with probability of 5.0/(n—1). Scale-free net-
works are generated using the incremental method
proposed by Balabasi and Albert [3]. More precisely,

starting with 3 nodes, we add new nodes one by one.
When a new node is added, three links are also added
to connect the node to three other nodes, which are
randomly selected with probability proportional to
their degrees.

Figure 2 shows transition of the number r(t) of
replicas with time ¢. It shows the simulation results
for four combinations of two values of § (0.2 and 0.1),
and two initial number r(0) of replicas (200 and the
half of the target number). The length CYCLE of
the time interval is set to 200, and the initial num-
ber of agents is set to 100. These simulation results
show that the number of replicas quickly converges
to the equilibrium point, and has small perturbation
after the convergence.

Simulation results for dynamic networks. Fig-

五味
テキストボックス

200 R I 200 —
Initial Resources 200 # Initial Resources 200
half of the target number half of the target number
150 150
§ 8
b o I\ ot 222 R I 1 Vo R =S
S 100 cF e E 100 e — s et
- b
fe \ VO i N FA 2N PN .
50 Hf AV e 0rentlr Nrmnsirl mcmang s 50 Jw N e e
I J
0 [
0 40 80 120 160 0 40 80 120 160
Time (+100) Time (+100)

a. random networks (n(t) = 500)

b. scale-free networks (n(t) = 500)

Figure 2: Simulation results on static networks

ure 3 shows the experimental results for "dynamic”
random networks and ”dynamic” scale-free networks
where nodes and links of networks vary with time.
When a new node joins in the network, the new node
is connected to other nodes with probability 5.0/n(t)
for each other node on random networks, and the
new node is connected to three other nodes randomly
selected with probability proportional to their de-
grees on scale-free networks. When a node v leaves
from the network, the links connecting to v are also
removed from the network, and replicas the node v
has and agents on node v or these links are also re-
moved from the network. To show the adaptiveness
of the proposed algorithm, Figure 3 and Figure 77
also show the difference ratio of the number of repli-
cas: the ratio is defined by |6 - n(t) — r(¢)|/(6 - n(t))
and represents the ratio of difference between the
adjusted and the target numbers of replicas to the
target number. (In static networks, the average of
the difference ratio is about 0.02.)

Figure 3 shows simulation results for dynamic net-
works with continuous and gradual changes: some
nodes join in the network and some nodes leave from
the network constantly. In this simulation, the initial
network size n(0) is 500, and the following dynami-
cal changes occur every 200 time units. In the first
half (from time 0 to time 10,000) of the simulation, a
new nodes join in the network with probability 0.05
and each node leaves from the network with prob-
ability 0.005. In the second half (from time 10,000
to time 20,000), a new nodes join in the network
with probability 1.0 and each node leaves from the
network with probability 0.001.

In the simulation results of Figure 3, the length
CYCLE is set to 200, the value of ¢ is set to 0.2, the
initial number of agents is set to 100 and the initial
number 7(0) of replicas is set to 100. Since the differ-
ence ratio is kept to be less than 0.08 and does not

widely diverge from 0, the simulation results show
that the number of replica is adaptively adjusted in
response to changes in the network size.

Simulation results on lifetime of replicas. The
goal of the replica density control problem is to ad-
just the number of replicas to a given ratio of the
network size. However, from the point of applica-
tion view, locations of each replica should not be
change frequently. In real applications, if there is
almost no change of locations of each replica, appli-
cations can improve the searching performance. In
our algorithm, each replica stays on the same node
while the replica exists on the network. Thus, we
can say the stability of locations is high by showing
that lifetime of replicas is sufficiently long.

Lifetime [t; of replica i is defined to be the time
length from its creation to its elimination, i.e., it; =
td; — tc;, where td; is the time when 1 is deleted and
tcp is the time when 1 is created. Table 1 shows the
average lifetime of replicas of ten trials. To focus
on the lifetime of replicas after convergence of the
number of replicas to the target number, the ini-
tial number r(0) of replica is set to the equilibrium
point. In the simulation results of Table 1, the value
of 4 is set to 0.2 and the initial number of agents
is set to the same number as the initial number of
replicas. The simulation results show that lifetime
quickly becomes longer when the length of the time
interval CYCLE becomes longer. Therefore, by set-
ting an appropriate value to CYCLE, it is strongly
expected that lifetime of each replica becomes suffi-
ciently long.

Simulation results using smaller number of
agents. In the algorithm presented in Section 3.2,
n(t) agents are created and traverse the network ev-
ery CYCLE time units. Although the size of the
agent is so small since the agent has only information

五味
テキストボックス

................ # Nodes
Resources
Difference ratio {| ¢ 0g

s

#Resources/#Node:

0 40 80 120 160

Time (+100)

Resources

#Resources/#Nodes
@
=1
S

0 40 80 120 160

Time (*100)

a. random networks
(n(0) = 500, 7(0) = 100,46 = 0.2)

b. scale-free networks
(n(0) = 500,7(0) = 100,46 = 0.2)

Figure 3: Simulation results on dynamic networks with gradual changes

CYCLE
100 200 400
200 | 2772 | 16977 | 63528
n | 500 [2858 [21797 | 104218
1000 | 2915 | 23347 | 132340

a. random networks

CYCLE
100 200 400
200 | 3757 | 18230 | 62470
n | 500 | 4505 | 27456 | 97399
1000 | 4359 | 32442 | 123737

b. scale-free networks

Table 1: Existence time of replicas

of food, the number n(t) of agents may be large for
the system. To reduce network traffic, we try to re-
duce the number of agents by increasing the amount
of food one agent has; that is, 1/c-n(t) nodes create
new agents with food of amount c¢-6- RF every CY-
CLE time units (c > 1). Each node picks a number
from 0 to c-1 randomly on its initial state and decre-
ments the value every CYCLE time units. When the
value becomes 0, the node create a new agent that
has the amount c¢ - § - RF of food and the value is
set to ¢ — 1. In this regard, however, the length of
the time interval CYCLE needs to become longer de-
pending on the value of c. The reason is that agents
with larger amount of food must visit more nodes to
supply food to more replicas. This method reduces
by 1/c network traffic of agents.

Figure 4 shows the simulation results with small
number of agents for ”dynamic” random networks
and "dynamic” scale-free networks. The value of ¢
is set to 5; about 1/5 - n(t) agents are created every
CYCLE time units. Networks change in the same
way as the above simulation of Figure 3. In the sim-
ulation, the length CYCLE is set to 400, the value
of § is set to 0.2, the initial number of agents is set
to 20 and the initial number r(0) of replicas is set to
100.

The simulation results in Figure 4 show that the
number of replica can be sufficiently adjusted in re-

sponse to changes in the network size using only
small number of agents. Without sacrificing accu-
racy, the network traffic of agents are reduced to
1/c-n(t).

The algorithm we proposed can adjust the replica
density even in the case that the value of 4 is very
small. However, the length of the time interval CY-
CLE needs to become longer when the value of § is
smaller. The reason is that the small value of ¢ indi-
cates the low density replica and thus, agents must
visit more nodes to supply food. We did simulations
in small § and obtained similar results to results in
this paper.)

Besides the simulations on random networks and
scale-free networks presented in this section, we did
simulations on several other networks such as com-
plete networks, lollipop networks and star networks,
and obtained similar results on these networks.

5 Conclusions

In this paper, we have proposed a distributed algo-
rithm for the replica density control problem that
requires to adapt the number of origin resource and
its replicas to a given constant fraction of the cur-
rent number of nodes in a dynamic network. The al-

g

1
................ # Nodes 0
Resources
O — Difference atio |1 g
P ..
2
3
8 300
5
2
& 200
*
100
0

0 40 80 120 160
Time (100)

600 o . ~ 01
---------------- #Nodes
Resources
§00 [
R Difference ratio |[{ 008

P

w00 b T e
3 :
£ 006 F
g 300 8
g e
8 004 ¢
& 200 5
3

Anf] >

n

120 160

o R,

0 40

Time (*100)

a. random networks
(n(0) = 500,r(0) = 100,65 = 0.2)

b. scale-free networks
(n(0) = 500,r(0) = 100,56 = 0.2)

Figure 4: Simulation results on dynamic networks using small number of agents

gorithm is inspired by the single species population
model, which is well-known in the field of the pop-
ulation ecology. The simulation results show that
the proposed algorithm can adequately adjust the
number of replicas in dynamic networks. In addi-
tion, from the simulation results, the lifetime of each
replica becomes sufficiently long by setting an appro-
priate value to algorithm parameter CYCLE.

In this paper, we focus on only the number of
replicas. In real systems that provide resource repli-
cation, allocation of replicas is also very important.
Our future work is to develop the replica allocation
algorithm for improving system performance: agents
determine allocations of new replicas from network
conditions that agents can learn by traversing over
the network.

Acknowledgment

This work is supported in part by a Grant-in-Aid
for Scientific Research ((B)(2)15300017) of JSPS,
and Grant-in-Aid for Scientific Research on Priority
Areas(16092215), and “The 21st Century Center of
Excellence Program” of the Ministry of Education,
Culture, Sports, Science and Technology, Japan.

References
[1] The anthill project.
http://www.cs.unibo.it/projects/anthill/.
{2] The bio-networking architecture.

http:/ /netresearch.ics.uci.edu/bionet/.

[3] R. Albert and A. L. Barabasi. Statistical mechanics
of complex networks. Reviews of Modern Physics,
74(1):47-97, January 2002.

[4] O. Babaoglu, H. Meling, and A. Montresor. Anthill:
A framework for the development of agent-based
peer-to-peer systems. In Proceedings of the 22th
International Conference on Distributed Computing
Systems, pages 15-22, 2002.

[5] A. L. Barabasi and E. Bonabeau. Scale-free net-
works. Scientific American, 288:50-59, May 2003.

[6] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information stor-
age and retrieval system. In Proceedings of the
Workshop on Design Issues in Anonymity end Un-
observability, pages 46-66, July 2000.

[7) Gnutella.com. http://www.gnutella.com.

[8] R. Haberman. Mathematical Model : Population
Dynamics. PRENTICE HALL, 1977.

K. Miura, T. Tagawa, and H. Kakugawa. A quorum-
based protocol for searching objects in peer-to-peer
networks. IEEE Transactions on Parallel and Dis-
tributed Systems. to appear.

[10] V. A. Pham and A. Karmouch. Mobile software
agents : An overview. [EEE Communications,
36(7):26-36, July 1998.

[11] A.R. Silva, A. Romao, D. Deugo, and M. Mira. To-
wards a reference model for surveying mobile agent
systems. Autonomous Agents and Multi-Agent Sys-
tem, 4(3):187-231, 2001.

[12] J. Suzuki and T. Suda. Design and implementation
of a scalable infrastructure for autonomous adap-
tive agents. In Proceedings of the 15th IASTED In-
ternational Conference on Parallel and Distributed
Computing and Systems, pages 594-603, November
2003.

[13] T. Suzuki, T. Izumi, F. Ooshita, and T. Masuzawa.
Biologically inspired self-adaptation of mobile agent
population. In Proceedings of 3rd International
Workshop on Self-Adaptive and Autonomic Com-
puting Systems, August 2005. to appear.

9

