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Abstract

Given a set of rectangular three-dimensional items, all of them associated with a profit, and
a single bigger rectangular three-dimensional bin, we can ask to find a non-rotational, non-
overlapping packing of a selection of these items into the bin to maximize the profit. This problem
differs from three-dimensional strip- and bin-packing as we are to pack into a single bounded bin.
We derive a (16 + ¢)-approximation algorithm and improve the algorithm to an approximation

ratio of (9 +¢). -

1 Introduction

Different packing problems have been in the fo-
cus of study for a long time. This paper con-
centrates on weighted three-dimensional packing
problem with the objective to pack a selection of
the rectangular items without rotations into a sin-
gle bin. In contrast to this, bin packing problems
require to pack all items into a minimal number of
bins. Strip packing is another well-studied pack-
ing problem where items have to be packed into a
strip of bounded basis and unlimited height. -The
aim is to minimize the height that is needed to
pack all items. For all these problems different
variants are examined. Rotation can be allowed
or forbidden. A speciality for three-dimensional
packing is the z-orientated packing where rota-
tions are allowed only along the z-axis. Further-
more, for single container packing we can max-
imize the number of items or maximize the cov-
ered space. These are special cases of the weighted
packing where the profits are equal to 1 and equal
to the space, respectively. Although these prob-
lems have some similarities, they differ consider-
ably and the results cannot be adopted directly.

The two-dimensional packing problems have

been studied more broadly. We present some of
the results that are connected to this work. For
two-dimensional strip-packing the best-known re-
sult with absolute approximation ratio is given
by Steinberg [9] with an approximation ratio
of 2. Bansal and Sviridenko [1] proved that
two-dimensional bin packing does not admit an
asymptotic PTAS. The best-known positive result
is an asymptotic approximation ratio of 1,69...
given by Caprara [2]. For the special case of pack-
ing squares into a minimum number of bins an
asymptotic PTAS is given by Bansal and Sviri-
denko [1]. Finally, Jansen and Stee presented
a (2 + €)-approximation for rotational bin pack-
ing [5]. Packing rectangles into a single bin has
been slightly neglected in the past. Therefore only
a limited number of results are presently avail-
able. The best result is a (2 + €)-algorithm given
by Jansen and Zhang in 2004 [6]. For weighted
packing of a large number of items into a bin
(which means, that the size of the items.is much
smaller than the size of the bin) Fishkin, Gerber
and Jansen [4] gave a PTAS. The special case of
maximizing the number of packed squares: into a
rectangular bin admits an asymptotic FPTAS and
therefore a PTAS (Jansen and Zhang [7])).
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There are much less results for three-
dimensional packing and all corresponding pa-
pers focus on strip- or bin-packing rather than
on single container packing or give heuristics
without an analysis of their approximation ra-
tio. Miyazawa and Wakabayashi gave asymptotic
2, 67-approximation algorithms for strip packing
[10] and z-oriented packing [11].

Formally the single container packing problem
(SCPP) is stated as follows. We are given a list |
of n rectangular items ry,...7, of sizes (a;, b;,¢;)
and profit p;. The objective is to find a non-
overlapping packing of a selection of these items
into a bigger container C = (a,b,c) such that the
total profit of the packed items is maximized.

Obviously three-dimensional packing - finds
many applications, especially for the transporta-
tion and distribution of goods. Rectangle pack-
ing also finds an application in the advertisement
placemerit which is to maximize the profit for rect-
angular placards that can be sticked to a limited
billboard. Not so obviously we can find analo-
gies to non-preemptive scheduling problems. Con-
tainer packing (especially in the z-orientated set-
ting) is related to job scheduling in partitionable
mesh connected systems.

The paper is organized as follows. In the pre-
liminaries in Section 2 we make some prepara-
tions as well as introducing an important result
from two-dimensional strip packing, which will
be employed by our algorithms. In Section 3 we
develop a (16 + €)-approximation algorithm for
SCPP, based on the ideas of a (3 + €)-algorithm
for rectangle packing in [6]. Later we improve this
algorithm to a (9 + €)-algorithm.

2 Preliminaries

At first we introduce some notations for two-
dimensional packing and describe the mea-
surement of approximation algorithms. Two-
dimensional packing (or rectangle packing) is de-
fined similarly as follows. We are given a list
of n rectangular items ry,...r, of sizes (a;,b;)
and profit p;. The objective is to find a non-

overlapping packing ot a selection of these items:

into a bigger bin C = (a,b) such that the total
profit of the packed items is maximized.

We distinguish rectangles as wide, high, big and
small.  An item r; = (a;,b;) is called wide if

a; > a/2 and b; < b/2, high if a; < a/2 and
b; > b/2. big if a; > a/2 and b; > b/2 and finally
small if a; < a/2 and b; < b/2. See Figure 1 for
an illustration.
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Figure 1: Wide, high and big itemns

In 1990, Leung et al. [8] proved the NP-
completeness in the strong sense for the problem
of determining whether a set of squares can be
packed into a bigger square. As this is a very
special case of weighted rectangle packing (and
also single container packing) we directly obtain
the NP-hardness in the strong sense for our prob-
lem. Therefore we concentrate on approxima-
tion algorithms. To evaluate approximation al-
gorithms, we use the standard measure absolute
performance ratio, which is defined for maximiza-
tion problems as R4 = sup;OPT(I)/A(I) where
OPT(I) and A(I) are the optimal valuc and the
objective value given by an approximation algo-
rithm A for any instance I, respectively. An al-
gorithm A is called a d-approximation algortihmn
if OPT(I)/A(I) < 4 for any instance I.

Although our task is to find a concrete packing
of a selection of items, we will usually not really
describe the packing, but rather show that a cer-
tain selection of items can be packed. We can
show this by using a result from two-dimmensional
strip packing, known as Steinberg’s Theorem [9)].
We give a variant of this theorem, which is proved
in [6].

Theorem 2.1 (Variant of Steinberg’s The-
orem). If the total area of a set T of items is
at most 921’ and there are no high items (or wide
items), then a packing for the items in T into a
bin of size (a,b) can be found in polynomsial time.



3 Single container packing

3.1 A constant ratio approximation
algorithm for single container
packing

At first we show a relatively simple (16 + ¢)-
approximation algorithm which we improve with
some minor tweaks to a (9 + ¢)-approximation.
The main idea for our algorithm is to use a PTAS
for the m-dimensional knapsack problem to get a
selection of items with almost optimal profit and
pack this selection in up to 16 bins.

The m-dimensional knapsack problem is to find
for given matrix A € N™" and vectors b € N™
and p € N™ a solution z € N™ which maxi-
mizes the profit Z?=1 piz; under the side condi-
tion Az < b. All numbers are nonnegative inte-
gers. Chandra et al. [3] proved the existence of a
PTAS for the m-dimensional knapsack problem.

For every direction a, b and ¢ we create a side
condition which bounds the sum of the side planes
of the long items. An item is called long in one di-
rection if the length in this direction is more than
half of the bins size. The conditions are:

bici - x; < be
1€1,a;>a/2

a;¢; - x; < ac
€1, b;>b/2
Z ab; - x; <ab
i€l,¢;>c/2

A fourth and fifth condition is added in order to
limit the total space used by all items and the
number of big items, respectively.

Z aib,vcl- s < abe
i€l

i€la;>a/2b;>b/2¢c,>c/2
The objective remains untouched:
szl'i
i€l

Lemma 3.1. Every packable selection I’ of items
can be canonically interpreted as a vector that sat-
1sfies the m-dimensional knapsack instance.

Proof. We show that all the constraints are satis-
fied. Obviously the total space- and the big item-
constraint are satisfied by every feasible packing.
Now observe that two items that are long in di-
rection a can not be packed behind each other in
this direction (they would exceed the houndary
of the bin) - see Figure 2. Therefore the sum of
the projected area in be-direction of items that are
long in direction a is bounded by bc - sce Figure
3. Similarly we can derive the side conditions for
the other directions. O

Figure 3: Side condition for long items in direc-
tion a

We conclude that the optimal solution of the
knapsack instance has at least the same profit as
the optimal solution of the SCPP instaince. Now
we use the PTAS for m-dimensional knapsack to
find a list I;, of items with almost optimal profit
p(Ix) > (1- G)OPTknapsack(I) > (1 - f)OPT(I)

Suppose we have a set I} of items with almost
optimal profit p(I}) from the knapsack problem.
Now we separate I; into three sets Sa, Sp, S, of
long items (see Figure 4), a set Shig of at most
one big item and a set Sgp,q; of small items such
that

Se={iel | ai>a/2,¢< c/2}
Sp={i€elk | b >b/2,a,<a/2}
Se={i€ly | c>c/2,b;<b/2}
Shig={i €l | a;>a/2,b;>b/2,¢c; >c/2}
!

Ssmall = {Z € I a; <af2,b; < b/2,¢; < c/2}



Figure 4: Illustration of shapes of items in S,, Sp
and S,

We pack each set (except of Sy;q which we include
to one of the others later) separately into up to
3 (as for S,, Sp and S;) and up to 7 bins (as for
Ssmait)- In total we get along with 16 bins and
declare the bin with highest profit P* as the solu-
tion, achieving an approximation ratio of (16 +e).

Packing of the long items: Exemplarily we
describe the packing of S,. ‘As we saw before the
projections on the (b, c)-side plane of the bin do
not overlap in a regular packing. We use this
observation to reduce the problem to rectangle
packing. The algorithm we use equals the (3 +€)-
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approximation algorithm in Jansen and Zhang
[6]. Pack the be-projections of the items into a
rectangle of size (2b, ¢) using the variant of Stein-
berg’s Theorem 2.1. This is possible since the
total area of the projections is < bc and there
are no wide items (if we regard the b direction as
the horizontal direction). Draw a vertical line to
divide the (2b, ¢) rectangle into two rectangles of
size (b, ¢) and pack the items, that are cut by this
line, into a third rectangle of the same size. To
do this, retain the order of the items and pack
them left aligned into the rectangle - see Figure 5
for an illustration.

Finally we fit these three (b, ¢)-rectangles into
three (a,b, ¢)-bins and erect the associated items
in a direction on their projections - see Figure 6.
The same algorithm can be applied to S, and S;
packing each in 3 bins of size (a,b,c). Sy con-
tains at most one item it can be packed together
with any of the sets S,, Sp or S, (since the sur-

ace-conditions already consider the big item).

intersecting bin

ﬁ‘

first bin second bin

Figure 5: Packing the projections of S, into three bins

Figure 6: Erecting the items of S, on the pattern of their projections

Packing of the small items: To pack the
set of small items Ssmau We use a combination of
rectangle packing with Steinberg and a layer pack-
ing into an unlimited three-dimensional strip simi-
lar to the simple two-dimensional algorithm Net-
Fit-Decreasing-Height (NFDH) which orders the

items in non-increasing height and fills the strip
level by level. First, we order the itens in non-
increasing height ¢, > ¢z > ... > ¢x. Second,
we group the items such that the sum of the ab-
size of each group is as close to ab/2 as possible.
Formally, we define variables g,... g such that
gy =1 and
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Si= Z a]bj < ab/2

Jj=gi

gi+1
Zajb]‘ > ab/2

J=gi

k
SiZZ(ljbj < ab/2

Jj=g

As all the items are small, the ab-area of each
item is < ab/4. Therefore S; > ab/4 for all
1 <4 <1 —1. Furthermore the ab-projection
of each group G; = (gi,9; +1....,9i41 — 1) of
items can be packed into a rectangle of size (a, b)
with Steinberg’s algorithm, as their total area is

forall 1<i<!l-1 and

forall 1<i<!-1 and

=

 ~
~

bounded by ab/2 and there are neither wide nor
high items. As for the large items we can erect
the small items on their projection and therefore
pack each group G; into one layer of size (a, b, ¢y,)
with the highest height in that group. Insert the
layers in non-increasing order into a strip with the
basis (a,b) and unlimited height - see Figure 7.

Figure 7: Layer packing of Ssmau

We analyse the height of this strip pack-
ing. Suppose the total volume of small items is
bounded by V = Zz‘esﬂ,,,,u a;b;c; < aabe. In ev-
ery layer 1 < ¢ <[ —1 all items have a c-length of
at least c,,,,. Hence, the filling of every layer can
be estimated by the height of the succeeding layer.
Therefore the total volume can be estimated by

-1
> g, ab/4

=1

-1
V> chr+lsi 2
i=1

omitting the thinnest layer. Thus we get

-1
E Cgiyy Sdac.
1=1

With this estimation we can bound the total

height of the strip to:

! l
1
H = ch’_ = (g, +ZC9‘ < (5 +l(l) C
i=1 =2

In this basic analysis we use @ = 1 as an upper
bound (we need a more precise volume estima-
tion for the improvement in the next step) and
derive an absolute height limit of %c. Using the
same idea as for the long items - but this time
the three-dimensional equivalent - we cut the strip
with vertical planes into 4 bins of size (a.b,c) and
one bin of size (a,b, ¢/2) - see Figure 8.

The items which are cut by the 4 planes can be
put together into two more bins of size (a,b,c).
To do this, retain the order of the intersections
on two of the cutting planes and insert them bot-
tom aligned and top aligned respectivelyv into one
bin. As the c-length is bounded by ¢/2 the items




do not overlap. Thus we can pack S into at
most 7 bins which proves

LT
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Figure 8: Layer packing of Ssman

Theorem 3.1 (Single container packing).
There is a polynomial time approrimation algo-
rithm with performance ratio of at most 16 + ¢ for
single container packing, for any € > 0.

3.2 Improvement

The basic (16 + €)-approximation algorithm finds
a selection of items with the m-dimensional knap-
sack and packs this selection into up to 16 bins.

This method is adopted from the (3+¢)-algorithm
for rectangle packing in [6]. It is not surprising,
that the algorithm can be improved by using the
best-known result, which is the (2 + ¢€)-algorithm
of Jansen and Zhang [6]. To do this we have to
change our perspective. We can not longer pack
all items into a certain number of bins. but sep-
arate the selection into several sets of items and
apply ‘as good as possible’-approximation algo-
rithms on them. Therefore we need the following
lemma

Lemma 3.2. Given a set of items S which ful-
fills the m-dimensional knapsack instance of the
previous section, an algorithm P that produces
a partition S, US, U ...US, = S and a list
of approzimation algorithms Ay, As, . ... A; which
have an approzimation ratio of 61,82,...,8;, on
S1,8s,...,S;, respectively, there is an approrima-
tion algorithm A for SCPP with approzimation
ratio at most 07 + 2 + ...+ 6 + € for every € > 0.

Proof. Let A be the algorithm which first finds
a selection of items S with the m-dimensional
knapsack of the previous section, using € =
€/(8y + 02 + ... + &). Then it applies P on
S and A; on S; for 1 < i < [. Let S
be the output of the algorithm A;. A out-
puts max(p(S1),p(S2),...,p(S;)) together with
the corresponding packing.  We prove that

) OPT(I) < (61 +62+ ...+ 6 +e)A().

OPT(I) < (1+¢€)p(S)
(14 €)P(S1) +p(S2) + ... +p(S1))
< (L+€)(1p(S1) + 82p(S2) + ... + &ip(S1))
< (1 + 6’)((51 + 09 + .

Note, that the final ¢ can also absorb other
arbitrarily small number in the approximation
ratios of A;,...,A;. The algorithm P is only
needed to ensure later, that the sets S; have cer-
tain properties from which the algorithm A; can
benefit.

The main idea of the improved algorithm is to
consider the volumes of the different sets. Obvi-
ously the strip height of Ssmai decreases if the

.+ &) max(p(S1), p(Sz), . ..
(01 +62+...+6 +€)A()

.p(S1))

0O

volume of these items is smaller. We nake two
observations before we give the algorithin.

Observation 1 (Packing little volume of S,).
S, can be packed into one bin if Vol(S,) < 1 abc.

Proof. If Vol(S.) < }abc then Spc(S,) < 3be
where Spc(S,) is the sum of the be-side planes of
the items in S,. As there are no high item in S,
(which means long in direction ¢), the bc- projec-

tions of the items can be packed into one bin of



size (b, c) with Steinbergs algorithm. Finally the
items can be erected in a-'direction as usual. Ob-
viously the same applies to the sets S, and S, and
we can include Sy, to any of these sets. O

Observation 2 (Packing little volume of
Ssmail). Ssmait can be packed into. f(a) bins if
Vol(Ssmau) < aabe. Where f() is defined as

if 7/8<ac<l

i 6/8<a<17/8
if 5/8<a<6/8
if 3/8<a<5/8
if 2/8<a<3/8
if 1/8<a<2/8
if 0<a<1/8

fla) =

N W Ot N

Unfortunately the funktion f(a) can not be de-
fined directly because of an odd gap between the
a-values of 3/8 and 5/8. Nevertheless the proof
is quite straightforward.

Proof. Recall, that we analyzed the height of the
strip packing for the small items already bearing
in mind their total volume. Therefore we can use
the resulting strip height of < (% +4a)c. Now it is
easy to see, that for certain strip heights a certain
number of bins is sufficient. Exemplarily, a strip
height of up to 3c can be packed into 4 bins (we
have two cutting planes whose intersection can be
packed together into one bin) - and this height is
sufficient for < 5/8. Note, that for odd numbers
of cutting planes (for example the height of 3%0
for a < 6/8 has 3 cutting planes) the remaining
last regular bin might be only half-filled and can
therefore hold the surplus intersection. O

Now we give a first improved algorithm with
approximation ratio (10 + ¢) which we improve
with a last tweak to (9 + €) afterwards.

1. Find a selection S of items with the m-
dimensional knapsack problem as in the ba-
sic algorithm,

2. separate the items in S into the sets S,, S,
Se and Ssmau as defined above (but consider
a potential big item belonging to S,),

3. if Vol(S,) < 1/4abc than péck S, into one
bin, otherwise use the (2 + ¢)-algorithm for
rectangle packing for the bc-projection and

erect the items on the. pattern (deal simi-
larly with S, and S.),

4. pack Simeu into a strip and transfer the
strip into a minimal number of bins accord-
ing to f(a), -

5. (:hoose( the bin with the highest profit.
Analysis: We consider four different cases:

1. Vol(S,),Vol(Sy),Vol(S.) < 1/4abc
In this case we need 3 bins for S,, Sy and
S. and (like in the basis algorithin) 7 bins
for Ssmau - summing up to 10 bins in total.

2. Vol(S,) > 1/4abc and Vol(S,). Vol(S.) <
1/4abc :
Using Lemma 3.2 we get 6, = 2 + € for
packing S, and & = 8. = 1 for packing
Sy and S. (because they are packed com-
pletely in.one bin each). Finally a < 6/8
and therefore dsmeu = 5 (as S.neu can
be packed into 5 bins). In total we get
0 + 8 + 0c + dsmau = 9+ €.

3. Vol(8,),Vol(Sy) > 1/4abc and Vol(S,) <
1/4abc
Analogue we get §, = 6, = 2+¢, 6, = 1 and
dsmant = 4 (as a < 4/8) - summing up to
0q + 65 + O + Osmatl = 9 + 2e.

4. Vol(S,),Vol(Sy),Vol(S.) > 1/4abe
Analogue we get 6, = 6, = §, = 2 + € and
dsmatl = 2 (as a < 2/8) - summing up to
8o + 0y + 6. + 6‘sma.ll =8 +3e.

As we can interchange S,, S, and S, we proved
the approximation ratio of (10 + €) for our im-
proved algorithm. Obviously only the first case
causes difficulties for the improvement to (9 + ¢).
In this case S,, Sy and S. contain only very lim-
ited volume - this leads to the idea to pack some
of the small items together with the long items.

If the total volume of items packed together
with So, S, and Sc into 3 bins is > labe
then the remaining small items can be packed
into 6 bins (see Observation 2). Hence, as-
sume that Vol(S, U S, U S,) < %abc. W.lo.g
Vol(S,) < Vol(Sy) < Vol(S,) and therefore
Vol(Sa),Vol(S) < fabc. Obviously the sums
of the side planes of the items in S, and S
are therefore bounded by S,.(S,) < %bc and
Sac(Ss) < 2ac. We can add a placeholder item
P, of size (a,b/2,¢/2) in S, and a placeholder



item Py of size (a/2,b,¢/2) in Sy and pack S, and
Sp together with their placeholder items into one
bin each. Now we add some items of Ssnqu into
the space of the placeholder item. Therefore we
define :

Sy ={r € Semau | brc, > %bc}

“ 1
Sy ={r € Ssmau | arcy 2 gac}

and pile up items of S} in a-direction into place-
holder item P, until we either exceed a height
of a/2 or run out of items. Similarly we pile up
items of Sy in b-direction into P,. As items can
be included in both of the sets S; and S; we pay
attention that each item is only included in one
placeholder. If the item supply from S and S;
is sufficient, P, and P, have a volume of > l—lﬁabc
each (ground > é and height > % in the fitting
dimensions), summing up to > éabc.' This per-
mits to pack the remaining small items.in Ss,nqu
into 6 bins.

Now assume w.l.o.g a lack of items in S;. Then
it is possible to pack all items of S, into one of the
two placeholders (itéms that are also contained in
S; can be put into P; too) and the be-side plane
of each remaining small item in Sgmau is < %bc.
Change the direction of the layer packing of the
remaining items into direction a. Considering the
analysis of the layer packing we can improve the
layer filling from S; > %bc to S; > fbc. Tak-
ing this into account we derive a strip height of
H < (1 + 8a)a which is < 33a for a = 1. There-
fore we can pack the remaining small items into 5
bins. We proved

Theorem 3.2 (Improved single container
packing). Thereisa polynomial time approzima-
tion algorithm with performance ratio of at most
9 + € for single container packing, for any € > 0.

Remark: The running time of this improved
algorithm is dominated by several applications of
the (2 + ¢)-algorithm for rectangle packing and
therefore of extremely high order. It is also pos-
sible to derive a (10 + ¢€)-algorithm without using
the (2 + ¢)-algorithm for rectangle packing and
thus getting a much better running time.
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