#HEA BHLEES RRE 2006 —AL—106 (1)
IPSJ SIG Technical Report 20067518

REGRER I EERTH7IVTY XL
X —%

BEAY TEHEHRTER
376-8515 BESIRMRETTRMAT 1-5-1

amano@cs.gunma-u.ac. jp

HOEL nLTEGHEEK F & m TEGREEK g ISNLT, fRgE (FR9)(z1,...,Tm) = f(g(F1),..., 9(Fx)).
FelEL, & = (Tl-1)mt1s- -2 Tim) CEBEND nm BEGHEEEEZERT DL TS, FRTE, UTORMZH
THEEBOISAGCEERS: ERD f=HQ® - ® fi (fi,-.., fe EG) KWL T, “RE"HHREICI->TEX
HNZHERMEIC fFICHNT 2B RERTHS. 75X G, PIRE, £7TO 2 LK, 3 25 256 ED
55 134 BEEERST. CORBRIZ, n=2" TN TFBEROBELZREROYA XN TE n® THBT LERL
7z Khrapchenko I K 2ERDIRE RB T ENTES (BTDIICHLT fi=z1 012 EEXB). £z, TDKS
BEBLREROARERT 5FHE 2L 525, FERIABENCIE, TE, BFENHEE[L 2, 8, 10) KBWTE
REhiz, HBEIEBESORBEEZRBICHENILIEEDTHS.

A procedure that generates a class of optimal Boolean formulas
Kazuyuki Amano

" Dept. of Computer Science, Gunma University
Tenjincyo 1-5-1, Kiryu, Gunma, 376-8515 Japan '

Abstract In this paper, we investigate the size of Boolean formulas for composite functions. For two Boolean
functions f : {0,1}" — {0,1} and g : {0,1}™ — {0,1}, f ® g denotes a Boolean function on nm variables defined
by (f®9)(z1,...,Tam) = f(9(£1),...,9(&x)) where & = (T(;—1)m+1,- - -, Tim). We give a class of base functions
G such that for every function of the form f = fi ®-- - ® fi with fi,..., f € G, a “naive” construction yields an
optimal formula for f. The class G contains every two-variable functions, 134 out of 256 three-variable functions,
and more. This can be viewed as a generalization of Khrapchenko's result that says that the formula size of the
parity function on n = 2* variables is n?, which corresponds to the case j; = 1 @ z3 for every ;. We also give a
procedure that recursively generates Boolean formulas whose optimality is guaranteed. Our results are based on
a careful inspection of a recently proposed complexity measure SumPl [7], which originated from the quantum
adversary method [1, 2, 8, 10].

1 Introduction

To derive a superlinear lower bound on the size of a Boolean circuit for a function in NP is still one
of the most challenging open problems in theoretical computer science. The current best lower bound is
5n — o(n) [5]. A mild success has been archived for the size of a Boolean formula. A formula is a circuit
in which every gate has fan-out exactly one. The current best lower bound for an explicitly defined
function is Q(n®~°(1)) by Hastad [3].

In this paper, we focus on the formula complexity of composite functions. For two Boolean functions
f:{0,1}* = {0,1} and g : {0,1}™ — {0,1}, f ® g denotes a Boolean function on nm variables defined
by (f ® g)(z1,.--:Tnm) = f(9(&1),...,9(&n)) where & = (T(;_1)m+1,--.,Tim). The starting point of
our work is the famous result of Khrapchenko [6] that says that the minimal size of a formula computing
the parity function on n = 2* variables is exactly n?. The parity function on 2¥ variables is expressed as
(21 ®22) ® - @ (21 ® 22). Obviously, an optimal formula for z1 @ z2 is (21 AZ3) V (FT A T2), which has
size 4. By using this recursively, we get a formula for the parity function on 2* variables whose size is
4% = n2. Khrapchenko’s result implies that such a “naive” construction yields an optimal formula when
the base function is z; @ z,. Obviously, the same property holds when a base function is a read-once
formula. So the natural question is then : what happens when we consider other base functions?

One of the motivations for considering the formula complexity of composite functions is as follows: If
we have a base function f on n variables with such a property and whose formula complexity is L(f),
then the formula complexity of the iterated function of f is N'9&» L(f)| where N is the total number of
input variables. For small values of n, computing L(f) may be feasible with the aid of a computer. This
would bring us a good lower bound on the formula size of an explicit Boolean function.

In this paper, we give a set of functions G each of which has such a composite property, formally for
every function of the form f = f1 ® --- ® f with fi,..., fx € G, the formula complexity of f is equal
to the product of the complexities of f;’s. The class G contains every two-variable functions, 134 out of

-1 -

256 three-variable functions, 2144 out of 28 four-variable functions, and more. We also give a procedure
that recursively generates Boolean formulas whose optimality is guaranteed (Theorem 7).

Our results are essentially based on a careful inspection of a recently proposed complexity measure
SumPI [7], which originated from the quantum adversary method [1, 2, 8, 10]. In particular, we mainly
use the dual of the semidefinite version of the definition of this measure. This enables us to obtain a
lower bound on the size of a formula constructively, i.e., a lower bound is obtained by giving a feasible
solution to a certain semidefinite program.

The organization of the paper is as follows: In Section 2, we present some basic notations and definitions
on Boolean formula complexity. In Section 3, we first introduce two equivalent formulations of the
complexity measure SumPIl. Then we analyze them to give a set of functions having a composite property
as well as a procedure that recursively generates optimal Boolean formulas. In Section 4, we discuss some
open problems concerning our work.

2 Preliminaries

A Boolean formula is a binary tree where each internal node is labeled with A or V, and each leaf is
labeled with a literal. A Boolean formula computes a Boolean function in an obvious way. The size of
a formula is the number of leaves in it. For a Boolean function f, the formula complezity of f, denoted
by L(f), is defined as the size of a smallest formula that computes f. A Boolean formula F is said to be
optimal if the size of F' is equal to L(f) where f is the function computed by F.

For a natural number n, [n] denotes the set {1,...,n}. For a binary sequence z € {0,1}", z; denotes
the i-th bit of z. The set of real numbers is denoted by R. For a matrix A, A[z,y] denotes its (z,y)
element. Let tr(A) be the trace of A, i.e., tr(A) = 3, Alz,z]. For a diagonal matrix A, A[z, z] is simply
denoted by A[z]. Let A - B denote the scalar product of 4 and B, i.e., A-B =3 Alz,y]Blz,y], and
Ao B denote the Hadamard product of A and B, i.e., (4 o B)[z,y] = Alz,y]B[z,y]. Let A > B denote
the componentwise comparison, formally Alz,y] > B|z,y] for every z and y. Let A > B denote that
A — B is positive semidefinite, formally for every real vector v, vT(4 — B)v > 0, or equivalently, all
eigenvalues of (A — B) are non-negative.

Let Parity,, denote the parity function on n variables, i.e., Parity,(z1,...,2,) = Y, z; mod 2, and let
Maj,, denote the majority function on n variables, i.e., Maj,(21,...,2,) = 1 iff >, z; > [n/2]. For
S C [n], Eq,, g denotes the function on n variables such that Eq,, (z1,...,2,) = 1iff), z; € S.

3 Formula Size for Composite Functions

For two Boolean functions f : {0,1}" — {0,1} and g : {0,1}™ — {0,1}, f ® g denotes a Boolean
function on nm variables defined as
(f ® y)($1, see :zm'n) = f(g(jl)7 se)g(in))!
where &; = (T(i—1)m+1,- -) Zim). The d-th iterated function
d
———
f ® f R ® f
is simply denoted by f9.
As we described in Introduction, an optimal formula for (Parity,)? = Parity,s can be obtained by a

recursive use of an optimal formula for Parity,.
Let us now consider Parity;. A simple examination shows an optimal formula for Parity; is

(z1T2 V Elzz)is V (z1z2 V E1Z2)73,
and L(Paritys) = 10. By “squaring” this formula, we have a formula for Parity, = (Parity;)? of size
10? = 100. However, this is obviously not optimal. If we construct a formula for Parity, by following an
expression:
Parity, = Parity; @ Parity,
(Parity; @ Parity,) @ (Parity, @ Parity,),

we can obtain a formula for Parity, of size 4{(10 + 4) + (4 + 4)} = 88, which is smaller than 100 =
L(Parity;)?. This motivates us to classify functions according to whether it has such a composition
property.

Definition 1 A Boolean function f is said to be good if L(f%) = L(f)? for every d > 1; otherwise, it is
called bad.

By the above discussion, we have known that Parity, is good and Parity; is bad. Obviously, every
read-once formula f is good. In order to learn more, we investigate a recently proposed complexity
measure SumPl [7], which originated from the quantum adversary method [1, 2, 8, 10].

For z € {0,1}", let p: : [n] = R be a probability distribution, that is p;(¢) > 0 and), p-(i) = 1. Let
p={p. | z € {0,1}"}. Then

1
P !(n;;ﬂ!(v) Ei:z;#y; \/Pz(i)py('i)-

Laplante, Lee and Szegedy [7] proved that SumPI?(f) lower bounds the formula complexity of £, i.e.,
L(f) > SumPI?(f) for every f. Several equivalent definitions of SumPl are known [9]. We show here the
semidefinite version of the definition of SumPI, which is the most suitable form for our purpose.

1)

SumPI(f) = min max

Theorem 1 (9] Let F be a 2™ x 2" binary matriz such that Fz,y] = 1 iff f(z) # f(y), and let D; be
a 2™ x 2" binary matriz such that D;[z,y] = 1 iff z; # ¥; ond f(z) # F(¥)-.! Let pimin be the minimal
solution of the following semidefinite program:

minimize o= tr(A)
subject to A is diagonal
Z >0 (2)
Z-F =1
Vi:A—ZoD; = 0.

Then SumPI(f) = 1/pmin-

Note that the above is in fact the dual of the semidefinite formulation of the minimax version of
SumPI(f) in Eq. (1). The merit of using this formulation is that we can prove a lower bound construc-
tively. Every feasible solution (A, Z) of SDP (2) gives a lower bound of 1/tr(A) on SumPI(f).

The measure SumPI(f) has a strong composition property. Ambainis proved that SumPI(f)¢ >
SumPI(f9) [1]. Laplante, Lee and Szegedy [7] proved that this lower bound is tight by showing SumPI(f)% <
SumPI(f9). By a careful inspection of their proof, it is not hard to generalize this to the following form,
which was also stated in [4].

Theorem 2 [1, 7] For every Boolean functions f and g,
SumPI(f ® g) = SumPI(f) - SumPI(g). <

The above theorem implies that if SumPI?(f) = L(f) and SumPI?(g) = L(g), then a formula for f ® ¢
of size L(f) - L(g) is guaranteed to be optimal.

In what follows, a Boolean function f is said to be tight if SumPI>(f) = L(f). By the definition, every
tight function is also good. Moreover, if G is a set of tight functions, then L(f1® - -® f) = L(f1) - - - L(f)
for every fi,..., fv € G. We do not know whether the converse is true or not.

Let B, be the set of all 22" Boolean functions on n variables. The set B,, can be divided into
equivalence classes, which usually called NPN-equivalence classes, by considering the following three
operations: (i) input inversion, (ii) input permutation and (iii) output inversion. Two Boolean functions
are NPN-equivalent if one can be transformed into the other by permuting and/or negating the inputs
and/or negating the output. Let F,, C B, be a set of representatives of all NPN-equivalence classes. An
easy computation shows that

R = {0,z1},
B = FlU{$1z2,21®Zz},

1We added the condition that f(z) # f(y) here to the definition of D;, which is not exist in [9). However, it is easy to
see that these two definitions are equivalent.

F3 = FU{z12323, (71 © 22)23, 2122 V T3, 7122 V T1x3, Majs, Parity,,
Eqs, (2}, EQs (0,3}, T1 7273 V T1(T2 V T3), (2172 V 73) (T3 V T3) }-

Note that the number of NPN-equivalence classes in B, for n = 3,4 and 5 are 14,222 and 616126,
respectively.
The following fact is obvious but useful.

Fact 1 Suppose that f and g belong to a same NPN-eguivalence class. Then L(f) = L(g) and SumPI(f) =
SumPI(g). q

It is easy to check that every function in F3 is tight. The next theorem gives a way to generate a tight
function recursively.

Theorem 3 Suppose that f(wl, vevsTn) =1 - g(T2, ..., Tn). Then SumPI?(f) = SumPI?(g) + 1.

Proof.(i) SumPI?(f) < SumPi’(g) +1.

We use the minimax version of the definition of SumPI(f). Let p = {p. | z € {0,1}"1} be a set of
probability distributions on [n — 1] that attains SumPl(g) in Eq. (1).

Put z = SumPI(g). We will define a set of probability distributions ¢ = {¢» | z € {0,1}"} on [n] such
that the RHS in Eq. (1) is at most v/22 + 1. Note that f(0z) = f(0y) = f(1z) = 0 and f(ly) = 1 for
every = € g~1(0) and every y € g~!(1). Define g as

_ 1 #°py(1) 2’py(n—1) -1
W=\ Frr P 0 g1) e
Goz=qz = (0, p=(1), ..., p(n—-1)), forzegi(0),
gy = (1, 0, e 0), foryegi(1).

It is easy to check that

max ! <V22+1.

u

FORIO) Dt V Tu (680 (0)
For example, if (u,v) = (1y,0z) where y € g~1(1) and = € g~*(0), then

1 _ V22 +1 1 <VET1
Eizu;;ﬁv; \/ qu()qu (%) 2 Zi:z;#y.- \/ P=(8)py(3) ~

since SumPl(g) = 2. The other cases are similar and omitted.
(i) SumPI2(f) > SumPI%(g) + 1.

To prove the other direction, we use the semidefinite version of the definition of SumPI(f) described
in Theorem 1.

Let (A,, Z,) be a solution of (2) for the function g, and let y; be the minimal value of the objective
function, i.e., py = tr(4A,). Let Fy and (Dgy); be matrices defined in Theorem 1. Without loss of
generality, we can assume that all diagonal elements of A, is non-negative and 3, -1(0) Agfz] =
Yyeq-(1) Dal¥] = py/2 (whose proof is omitted in this version due to the space constraint.) Since
SumPl(g) = 1/p,, all we have to show is the minimal solution of SDP (2) for the function f is at most
e/ \/tg + 1.

In order to show this, we give two matrices Ay and Z; that satisfy all conditions in (2) and tr(Ay) =
tg/+/Bg + 1. Define a 2" x 2" diagonal matrix A; as:

Af[0z] =0, 2,41 for z € g7(0),
1 Y -
Asloy] = @f#)“‘/i for y € g71(1),
Aglz
Aglz] = W"[l)]aﬁ for z € g7(0),
Ag[ly] = A,[y] for y € g~1(1).

W+ D7

We also define a 2™ x 2" matrix Z; as:

0 7
Zf = 7 1 V4)
7 p2+17°
where Z} is a 2"~ x 2"~! diagonal matrix such that
Z}[z,z] =0 for z € g71(0),
1 __K \ _
Zily,y] = ug—:-lA”[y] for y € g71(1).

Then the value of the objective function, which is equal to tr(Ay), is given by
tr(Ay)

al2]
2 o W+ D

z€9~1(0)

1
+ Y Al y]((z_,_l)s/z (#§+1)1/2)

y€g~1(1)

_ K py +1 + 1 _ Ly
2\ 07 T @R) T @
The condition Z; > 0 is trivially hold. We have

Zf'Ff = 2 (Z F)+2 Z Zf[oyyly]
+1 v€g~1(2)
= 1 + —— l‘g
#§+1 u§+1 u2+1 u2+1

Eg"(l)
The second last equality follows from Zye o-1(1) Daly] = pg/2.

We now show that Ay — Z; o (Dy); is positive semidefinite for every i = 1,...,n, where (D;); is a
x 2™ binary matrix whose [z,y] entry is 1 iff z; # y; and f(z) # f(y). We d1v1de this into two cases.

Ca.sex)1—1
on = (9 5)

The matrix (Dy); is of the form
where 0 is a 2"~! x 27~ matrix whose elements are all 0, and 4 is a 2~ x 2"~ matrix satisfying that
Aly,y] =1 for every y € g~1(1) (since 1 = f(1y) # (Oy) = 0). Let S be a submatrix of Aj — Zs o (Dy);
consisting of the rows and columns indexed by Oy and 1y for y € g~*(1). Then S is a 2|g~1(1)| x 2| 971(1)|
matrix given by

2
1384(y]
5[0y, 0y] _He2glWl
(B2 +1)3/2°
A
Sloy,1y] = S[ly,Oy]:-.‘Zz ihl/]’
9
Ay
bl = Gy

Since (Ay — Zg o (Dy);)[vz,vz] > 0 for every v € {0,1} and z € g‘l (0), it is sufficient to show that S is
positive semidefinite, i.e., for every w = (woy, w1y)ye,-11) € R29™ M1, T Sw > 0. This can be verified

as follows:
AN Aglyl 2 PgAqly]
Z (”2 + 1)3/2 Ov + Z (”2 + 1)1/2 Wiy ~ 22 _|. 1) WoyWiy

24, A
> < (ﬂg + 1[)?,-:’]/2 Woy — @ +[f)]1 7 wly) >0.

Caseii) i=2,...,n.
We show the case ¢ = 2. The other cases are analogous to this case. The matrix (Dy), is of the form

en=(5 oy)

where B is a 2" ! x 2"~! matrix whose diagonal elements are all 0. Note that all diagonal elements of
(Dg)1 are 0. Hence As — Z o (Dy)» has non-zero elements only at [0u, Ou] for u € g~2(1) and at [1u, 1v]
for u,v € {0,1}*"1. Since Af[Ou] is non-negative for every u, Ay — Z o (Dy)2 is positive semidefinite
if A} — Z o (Dy); is positive semidefinite where A} denotes a submatrix of A; consisting of rows and
columns indexed by 1u for u € {0,1}"1. Let w = (wu)ucfo,1»-2 € R2" . Then wT (A} = Z o (Dy)1)w
is given by

Bgle] o Ag[ll] (Zg o (D)), 9],
3, izl T Z VAR E s Waly. (3)
=€g9~1(0) (uf +1) / yer‘(l) Hy+1) g+ =€9=1(0) By +1
ve€g—1(1)
Let
1 2 1 2 _ =2
(u2 + e = e and @y =
or equivalently,
wy =4/ (u2 +1)%%0;, and wy = /(42 + 1)1/,
Putting these into Eq. (3) gives
D Agfali’+ Y Aglyhd,® -2 Z (Zg © (Dg)1)[z, yhiz1dy.
z€9-1(0) ¥€g~1(1) 2€g=1(0)
veg—1(1)
This is always non-negative since A, — Z, o (D,); is positive semidefinite. This completes the proof of
Theorem 3. <

An analogous proof can be carried for the functions zAg, zV g and zV g. Since L(f) = L(g) + 1, we
have:

Corollary 1 Suppose that g is a tight function and = is a variable not appearing in g. Then all of zA g,
zAg,zVgand Vg are tight. <

Combining Corollary 1 with the fact that every function in B; is tight, we find that z; 2223, (21 ®z2)zs
and 7172 V z3 in F3 are also tight. Interestingly, there are only one more tight function in Fj3.

Theorem 4 The function z1z2 V T1xs € Bs is tight.

Proof.Let f = z;2, V F1z3. It is obvious that L(f) = 4. By Theorem 1, it is sufficient to give a feasible
solution (A, Z) of SDP (2) such that tr(A) =1/2.
Define a diagonal matrix A such that A[010] = A[110] = A[001] = A[101] = 1/8 and all other elements
are 0, and define Z such that Z[z,y] = Z[y,z] = 1/8 if
(z,y) € {(010,110),(001,101),(101,110), (010,001)},

and all other elements are 0. A simple calculation shows that these matrices satisfy all conditions in Eq.
(2). <

Note that every other function in Fj is not tight. Here’s the table of L(f) and SumPI(f) for f € F3
with SumPI?(f) # L(f).

f L(f) | SumP’(f)
Majg 5 4
Parity 10 9
qu'{2} 8 7
Eqs, (0,3} 6 4.5
T1T2x3 VE(TZ VES) | 6 3+2v2
(122 Va3)(@ZVTES) | 5 3+V3

Theorem 5 A function f on 3 variables is tight iff f is an NPN-equivalent to a function in T3 =
Bu {:D1Z2.'B3, (2:1 (&) 32)2:3,:1:1:172 V z3,21Z2 Vflzs}. q

Note that the number of tight classes in Bj is 8 and the total number of tight functions in B; is 134.
Now we proceed to consider base functions on 4 variables. Let T4 be a set of representatives of tight
functions on 4 variables. The following corollary is straightforward from Theorem 2.

Corollary 2 Let g and h be two tight functions. Then g ® h is tight. <
Obviously, 7y contains T3. By applying Corollary 1 to each tight function on 3 variables, we find that
the following 7 classes are also in Tj: ‘ .
122834, T18383 V T4, (T1 @)32, (71 @ 22)T3) V 74,
(172 V 23)74, (172 V T3) V T4, (3122 V T1T3) 4.
Note that the function (z,z2 VE123) Vx4 is NPN-equivalent to the last function in the above. In addition,
by applying Corollary 2 to two tight functions on 2 variables, we find that the following 4 classes are also
in T4:
T1 &2 @ T3T4, T1T2 V T3T4, (T1 © T2)(T3 @ 4), Parity,
Again, we have only one more:

Theorem 6 The function (z1 V x2)(zs ® x4) € B, is tight.

Proof.Let f = (z1 V 22)(z3 ® z4). It is easy to check that L(f) = 6. As for the proof of Theorem 5, we
give a feasible solution (A, Z) for SDP (2) such that tr(A) = 1/v/6. Let A be a diagonal matrix such
that -

A[0100] = A[0111] = A[1000] = A[1011] = A[0001] = A[0010] = ﬁ
A[1010] = A[0110] = A[1001] = A[0101] ﬁ

and all other elements are 0. Let Z be a matrix such that Z[z,y] = Z[y,z] = 1/24 if
(z,y) € {(0100,0101),(0100,0110), (0101,0111), (0110,0111),
(1000, 1001), (1000, 1010), (1001, 1011), (1010, 1011),
(0001, 0101), (0001, 1001), (0010, 0110), (0010, 1010)},
and all other elements are 0. An easy but tedious calculation shows that (A, Z) satisfies all conditions
in Eq. (2). : <

In fact, we computed the values of SumPI(f) for all functions on 4 variables by using a SDP solver
program. The results confirm that there are 20 tight classes (out of 222) in By, all of them have been
addressed. The total number of tight functions in By is 2144 (out of 216).

By applying Corollaries 1 and 2 recursively, we can easily obtain a set of tight functions on n > 5
" variables. We do not know whether there is a tight function that cannot be generated by applying these
corollaries at the time of writing.

In conclusion, our results can be restated as follows:

Theorem 7 Let G be a class of Boolean formulas recursively defined as follows:
1. (Basis) {z1,%1%3 V T1xs, T1Z2 V 173, (T1 V T2)((z3T2) V (T3z4))} C 6.
2. (NPN-eguivalence) if F(z1;...,7n) € G, then

(a) (Input Negation) a formula obtained from F by replacing all occurrences of z; by T; for some
i € [n] is in G,
(b) (Input Permutation) F(Z,), .- .,%p(n)) for some permutation p on [n] is in G,

(¢c) (Output Negation) a formula obtained from F by interchanging V and A and replacing all
occurrences of T; by T; for every i € [n] is in G.

3. (Extension) if F € G and z is e variable not appearing in F, thenzV F,z AF € G.
4. (Composition) if F(z1,...,%p),G(Z1,...,Zm) €G, then
F(G(=1,.-,%m), G(@mt1s -1 Tam)y -+ oy F(T(n—1)mt1s-- - Tnm)) € G.

Then every formula in G is optimal. <

4 Discussions

Many open interesting problems remain to be resolved. To extend the class G in Theorem 7 is appaz-
ently one of the most interesting future works. For three-variable functions, we have shown that 8 classes
are good and one class is bad, and there remains 5 unknown classes. We have not known whether there
is a good function f such that SumPI2(f) # L(f).

The iterated function of Parity;, which was discussed in Section 3, shows a considerable gap between
L(f?) and L(f)%. We have

L(Parity.)d _ L(Parity)d _ nlogs 10 _ .
L((Parity:)d) - L(Parity:.;) = 9(e) = Q(n>*?),

where n = 3¢ is the total number of input variables. The problem to find a base function that admits a
larger gap also seems to be interesting.

By writing a simple computer program, we can check that L(f) < n? for every function f on n < 4
variables except for Parity; and —Parity; (in fact L(f) < 8 for every f on 3 variables except for f €
{Parityz, —Paritys }, and L(f) < 16 for every f on 4 variables). This implies that, for every f onn < 4
variables, the formula complexity of the iterated function of f is at most quadratic in the total number
" of input variables. So, for example, if we want to obtain a super-quadratic lower bound for composite
functions, we need a base function depending on at least 5 variables.

Acknowledgements

The author would like to thank Eiji Takimoto and Hideaki Fukuhara for enjoyable discussions. This
work was partially supported by Grant-in-Aid for Scientific Research on Priority Areas “New Horizons
in Computing” from MEXT of Japan.

References

[1] A. AmBAINIS, Polynomial Degree vs. Quantum Query Complexity, Proc. 44th FOCS, 230-239, 2003.

[2] H. BARNUM, M. SAKS, AND M. SzEGEDY, Quantum Decision Trees and Semidefinite Programming, Proc.
18th CCC, 179-193, 2003.

[3] J. HAsTAD, The Shrinkage Exponent of de Morgan Formulas is 2, STAM J. Comput., 27(1), 48-64, 1998.
[4] P. Hover anD R. SpaLEk, Tight Adversary Bounds for Composite Functions, quant-ph/0509067, 2005.

[5] K. Iwama aND H. Morizumi, An Explicit Lower Bound of 5n.—o(n) for Boolean Circuits, Proc. 27th MFCS,
353-364, 2002.

[6] V.M. KHRAPCHENKO, Complexity of the Realization of a Linear Function in the Case of II-Circuits, Math.
Notes Acad. Sci., 9, 21-23, 1971.

[7) S. LAPLANTE, T. LEE AND M. SZEGEDY, The Quantum Adversary Method and Classical Formula Lower
Bounds, Proc. 20th CCC, 76-90, 2005.

[8] S. LAPLANTE AND F. MAGNIEZ, Lower Bounds for Randomized and Quantum Query Complexity using
Kolmogorov Arguments, Proc. 19th CCC, 294-304, 2004

[9] R. SPALEK AND M. SzEGEDY, All Quantum Adversary Methods are Equivalent, Proc. 32nd ICALP, 1299~
1311, 2005.

[10] S. ZHANG, On the Power of Ambainis’s Lower Bounds, Proc. 31st ICALP, 1238-1250, 2004.

