BN LS SRS 2007—AL—110 (1)
IPSJ SIG Technical Report 200771723

AFGAT AV T ALY R RERL -
Dynamic TCP Acknowledgment [FZE

HE AR
BRIBfERT RFER B> A7 LZ2H%EN

&)

HoEL

TCP 70 N 2B SBETIERIERIL Y b 2257 5 & EERER (acknowledgment, BT ack) 2 2 EH
IBLT, BEVEILAZLEMLES. ZEFBEEHE Yy M 1EY D ack 2ETOTIRAR L, HEDHEN
FYRMINUT1IED ack TEEOTEERRE2FETIENHED. ZOBWBE65 L ack BIEE LT 528, #iC
BEAESAMI & BIEEDRVBNBEENEBERTL VO RAEH S, Dynamic TCP acknowledgment FIREILZ D b
V—RATIIHNTEAY SV EELEETHD. UL ANS. KD Dynamic TCP Acknowledgement fIED
PHATIE, ZEED ack % BABPEIBVBEIEFENEENIREEZMAD AT AT AV ItV R UDE#E
ERU TV,

FZTHRFETIE, AT 47U 1V R IOEEZMAAAR Dynamic TCP Acknowledgement B % A
LT, AV A4y TNT) XLADMEREE AR A FACTFET 5. RHCV AV RO A ADEEE W ThHdD L
IREL TR 2TV, ZEEN W 2806 SN TONUE 2-competitive 24V T4V TN TV AL EBETE 015
U, W85 XNTOBRVESIE, REOBHETOREAY S AV TNITVAL2ELTNT VALY S ADOESH
DTRIMEIGEEENES > & THEMBEBAY OBANSTy PEUTEEFELTUE S Z LR RT.

Dynamic TCP Acknowledgment with Sliding Window

Hisashi Koga
Graduate School of Information Systems
University of Electro-Communications

Abstract In TCP protocol, each packet arriving at the receiver must be acknowledged by the receiver in
order to notify the sender that the transmission was successful. However, each packet need not be acknowledged
individually. Instead, the receiver is allowed to acknowledge multiple packets with a single acknowledgement by
postponing the acknowledgement. Though this mechanism is advantageous with respect to reduce the number
of acknowledgements, delaying acknowledgements may add excessive latency to the TCP connection. Dooly et
al. formulated this trade-off as the dynamic TCP acknowledgement problem. However, their framework does not
consider the concept of sliding window that restricts the maximum number of packets that the sender can inject
into the network without notified acknowledgements.

In this paper, we propose a new problem in which the sliding window is integrated into the dynamic TCP
acknowledgement problem realistically. We evaluate the performance of on-line algorithms with competitive
analysis, assuming that the window size is a constant integer W > 1. We show that there exists a 2-competitive
deterministic on-line algorithm if on-line algorithms know the value of W beforehand. By contrast, if they do not
know W, the lower bound of the competitive ratio for an algorithm class containing the optimal on-line algorithm
for the original framework by Dooly et al. that is 2-competitive now depends on the maximum number of packets
that the sender wishes to send per unit time.

1 Introduction

TCP (Transport Control Protocol) is the most well-known transport protocol in the Internet and adopted
in many application protocols such as telnet, ftp and http. Thus, there is a strong need to grasp the
behavior of TCP protocol both from theoretical and experimental sides. Among previous works that
analyzed TCP theoretically, Dooly et al. {3] focused on the mechanism of TCP acknowledgement. Suppose
that a sender S send packets to a receiver R using TCP. In TCP protocol, each packet arriving at R must
be acknowledged by R in order to notify .S that the transmission was successful. However, each packet
need not be acknowledged individually. Instead, most TCP implementations employ a mechanism called
“delayed ACK” which admits the receiver to acknowledge multiple packets with a single acknowledgement
by postponing the acknowledgement. The delayed ACK mechanism contributes to reducing the overhead
of the acknowledgements by decreasing the number of acknowledgements. On the other hand, it has
the risk to add excessive latency to the TCP connection. Dooly et al.[3] formulated this trade-off as the
dynamic TCP acknowledgement problem.

The Dynamic TCP acknowledgement problem is defined as follows: There is a sequence of n packets
o = (p1,p2,---,pn) each of which reaches R in order. The arrival time of p; at R is denoted by a;.
An acknowledgment algorithm operating in R divides ¢ into m subsequnces o1, 02, ..., 0, where each
subsequence end corresponds to a single acknowledgment. All the packets contained in ¢; (1 < j < m) are
acknowledged together by the j-th acknowledgement. Let t; be the time when the j-th acknowledgment
is performed. To assure that all the packets should be acknowledged, it must hold that m > 1 and
that t,, > a,. In case a packet p is not acknowledged immediately, an extra latency arises. The
purpose of the dynamic TCP acknowledgement problem is to minimize the sum of the cost for generating
acknowledgements and the cost for the latency of acknowledgements by choosing the acknowledgement
time sequence (t1,t2,--,tm) adequately. Ordinarily, an acknowledgment time is decided in an on-line
fashion without knowing the future packet arrivals. Dooly et al. proposes two kinds of objective functions
that should be minimized. The first objective function fsu., combines the number of acknowledgements
with the sum of delays for all the packets. fsum is described as m + 3777, >pico, Iti — ail- The second
objective function f,,, combines the number of acknowledgements with the sum of the maximum delays
for a packet in each subsequence o; and defined as Eq. (1).

m
m+zlzg1€ag§ [t; — ail. (1)
=

Dooly et al. evaluated on-line acknowledgement algorithms with competitive analysis [2] which com-
pares the performance of an on-line algorithm with that of the optimal off-line algorithm OPT that
knows the entire packet sequence o in advance and can therefore achieve the minimum cost. Let C4(0)
be the value of the objective function after an acknowledgement algorithm A processes 0. An on-line
acknowledgement algorithm A is called c-competitive if C4(0) < ¢ Cope(0)+b for any o, where b is a con-
stant independent of 0. As for fsum, they presented a deterministic 2-competitive algorithm and proved
that no deterministic on-line algorithm is better than 2-competitive. With respect to fimez, they also
constructed a deterministic on-line algorithm which achieves the best competitive ratio of 2. This best
on-line algorithm utilizes a timer. When p; reaches R at time a;, the timer is set to a;+1. If a;41 > a;+1,
the timer expires and the acknowledgement is performed at a; + 1. Otherwise, the timer is updated to
ai+1 + 1 at a;y1, the arrival time of the next packet p;11. Note that this algorithm acknowledges just
when the latency cost equals the cost for a single acknowledgement. Let us call this algorithm WAIT(1),
since it always waits for 1 unit time since the last packet arrival before performing an acknowledgement.
Since this paper deals with f,... only, we abbreviate the dynamic TCP acknowledgement problem with
fmaz simply as DTCP.

We claim that DTCP abstracts the mechanism of TCP acknowledgement only partially, because it
misses the concept of sliding window that plays a crucial role for congestion control in TCP. The sliding
window functions in a TCP sender S and restricts the maximum number of packets that S can inject
into the network without notified acknowledgements. See Figure 1 for example. The sliding window is
depicted as a rectangle and divides the packet sequence into three subsequences such that its left end
shows the last packet which has been already acknowledged, whereas its right end shows up to which
unacknowledged packet S can send. Every time S is notified an acknowledgement, the sliding window
slides rightward. In this way, the width of the sliding window defines the maximum number of packets that
S can inject into the network without a receipt of an acknowledgement. The width of the sliding window
is termed window size. The sliding window forces S to stop sending packets when an acknowledgement
has not been returned from R for a long time, which may be a sign that R is overwhelmed against a large
amount of incoming packets.

acknowledged unacknowledged unacknowledged
allowed to send disallowed to send

P1 P2 P3| P4 Ps Pe P7 P8(P9 Pio

Figure 1: Sliding Window

Our primary contribution is to propose a new problem in which the sliding window is integrated into

727

DTCP realistically. Motivated by the fact that, in the standard TCP, R operates without knowing if S
stops sending packets due to the sliding window, we examine how the power of on-line algorithms depends
on whether R recognizes that S is awaiting. To simplify the analysis, we assume that the window size is a
constant integer W (> 1), though TCP protocol allows S to change it dynamically in practice. Namely, a
packet p; can never reach R before p;_y is acknowledged by R (i > W). Owing to this simplification, R
has only to know the value of W so as to judge whether S is waiting or not. Our new problem is named
as DTCPSW (DTCP with Sliding Window).

In Section 2, we define the DTCPSW more formally. Section 3 presents the optimal off-line algorithm
for DTCPSW whose computational complexity is O(Wn). Because the optimal off-line algorithm is
computable in O(n) in DTCP, this result states that DTCPSW is more difficult than DTCP. Section
4 discusses the case in which R knows the value of W. In this case, we show that it is possible to
construct a 2-competitive deterministic on-line algorithm by extending WAIT(1) naturally. Furthermore,
this algorithm becomes the optimal. Thus, we can obtain a result comparable to DTCP for DTCPSW,
if R knows W. Section 5 investigates the case in which R does not know W. We show that the on-
line strategy that observes time intervals between two consecutive packets like WAIT(1) does not work
efficiently. Concretely; we pick up an algorithm class WAIT(a) containing WAIT(1), where « is arbitrary
positive real. wait(a) is not competitive in the sense that its competitive ratio depends on the the
maximum number of packets that the S wishes to send per unit time. In particular, it is proved that no
on-line algorithm from the algorithm class WAIT(¢) is better than -ﬂL—T,,W,—JTl-competitive when T' > W,
even if the number of packets S hopes to send per unit time never goes beyond T". Thus, Section 5 derives
the result opposite to Section 4, which reflects the importance of the agreement between the sender and
the receiver in communications. Section 6 is the conclusion.

1.1 Related Works

Recently, Albers and Bals [1] studied the dynamic TCP acknowledgement problem with a different object
function m+max;<i<m Maxy,eo; |£; —as|. Karlin et al. [5] studied randomized on-line algorithms against
oblivious on-line algorithms with fsum and developed a randomized on-line algorithm that becomes %5-
competitive. In addition, they showed that all of the solutions to the ski-rental problem, the dynamic
TCP acknowledgment problem and the bahncard problem [4] fall within a common framework.

2 Problem Statement

DTCPSW is formally defined as follows .We are given a sequence of packets o = (p1,p2,...,Pn) that
S shall send to R. DTCPSW differs from the original DTCP in that the next two sorts of times are
associated with each packet p;.

o Ready time r;: the time when S prepares the transmission of p;.

o Arrival time a#: the time when the packet arrives at R and get eligible to the acknowledgment
algorithm A in R. The superscript A indicates that the arrival time is influenced by the action of
A as explained below.

S can send p; at r; unless impeded by the sliding window. On the other hand, the sliding window permits
S to send p; only after A acknowledges p;—w if i > W. Let ack? (p) be the time when A acknowledges
a packet p. In DTCPSW, by assuming that the propagation delay between S and R equals 0, a; is
described by Eq. (2).

aft = max{r;, ack® (pi_w)}- (2)
Here, when i — W < 0, ackA(pi_W) is defined to be —co. If A acknowledges p;_w with the I-th

acknowledgement at time #;, Eq. (2) may be written as at = max{ry,t;}. At t;, immediately after A’s

I-th acknowledgement, a group of packets postponed by the sliding window are passed to A. We allow A
to acknowledge them instantly by the (I 4+ 1)-th acknowledgement. In this case, it holds that ¢; = #;41.
Thus, A can make multiple acknowledgements at a given time.

The important point is that, whereas the ready time sequence (r1,r2,---,75) is the inherent input
that has nothing to do with A, A affects the arrival time sequence (afl, a4, - - -,aZ). In the subsequence,
the name of the acknowledgment algorithm is omitted from variables, when clear from the context. In
addition, we equate the ready time sequence (71,72, - - -,) with the input packet sequence (p1,p2,- -, Pn)

and denote it by 0. A meets the arrival time sequence only and serves it without viewing the ready time
sequence. In DTCPSW, the latency of a packet p is naturally defined as the length of the time period
between its ready time and the time when A acknowledges it. Again, A divides ¢ into m subsequences
01,09, - 0y whose ends correspond to acknowledgments. The purpose of DTCPSW is to minimize the
objective function fy.. shown in Eq. (3) that is the modification of Eq. (1).

m
Frmaz =M+ Z max |t; — 7. (3)
j:lp,erj

In general, A cannot know the ready time sequence even after it finishes the processing of the arrival
time sequence, though we dare to treat the case when A can estimate the ready time sequence correctly
by knowing W in Section 4.

When W = 1, a trivial on-line algorithm that acknowledges every packet arrival instantly becomes
1-competitive for DTCPSW. Hence, we assume W > 2 in the remaining part of this paper.

DTCPSW opens up a new vista on the research of competitive analysis from the next reason: As
far as we know, there is no previous research attempting to cope with the situation such that an on-
line algorithm unconsciously changes the original input sequence which corresponds to the ready time
sequence in our problem. We remark that it is not rare for an on-line algorithm not to figure out the
original input sequence after changing it involuntarily. For example, consider a scenario in which there
exist a couple of mice in some house and the inhabitant sees one of them by accident. If he chooses to
get rid of the mouse on the spot, the number of mice cannot increase any more. On the contrary, if he
lets the mouse escape, he will meet a lot of mice (i.e., the changed input sequence) in future and must
have trouble exterminating all of them, but he will never become aware that there are only two mice at
the beginning.

This section finishes by stating that it holds that a; = r; for any 7 in the DTCP instead of Eq. (2).

3 Optimal Off-line Algorithm

This section presents the optimal off-line algorithm OPT for DTCPSW. OPT is given both the entire
ready time sequence o and W in advance before starting to process 0. We start with the next lemma
that states the necessary condition of OPT.

Lemma 1 Let B be an off-line algorithm. If S has ever defer sending a packet to R because of the sliding
window in B’s running, B is not the optimal.)

Proof: Let p; be the first packet which S defers sending to R. Namely, ry = ax for 1 <k <i-—-1
and 7; < a;. Since the sliding window does not impede the transmission of the first W packets, i > W.
p; becomes eligible to R at a;, caused by some acknowledgement in the running of B. Consider the
subsequence of o that ends with this acknowledgement. Let this subsequence be o;. See Figure 2. Since
ri—1 < T3, we have a;_1 < r;. Therefore, it is possible to reduce the latency for o; by acknowledging it at
a;_1. Since this modification does not influence the latency for other subsequences, B is not the optimal
off-line algorithm. [.

From Lemma 1, OPT makes an acknowledgement, whenever the number of unacknowledged eligible
packets increases to W. Therefore, OPT acknowledges at least once for every W packet arrivals. More
importantly, the proof of Lemma 1 claims that Vi, a; = r; for any ¢ in OPT’s running,.

ai-1 Gj+1

> time

Figure 2: Off-line Algorithm B

for 1 <k <gq

~ —rd 1. ifk<W
OPTCOST[}] = { miny<icw OPTCOST(k — I + 7] —r)_,+1. ifk>W
0 fk<W

PREVACK[k] = { argmin; OPTCOST[k —]+ 7l —rl_,+1. ifk>W

Figure 3: Update of OPTCOST and PREVACK

When an acknowledgement algorithm A guarantees a; = r; for any 4, we can proceed the analysis
of A by dividing the total incurred cost by A among each packet in the next manner. Dooly et al. {3]
exploited the similar technique for DTCP.

e When A acknowledges at a;, p; is charged a cost of 1 which corresponds to the cost for a single
acknowledgement.

e Suppose p; is not the final packet of . When A does not acknowledge at a;, p; is charged a cost of
a;4+1 — a; which corresponds to the extra latency cost incurred when A does not acknowledge at a;.

Note that no reasonable acknowledgement algorithm acknowledges at a halfway time between a; and
ai+1- 1t is easy to verify that the sum of the costs assigned to all the packets equals the total cost that
A pays.

Lemma 2 Ifri 1 —r; > 1. OPT acknowledges at r;.

Proof: Recall that Vi,a; = r;. If OPT does not acknowledge at r;, p; is charged a latency cost that
equals 7,41 — ;. Else if OPT acknowledges at a;, the latency cost decreases by ;41 — r;, while the
acknowledgement cost increases by 1. Thus, if 7541 —7; > 1, OPT must acknowledge at r; to achieve the
optimality. O

Finally, we can describe OPT.
Algorithm OPT: By obeying Lemma 2, OPT first checks if ;31 —r; > 1 for all values of 4, while scanning
o = (r1,72,73,+ - 7y) from its head. When Tit1 —Ti > 1 OPT decides to put an acknowledgement at

r;. As the result, o is cut into subsequences al, 02, e ,O'm, Within each of these subsequences, the gap
between the ready times of any two adjacent packets is at most 1.
Consider one of these subsequence, say o; (rl,), whose length is g. Here rk is the k-th

ready time in o (1 < k < g). OPT computes where to put acknowledgements in serving a] with dynamic
programming. OPT prepares two integer arrays OPTCOST and PREVACK. The element OPTCOST[k]
(1 £ k < g) is used to store the optimal minimum cost to serve the prefix of 0'], ie., (r,7},- ,7”;2)
PREVACK]|k] remembers the location of the second to last acknowledgment in the optimal solution for
(ri,rh, - ,ri). OPTCOST and PREVACK are updated according to the procedure in Figure 3.

When k < W, the optimal solution for processing the prefix of 0'; has only to acknowledge once at the
end. When k£ > W, it must decide where to put the second-to-last acknowledgement, since OPT must
acknowledge at least once for every W packets. This information is saved into PREVACK][k]. In the end,
OPTCOST][g] holds the cost for processing 0’_; optimally. The times for acknowledgements are acquired
by tracing back the array PREVACK.

Since it takes an O(W) time to perform the min operation and the min operation is invoked for each
packet, the computational complexity of OPT becomes O(Wn) in total. Because the optimal off-line
algorithm is computable in O(n) in DTCP, the above fact shows that DTCPSW is more difficult than
DTCP.

4 Known Window Size

This section evaluates the performance of on-line algorithms when they are told a value of W beforehand.
We show that a natural extension of WAIT(1) named as WAITSW(1) becomes 2-competitive in this case.
Remarkably WAITSW(1) accomplishes the same competitive ratio in DTCPSW as the competitive ratio
WAIT(1) in DTCP.

Algorithm WAITSW(1): Like WAIT(1), WAITSW(1) observes a packet interval. At a; (i > 1), the
timer is set to a;+1. In case a;y1 > a;+1, the timer expires before the next packet arrival and WAITSW(1)
acknowledges at a; + 1. Otherwise the timer is updated at a;+1 to @41 + 1. In addition, instantly the
number of unacknowledged eligible packets is increases to W, they are immediately acknowledged.

Since the number of unacknowledged eligible packets does not exceed W, the sliding window never
obstructs S from sending packets in WAITSW(1) . Hence, Vi,a; = r; in WAITSW(1) running in the same
way as OPT in Section 3.

Theorem 1 WAITSW(1) is 2-competitive.

Proof: In both of OPT and WAITSW(1) , we have a; = r; for any 7. Furthermore, both algorithms
perform an acknowledgement before a;.1 when a;11 > a; + 1. These two facts allow us to analyze
WAITSW(1) by decomposing the entire input sequence o into subsequences 0’1, 012, o ,a;n, and treating
them separately. In a single subsequence, the gap between the ready times of any two adjacent packets
is less than 1.

Hence, in the rest of this proof, it is sufficient to consider ready time sequences o = (1,72, -, ry,) for
which riy1 < r;+1for any i < n—1. Since (r1,72,--+,7n) = (a1,02, "+, ay), we have a;41 < a;+1for i <
n—1. Therefore, WAITSW(1) acknowledges when W unacknowledged packets are accumulated at R except
the last acknowledgement. Suppose that WAITSW(1) divides o into subsequences 01,02, -, 0, that are
delimited by an acknowledgement. C4(c;) is defined as the sum of the costs assigned to the packets in
0, where the cost assigned to a packet is derived by dividing the total incurred cost among packets based
on the cost-division scheme mentioned in Section 3. Given a subsequence o; = (@i, Git1, Git2, - - - Qiti),
we need to consider two cases depending on whether j = m or not.

Case 1: Suppose that j = m. In this case, WAITSW(1) acknowledges after a 1 time passes since the time
of the last packet arrival a,,. Namely, WAITSW(1) acknowledges at a,+1. Thus, we have Cyprrsu()(om) =
1+ (an + 1 —a;) = an — a; + 2. On the other hand, Copt(0m) > an — a; + 1. Thus,

CWAITsw(1)(Cfm) < ap —a; +2 2

< = =2.
Copt(om) ~an—a;+171)

Case 2: Suppose that § < m. In this case, Cyarrsu(1)(0;) = @i+w —a;+1 because WAITSW(1) acknowledges
at a;rw. Since o; consists of W packets, Copi(o;) > 1. It also holds that Copi(o;) > asyw — a;, as
ai+w — a; is the optimal cost for serving o; with ignoring the constraint imposed by the sliding window.
Then, the next inequality holds:
a; —a; +1
Cunrrsu()(05) = @igw —a; +1 =24 Wf < 2max{a;yw — as, 1} < 2Cop:(05). 5)
Equations (4) and (5) together complete the proof. O
The proof of the lower bound for DTCP in [3] constructs a bad packet sequence for an arbitrary
on-line algorithm such that at most two packets appear in a single subsequence in the running of the
on-line algorithm and OPT both. Hence, this lower bound is also valid for DTCPSW when W > 2.

Theorem 2 Let A be any deterministic on-line algorithm for DTCPSW. Then, there exists a ready time
sequence o such that Ca(o) > 2C,p(0) — €, where € can be made arbitrarily small with respect to Copt(T).

From Theorem 2, WAITSW(1) turns out to be the optimal.

5 Unknown Window Size

The previous section demonstrates that WAIT (1) can be easily extended for supporting DTCPSW without
deteriorating the competitiveness, if the window size is given. This section deals with the case when the
window size is unknown to on-line algorithms. We show that the competitive ratios for a class of on-line
algorithms WAIT(a) containing WAIT(1) depend on the maximum number of packets S wishes to inject
into the network per unit time and does not become a constant. Like WAIT(1), on-line algorithms in
WAIT (o) measure the length of the time interval between two consecutive packet arrivals. The formal
description of WAIT () is given below.

Algorithm WAIT(a) : Let « is an arbitrary positive real value. At a; (i > 1), the timer is set to a; + a.
In case a;41 > a; + o, WAIT(a) acknowledges at a; + . Otherwise the timer is updated at a;1 to
a1+ o

Definition 1 (peak rate) For a TCP connection, if at most T ready times lie between time intervals
[t,t + 1) for any t, the peak rate of the TCP connection is said to be T.

We derive the lower bound on the competitiveness of on-line algorithms WAIT(a) when the peak rate
of the TCP connection is 7', which is stated in Theorem 3. In the proof, an adversary constructs some
ready time sequence that annoys on-line algorithms.

Theorem 3 For any o, WAIT(a) is not better than -competitive if T > W.

T
Wlgr]-1
Proof: Let k= |]. We assume that T > W so that k may be strictly greater than 0. First consider
a ready time sequence ¢’ such that kW ready times appear every unit time until time I — 1 where I is a
positive integer. Namely,
TGoEWH1 = Ta—)kWwi2 = Taw =1~ 1

for 1 <¢ < I. OPT processes o by acknowledging k times at each time ¢ for 1 <4 < I without incurring
no delay. Here, a single acknowledgement acknowledges W packets at once. Thus, Cope(0”) = k1.

On the other hand, WAIT(a) must waits for « for each clump of W packets before acknowledging it.
Thus, the sum of the latency cost for the first kW packets whose ready times are all 0 becomes

k

k
ZJO‘ 0) = Z k+1)

7=1

Next, since agw 1 = max{rew+1, ¢ew-w+1} = max{1, ka} for pywi1, Pew+1 is acknowledged at time

max{1,ka} + ¢« In this way, the sum of the latency costs for packets from prw 41 to parw becomes
ZLl(max{O, ka — 1} + jo) = kmax{0,ka — 1} + @a. In general, the sum of the latency costs for
the kW packets from pg;_1)sw41 to pixw becomes

k
> (max{0, (i — 1)(ka — 1)} + ja) = kmax{0, (i — 1)(ka — 1)} + ————* k(k kk+1)

i=1

(6)

By summing up the right-hand term of (6) for 1 <14 < I and adding the acknowledgement cost of kI, we

have
I(I—-1 Ik(k+1
Cur () = k1 + a0, L o= 1))+ T ()

The competitive ratio is obtained by dividing Cy11(a)(6”) by Cops(c”) = kI as shown in Eq. (8).

R 1)(ka Dy, k+1)

©)
Since I may be chosen to be an arbitrary large integer, in order for WAIT(a) to be competitive, a < %
Next, consider another ready time sequence ¢” whose length equals W such that r1 = a7 = 0 and
ri+1 becomes immediately after WAIT (o) acknowledges the i-th packet at a; + «. From this condition,
it holds that r; = (j — 1)a. Since W < T, this ready time sequence does not break the condition that
the peak rate of the TCP connection is lower than T'. opt serves ¢” by acknowledging only once after
rw. Thus, since the latency of opt equals (W — 1)a, Cop(0”) = 1 + (W — 1)a. WAIT(a) must pay a
latency cost of o and one acknowledgement cost for each packet. Cyarr(s)(6”) = W (14). The cost ratio
between WAIT(a) and opt becomes
Wl +) 9
1+ (W -1a ©)

From (8) and (9), the lower bound for WAIT(a) becomes max{l + ('Hz'l)a, T V‘1’+?§a} > lfz‘(;,t‘;ga

1
foraSE

For W > 2, ﬂvv(_(;}_—t%a monotonically decreases with respect to a and takes the minimum value when

a= % The minimum value becomes

Wk+1) W(lgl+1 T
WHk-1 W+ & -1"W+|& -1

777

which finishes the proof. O

Intuitively, the proof is interpreted as follows: An on-line algorithm has to wait for a shorter time
before acknowledging when W is unknown than when W is known so as to cope with the possible delay of
a packet arrival caused by the sliding window. However, this action deteriorates the performance, when
S is not hindered by the sliding window. The peak rate has strong relationship with the maximum delay
of the packet arrival.

Regarding to the case when T < W, Eq.(9) presents the lower bound of WAIT(a) for o > % As
a <1 and (9) decreases monotonically for W > 2, the lower bound of the competitive ratio becomes 2
by substituting 1 for o in (9).

6 Conclusion

This paper analyzes the dynamic TCP acknowledgement problem with fy,q, on the realistic condition that
the sender cannot keep on sending packets beyond the boundary of the sliding window. This new problem
is named DTCPSW. Motivated by the fact that the receiver does not notice that the sender stops sending
while waiting for the next acknowledgment in the standard TCP, we evaluate how the performance of
on-line acknowledgement algorithms is influenced according to whether they can recognize whether the
sender is waiting or not. In particular, under the assumption that the window size is a constant W,
we investigate the difference between the two cases: (Case I) on-line algorithms know W beforehand,
and (Case II) on-line algorithms does not know W. In the first case, we succeeded in developing the
optimal 2-competitive deterministic on-line algorithm WAITSW(1) that is extended from the optimal on-
line algorithm WAIT(1) for the previous framework of the dynamic TCP acknowledgement problem. On
the contrary, in the second case, we showed that a class of on-line algorithms WAIT(a) that contain
WAIT(1) is not better than #%J_l—competitive if T' > W, where T is the maximum number of packets

that the sender hopes to inject into network per unit time. Thus, the competitive ratio is determined
by the traffic rate of the TCP connection in the second case. We suppose that these results clarify the
importance of the agreement between the sender and the receiver in communications.

Our problem is also interesting in terms of competitive analysis, because, it deals with the situation
in which an on-line algorithm involuntarily changes the original input and processes the modified input
without understanding that it is modified from the original input for the first time as far as we know.

Our future work is to derive the general lower bound of the competitiveness and to develop efficient
on-line algorithms in the case when W is unknown. It is also important to study the case that the window
size may alter dynamically.

Acknowledgements

This work is supported by the Ministry of Education, Culture, Sports, Science and Technology, Grant-
in-Aid for Young Scientists (B), 17700054, 2006.

References

[1] S. Albers and H. Bals. Dynamic TCP acknowledgment: Penalizing long delays. In Proceedings of
14th ACM-SIAM Symposium on Discrete Algorithms, pages 47-55, 2003.

[2] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University
Press, 1998.

[3] D. R. Dooly, S. A. Goldman, and S. D. Scott. On-line analysis of the TCP acknowledgment delay
problem. Journal of the ACM, 48(2):243-273, 2001.

[4] R. Fleischer. On the bahncard problem. Theoretical Computer Science, 268:161-174, 2001.

[5] A. R. Karlin, C. Kenyon, and D. Randall. Dynamic TCP acknowledgment and other stories about

w5y Algorithmica, 36(3):209-224, 2003.

