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abstract

Given a fixed center point o in a planar grid, we give a novel definition of a digital line segment through o and a digital
star-shaped region centered at o, such that any digital star-shaped region P contains the digital line segment dig(po)
for any p € P. The union of dig(po) over all p € P forms a tree in the grid, and the Hausdorff distance between the
Euclidean line segment 7o and dig(po) is optimally small. We also give the higher-dimensional analogue. This enables
us to design efficient algorithms for the image segmentation problems that extract optimized star-shaped regions and
star-shaped annuli. Moreover, we can optimally approximate a terrain by a mountain-like terrain whose horizontal
slices are star-shaped regions. We also show an NP-hardness result to imply that it is difficult to extract the union of

two digital star shapes.

1 Introduction

In Euclidean geometry, a star-shaped region (or polygon)
P centered at a point o is characterized as a region (poly-
gon) such that the line segment 7o for any p € P must
be contained in P. The set difference of two star-shaped
regions with a shared center o is called a star-shaped an-
nulus. We would like to consider star shapes in a grid G,
such that a digital region, i.e., a set of grid points, P is a
digital star-shaped region centered at a grid point o if the
digital line segment dig(po) from p to o is contained in P
for any p € P. Our theory has a natural generalization to
higher dimensions. Nonetheless, for better readability, we
describe our results mainly for the two-dimensional case
where G is the n x n orthogonal grid.

The above definition of digital star shapes relies on
the definition of digital line segments. A natural defini-
tion of a digital line segment with slope between —1 and 1
(other slopes are handled similarly) consists of the nearest
grid point to the line in each column. But this definition
(and its variant) makes digital star shapes quite ugly, and
also causes inconsistencies if we additionally demand that
digital line segments themselves are star shaped.

Instead, we give a spanning tree T of the grid rooted
at o such that the unique path from p to o in the tree
T defines the digital line segment dig(po) that approxi-
mates the Euclidean line segment 7o for each grid point

p. We show that the Hausdorf distance from dig(po)
to po is bounded by (logn)/v/2 in the n x n pixel grid.
We also give a matching Q(logn) lower bound by us-
ing discrepancy theory. Here, the Hausdorff distance
H(A, B) of two planar objects A and B is defined by
H(A,B) = max{h(A,B),h(B,A)}, where h(A,B) =
maXge 4 minge g d{a, b) and d(a,b) is the Euclidean dis-
tance between the points a and b.

We may describe the property of 7' by using the fol-
lowing random walk of a robot in the grid. The robot
starts at the origin, and walks in the first quadrant of the
grid. If it is located at a point (i, 7), then, it can move to
it adjacent grid such that the L; distance from the origin
increases by 1. The robot has a random coin (i.e. genera-
tor of a random bit) to determine which way it should take
next. If the robot may move freely using all the edges of
the grid, its trajectory may give any z-y monotone path,
and the probability of the reached vertex obeys a normal
distribution. Instead, if we restrict the robot to move on
T, and use the random coin only at branches of T', then
the robot goes almost straight whatever the values of the
random coin, and can reach every (7,7). In our tree T,
the probability to reach (7,7) after k = i + j steps is al-
most uniformly distributed. Thus, the random walk on
T simulates brink of a star in which each light lay goes
straight and the wave front form squares.



We consider the path in T" from p to o as the digital line
segment dig(po), and thus the set of digital star-shaped
regions centered at o is the set of rooted subtrees of T.
This gives a nice approximation method of star-shaped
regions in Euclidian space, in such a way that for any star-
shaped region P in Euclidean space, we can find a digital
star-shaped region P’ such that H(P, P') = O(logn).

Motivations and applications. Extracting a geometric
object in a digital image is an important computational
problem and has several applications in vision analysis
(image segmentation), pattern matching, medical science,
and robotics. Moreover, it is utilized in unexpected appli-
cations such as data mining [1]. We focus on the problem
where the input is an n x n pixel grid P where each pixel
p has a non-negative real value f(p) called brightness. We
want to find a function ¢ such that ¢ mathematically in-
dicates the extracted object satisfying a given geometric
or combinatorial condition, and such that the L, distance
If = ¢l2 = [X,ep(F(p) — (p))*]"/? is minimized.

The most fundamental case is the segmentation prob-
lem where ¢ is a constant function for an object O € O
and its complement (background) B = P\ O, where O is
the family of regions associated to the objects considered
in the application. It is easy to the see that ¢ should
take the respective average brightness value on each of
O and B. Thus, the objective function is equivalent to
the one often called intra-class variance. The computa-
tional complexity of the segmentation problem depends
on the family O of regions. It is known that the prob-
lem is NP-hard if O is the set of all connected regions in
P. On the other hand, it is soluble in polynomial time
in terms of the grid size n for the families of y-monotone
regions, rectilinear convex regions, regions below a digi-
tal curve with smoothness condition, regions bounded by
two digital curves with smoothness condition, and so on
[1, 11, 12]. Thus, the computational complexity highly
depends on the choice of a family of regions.

Another related problem is the pyramid approzima-
tion [2, 3], where ¢ is a function such that the level set
P(¢,t) = {p € P | ¢(p) >t} is contained in the family ©
for any real number ¢. If we consider the trajectory of ¢
as a terrain, P(¢,t) is the horizontal slice of the terrain at
height ¢. Thus, intuitively, ¢ extracts a pyramid obtained
by piling up regions (or slabs with shapes of regions) in O
which optimally approximate the terrain defined by the
input function f. See Figure 1 for an example of pyramid
apphotistiatiBrclidean geometry, the family of star-shaped
regions sharing a center point o is a popular and useful
family of regions. We denote a function ¢ whose level sets
are star-shaped regions as a mountain. In particular, the
level sets (i.e., horizontal slices) of some real mountains,
e.g., Mount Fuji in Japan, are most naturally described by
using star shapes. However, the algorithms for optimized
segmentation and pyramid approximation highly rely on
the pixel grid structure, and their complexity is measured
by the grid size. Thus, the family of star-shaped regions

was not easy to handle. Indeed, we need to give a con-
crete definition of digital star shapes before considering
optimization.

In a previous work, Wu [11] demonstrates that the
optimal image segmentation problem using star-shaped
annuli is important in medical application, since these
shapes can model the outline of a tumor in a medical
image. In [11], it is assumed that the data itself has al-
ready been transformed by using a central projection from
the center point o such that the family of star-shaped
regions corresponds to the family of regions below dig-
ital curves. Unfortunately, this transformation destroys
the grid structure and it is difficult to transform the star
shapes back into the grid while keeping optimality—at
least if the input was given in the grid. Therefore, we
would like to propose a method to deal directly with digi-
tal star-shaped regions and consider the optimized image
segmentation problem and its variants in the digital plane.

We can identify P and the grid G, and consider the
problem in G, where the brightness level of each pixel be-
comes weight of the corresponding vertex (i.e., grid point)
in G. As we show in this paper, a naive definition of star-
shaped regions would not give a nice family of regions.
For example, an important property of star-shaped re-
gions with center o is that the union and intersection of
two such regions are also star shaped. We would like to
inherit this property to our digital star-shaped regions,
so we need a careful definition not to destroy it. To the
authors’ knowledge, such a definition was not given in the
literature.

Algorithms based on digital star-shaped regions.
Most of the polynomial-time solvable cases for the opti-
mized region segmentation problem are reduced to the
maximum domination closure problem for a directed
acyclic graph (DAG) D = (V,A) with vertex weights
[2, 11]. A domination closure is defined as a subset
W C V such that for each v € W all its descendents
along directed paths are also contained in W. The weight
of a domination closure is the sum of the weights of its
elements. A mazimum domination closure is a domina-
tion closure whose weight is maximum. In particular, if
a family of regions is closed under the operation of tak-
ing union and intersection of regions, we can find a graph
such that the family is expressed by the set of domina-
tion closures of the graph. By using our definition, the
family of digital star-shaped regions corresponds to the
family of domination closures (indeed, rooted subtrees)
of the rooted tree T, in which each edge is directed to-
wards the root o. Thus, plugging in the methodology by
Chen et al. [2], the optimal mountain can be computed
in O(min(h,log N + log')N) time, where N = n? is the
number of pixels (thus, the input size), h < N is the
number of different layers of the pyramid and log " is the
precision of the gray levels (it is 8 if the input is a digital
image using 256 gray levels).

We can also solve the optimal image segmentation
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Figure 1: Pyramid approximation: f(p) and ¢(p) are rep-

resented by gray levels.

problems in polynomial time for star shapes and also star-
shaped annuli. The results can be generalized to higher
dimensional cases. We also show that the image segmen-
tation problem is NP-hard for the family of such regions,
if the objective function is the sum of (possibly negative)
weights in the segmented object.

Due to the space limitation, we omit some proofs.

2 Star-shaped grid region

In Euclidean space, a region R is said to be star-shaped
centered at a point o if for any point p € R, the line seg-
ment po is entirely contained in R. This family is not only
natural but also has nice mathematical properties. In par-
ticular, the family is closed under union and intersection
of regions: Given two star-shaped regions R; and Ry cen-
tered at o, both R;U Ry and Ry N Ry are star-shaped with
center 0. Indeed, if we take the closure under union and
intersection of the family of all convex regions containing
o0, we get the family of star-shaped regions centered at o.

However, a digital analogue of star-shaped regions in
a grid geometry in an n x n pixel grid is not automatically
defined, since it depends on the definition of the digital
line segment between two pixels p and o.

We represent each pixel by its bottom-left corner grid
point (¢,7) and denote it by p(i,7). Thus the pixel
grid P = {p(3,j) | 0 <4< n-10<j<n-1}
is identified with the grid G consisting of grid points
V={67)]0<i<n-10<j<n-1}

We define two graphs on the set V' of grid points rep-
resenting the adjacency relations of pixels. The graph
G1 = (V, Ey) is defined such that the vertex (4, j) is con-
nected to its eight neighbors (k,¢) satisfying |k —i| < 1
and |¢ — j| < 1. The graph G3 = (V, E,) is a spanning
subgraph of Gy, where (¢, 5) is only connected to its four
neighbors (7,7 — 1), (¢ — 1,7), (¢ + 1,5), and (3,5 + 1).
In both cases, we disregard the edges connecting to the
pixels outside the grid G. A subset of V is called con-
nected in the octagonal grid topology (resp. orthogonal
grid topology) if its induced subgraph in G} (resp. G») is
connected.

One possible and practical definition of a digital star-
shaped region in P is the set of all pixels intersecting with
a given Euclidean star-shaped region. However, such a

Figure 2: HDSL star-shaped region.

family of regions does not satisfy the condition that the
intersection of two digital star-shaped regions centered at
o is again a digital star-shaped region. For example, if we
consider the line 41 : y = glntlx and 4y : y = %1‘7
both lines pass through the pixel p(n — 1,2). Indeed, ¢;
goes through the point (n, 2+ ﬁ) and ¢5 goes through the
point (n — 1,3 — 7—11) However, they do not pass through
a shared pixel in the (n — 2)-th column. Thus, the inter-
section of the digital star-shaped regions corresponding
to these lines becomes disconnected in the octagonal grid
topology. This causes difficulties in several algorithmic
problems that we discuss in this paper. Therefore, we
need a better definition.

From now on, we consider a grid region as a set of
grid points in G that defines a connected subgraph of Gy
(or in G). We give the following definition of digital star-
shaped regions, which is based on uniquely defined digital
line segments dig(po) between points p and a center o that
simulate the Euclidean line segments po.

Definition 2.1. Digital star-shaped regions centered at o
are defined such that:

1. any digital line segment dig(po) is o digital star-
shaped region, and

2. for any digital star-shaped region P and any p € P,
dig(po) C P.

From this definition it is easy to see that the family P
of digital star-shaped regions is closed under intersection
and union just as in the Euclidean case. Now, the remain-
ing task is to define digital line segments. They should be
connected in G {or G3), and simulate the corresponding
Euclidean line segment. By the second axiom in Defini-
tion 2.1, for each pixel r # p in dig(po), dig(ro) C dig{po)
must hold.

There are many different formulations to define a line
in the digital plane. A popular one is the horizontal digital
straight line segment (HDSL). For aline y = mxz+b with a
slope 0 < m < 1, its corresponding HDSL is defined as the
set of grid points {(¢, [mé+b]) | 0 < i < n}. This digital
line is connected in the octagonal grid topology. However,
HDSL and its vertical variant do not provide nice star-
shaped regions. Indeed, consider any digital star-shaped
region P containing a grid point p = (¢, ), where 1 < j <
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t. The HDSL corresponding to po contains the grid points
(1,7) and r = (¢ — 1,5 — 1), but since dig(ro) C dig(po),
it must also contain (i — 2,7 — 2), and transitively, must
also contain all points (i — s,j — s) for s = 0,1,...,7.
Thus, P must contain the triangular grid region defined
by {(z,y) |0 <y < (j/i)r. z <4, 2~y < i3}, see Fig-
ure 2. This is against the intuitive notion of a star-shape,
and also inconsistent since the digital line segment itself
is not a star-shaped region.

2.1 Spanning tree inducing digital lines

Let us define digital line segments such that the star-
shaped regions based on them are nice. We first deal
with digital line segments that are connected in the oc-
tagonal grid topology. The results are translated to the
orthogonal topology later. Without loss of generality, we
assume from now on that o = (0,0), and consider a digital
star-shaped region lying in the first octant wedge defined
by {{z,y) € G | y < z} U 0. Digital line segments in the
other octants and for an arbitrary point o can be consid-
ered analogously. Furthermore, without loss of generality,
we assume that the grid has 2° +1 columns and rows for a
natural number &, and the z-value of a grid point satisfies
0 < x < 2%, Abusing the notation, we often write n for
2%, although the grid size is indeed (n +1) x (n+ 1).

In the following we give a deterministic construction of
a spanning subtree T of (1, such that for every p = (4, 7),
the unique path from p to o defines the digital line seg-
ment dig(po) simulating the line segment po. Since T
is a tree, we can easily see that for any r € dig(po) we
have dig(ro) C dig(po), as desired. Therefore, our task
is to show that the distance between dig{po) and po is
small for this T. The Ly, distance L., (dig{po),po) is
the maximum vertical gap between dig{po) and po. Since
H(dig(po),75) < Los(dig(po), 70) < v2H(dig(po), 7o) for
any line segment 7o with a slope 0 < m < 1, a bound for
the L., distance automatically gives a similar bound for
the Hausdorft distance. The tree T is illustrated in the
left picture of Figure 3.

Since we define digital analogues of line segments
whose slopes are positive and less than 1, we only use
edges of 1 which are horizontal or diagonal with posi-
tive unit slope. An edge connecting a vertex (¢,7) and a
vertex (i+1,j) or (i+1,7+1) is called an edge in the i-th
edge-column (column, if it causes no confusion). The i-th
column is called an even column (resp. odd column) if ¢
is even (resp. odd). Note the column index starts from 0.

Any line segment should continue to a line reaching
the boundary of the grid G. Thus, the set of leaves of
T must be the vertices on the boundary of G; all other
vertices should be internal vertices, except the origin o,
which is considered as the root of T. Thus, the set of
leaves is {(2%,0) | 6 =0,1,2,...,2% — 1}. In order to de-
fine the tree, it suffices to define all paths from the leaves
to the root.

Lemma 2.2. If an edge e € T is horizontal (resp. diago-
nal), all the edges in T in the same column below e (resp.
above e) must be horizontal (resp. diagonal).

Proof. If e is horizontal and connects (Z,j) and (i + 1, 7),
the edges below e connect j vertices below (4, j) to j ver-
tices below (¢ + 1,7). If there is a diagonal edge among
them, by pigeon hole principle, two edges in the column
must share their right endpoint. This creates a cycle in
T, and contradicts the requirement that T is a tree. If e
is diagonal a similar argument holds. 0

The above lemma implies that there is not much free-
dom for defining the tree. Indeed, in each column, there
is a unique vertex (called branching vertex) that is the
endpoint of both a horizontal edge and a diagonal edge.

We define the paths by giving a procedure to construct
them. For convenience’ sake, we denote T by T* to show
the grid size explicitly. The path towards (2%,0) is uses
only horizontal edges. This is the only path if & = 0
and defines 7°. If k > 1, we first give the path towards
(2%,2%-1), which we call the center path (see Figure 3).
The center path is the alternating chain of horizontal and
diagonal edges, starting with the horizontal edge connect-
ing 0 = (0,0) and (1,0). Thus, the edge in each even
(resp. odd) column is horizontal (resp. diagonal) for the
center path. It is observed that the left vertex of the edge
of an even column in the center path is on the diagonal
line y = z/2, while its right vertex is below this line.
The following lemma is a straightforward consequence of
Lemma 2.2:

Lemma 2.3. In the tree T*, all the edges in an even col-
umn below the center path are horizontal and all the edges
wn an odd column above the center path are diagonal.

Let us consider the part of 7% below and including the
center path. All the even columns are fixed by Lemma, 2.3
and consist of horizontal edges. The (2i + 1)-th column
can be naturally mapped mapped to the i-th column of
the octant wedge of a grid of size 25-1 x 2¥=1 and we
copy the i-th column of 7%~ to the (2i 4+ 1)-th column
of T*. Similarly, we know the odd columns of the half
of T* above the center path, and fill the even columns
by copying the i-th column of 7%~ to the 2i-th column
above (or on) the center path for i = 0,1,...,25"1 — 1.
These copies do not conflict with boundary paths of 7%,

As shown in Figure 3, it is easily seen that this gives a
spanning tree. Now, let us consider the distance from
the line po to the digital line dig(po) defined as the
unique path in 7 from p to o. We first consider the
path simulating the line segment vy0, where v, = (2%, b)
and 0 < b < 2% This line segment is part of the line
y = 27%bz. We consider the value fi(b,z) as the y-
coordinate of the vertex of dig(vy0) at an integer ab-
scissa 0 < = < 2*. The vertical distance between the
line y = 2 *bz and dig(vy0) at = a is 27 %ba — fi(b, a).



Figure 3: The spanning tree T to define digital lines (left), the center path in the tree(center), and center paths after

the third level recursion.

Lemma 2.4. For k € N and a,b € {0,1,...,2° — 1} we
have 27 %ba > fr(b,a) > 27 %ba — %

Proof. Let ¢ < 25! be a nonnegative number and let
Z’::_ol ;2" be the 2-adic expansion of b. Then, we have
the following equations: If by_; = 0 then fi(b,2¢)
S, 2¢ + 1) = feei(bye). If by = 1 and ¢ >
then fi(b,2¢) = fro1(b — 2571, ¢) + ¢ and fi(D,2c)
fe(b,2¢—1) + 1.

Indeed, if by_; = 0, then b < 2%~1 and the path i
below (or partially on) the center path. Since each edge
in an even column is horizontal, fi(b,2¢) = fi(b,2¢ + 1).
Because the odd column is copied from the path in 7%-1
simulating the line towards (281, b) we have fi(b,2c) =
fr-1(b,c). If by = 1, then b > 2~ and the path is
above or on the center path. Each edge in an odd column
is diagonal, so fi(b,2c—1)+1 = fi(b,2¢). Up to 2¢, these
diagonal edges in odd columns gain ¢ in the y-coordinate
value. Because the odd column is copied from the path
in T%~! simulating the path towards (2¥=1 b — 2%-1)
fu(b,2¢) = fo1(b— 271 ¢) + ¢ Clearly, fi(b,a) is de-
fined by the above recursive formulas, and it is easy to
prove the lemma by induction. O
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Since k = logn, we have shown that the vertical dis-
tance between 7,0 and dig(vp0) is less than (logn)/2. This
extends to the following theorem:

Theorem 2.5. For any grid point p € G1, the vertical
distance between dig(po) and po is less than (logn)/2.

Proof. The point must lie on the path towards some leaf
vy, and dig(po) is a subpath of dig(vy0). Obviously, the
line segment po lies below the line segment 7506. Now, sup-
pose that the maximum vertical distance is taken at a grid
point g. If ¢ is above Po, it must be between 730 and po,
and hence the vertical distance cannot exceed the vertical
distance between p and 9, which is less than (logn)/2.
If q is below Po, the vertical distance is less than that
between g and Tpo, and hence less than (logn)/2. O

In order to consider the case when the point o is an
interior point in the grid, we need to consider eight such
trees and join them at the root 0. The j-th octant covers
the region {p | 2(j — 1)7/8 < 6(p) < 2j7/8}, where 6(p)

is the argument angle of p. Hence, we need to be careful
such that, e.g., in the second octant, the tree contains the
diagonal line, but does not contain the y-axis. Thus, we
transform 7" to obtain the tree 77 in the second octant by
applying a linear transformation mapping (1,0) and (1,1)
to (1,1) and (0,1), respectively. The Hausdorff distance
remains to be less than (logn)/2 for this general case.

Now, for any Euclidean star-shaped region R with cen-
ter o, we take the set S(R) of pixels intersecting R, and
consider D(R) = Upegmdig(po). Then, D(R) is a digi-
tal star shape, and the Hausdorff distance H(R, D(R)) is
O(logn) (indeed, it is less than 1 4+ liéﬂ)

Instead of GG;, we may also use the subgraph G to
define the adjacency structure of the grid, where we can
only use vertical and horizontal edges. For this purpose,
we transform the first octant of the grid of Gy to the first
quadrant of G5 by the linear transformation A mapping
(1,0) and (1,1) to (1,0) and (0, 1), respectively. This lin-
ear transformation maps 7" onto a spanning tree A(T) of
G3. The combinatorial structure of A(T) is exactly same
as T, since A gives a graph isomorphism. We define a path
to the root in A(T) as the corresponding digital line seg-
ment in the orthogonal topology. Since (0,1) is mapped
to (—1,1) by this transformation, the Hausdorft distance
between a line and digital line in A(T) is at most v/2 times
the vertical distance between their corresponding line and
digital line in 7. Thus, we have the following:

Theorem 2.6. The tree A(T) in the first quadrant of G
and its four reflected copies define line segments from the
grid points towards o. The Hausdorff distance between a
line segment po and the digital line segment dig(po) is at

most (logn)/v2.

It is an interesting observation that the tree T has a
quite uniform structure. The following observation is ob-
tained from our recursive construction (proof is omitted
in this version).

Proposition 2.7. The path from o to (2¢,b) has exactly
¢ branching vertices (including o) in T for any 0 < ¢ <k
and 0 < b < 2¢.

Let us consider the walk of a robot in T" as described in
the introduction. The probability to reach a vertex (i, j)

(2}
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is 27¢ if the path from o to (i,7) visits s branching ver-
tices in 7. Thus, the probability to reach a vertex (2¢,b)
is uniformly 27¢ for all paths to leaves in T if we flip a
random coin at each branching vertex. Accordingly, in
the tree A(T'), the probability of reaching (4, j) such that
i+j=2"is27%

2.2 A lower bound on the Hausdorfl dis-
tance

We show that any spanning tree of the first octant of Gy
rooted at o has a path such that the L, distance from the
corresponding line is Q(logn). Consequently, the same
bound holds for the Hausdorft distance for the spanning
tree covering the whole grid.

We use a classical result on pseudo-random number
generation [8, 9, 10]. The following history is cited from
Matousék [8] and Schmidt [10] in a combined fashion.
Consider a sequence X = xg, 21,2, ... of real numbers in
[0,1]. Let X (a) =|{0<i<n|z € [0,a]}| for a given
a € [0,1]. The discrepancy of the sequence xo,z1,... ,Zn
for a is maxm,<n lam — Xpn(a)|. Van der Courpt asked
in 1935 whether it is true or not that for any sequence
X, there exists an a such that the discrepancy goes to oo
when n goes to co. This was affirmatively answered by
Van Aardenne-Ehrenfest in 1945. Roth gave an Q(v/logn)
bound in 1954, and the correct order of magnitude of the
discrepancy is ©(logn) given by Schmidt in 1972. It is
also in a list of favorite questions of Erdés [4]. We use it
in the following form:

Theorem 2.8. Given any sequence X = zg,21,%3 ... of
real numbers in [0,1] and a sufficiently large n, there exist
an index n/2 < M < n and a real number a € [0,1] such
that the subsequence Xy = xo,21,...,Zr satisfies that
laM — Xy(a)| > clogn, where ¢ is a positive constant
independent of n.

Consider a tree T spanning the first octant in G such
that all the leaves are on the rightmost column (i.e., on
the vertical line x = n). For simplicity, we assume that
each path of the tree uses at most one edge in each edge-
column. As we have seen, there exists exactly one branch-
ing vertex at each vertex-column. For each internal ver-
tex v, we assign a real number f(v) = y{{(v))/n € [0,1),
where y({(v)) is the y-value of the highest leaf in the sub-
tree rooted at v. By definition, f(v) = f(u) if u is the
unique child of v, and f{v) = max(f(u1), f(u2)) if v has
two children u; and ug. Also, all values f(v) in a vertex-
column are sorted in increasing order if we arrange them
from bottom to top in the column.

Thus, if we compare the (i —1)-th and the i-th column
exactly one new value of f is inserted to the previous list
of f values. We define z; to be this new value of f inserted
in the ¢-th column to obtain a sequence xg,z1,... ,ZTn_1-
From Theorem 2.8, we have n/2 < M < n such that
laM — Xpi(a)| > clogn.

Now, we can show that we have a path in T which
is sufficiently far away from the corresponding line. The
following two cases should be considered:

Case 1: Xy (a) > aM + clogn. Now, consider the
vertex v located at (M, Xp(a)). Because of the defini-
tion of Xy;(a), we have f(v) < @, and v leads to a leaf
¢ = (n,nf(v)). Now, consider the vertical distance of the
line between o and £ and the path at z = M. The line goes
through (M, f(v)M) which is below (M,aM), while the
path goes through v = (M, Xp(a)). Thus, the vertical
distance is more than clogn.

Case 2: Xp(a) < aM — clogn. Consider the vertex
v located at (M, Xp(a) + 1). Because of the definition
of Xnm(a), we have f(v) > a, and v leads to the leaf
2= (n,nf(v)). Now, consider the vertical distance of the
line between o and ¢ and the path at z = M. The line
goes through (M, f(v)M} which is above (M, aM), while
the path goes through v = (M, Xps(a) + 1). Thus, the
vertical distance is more than clogn. Therefore, we have
the following theorem:

Theorem 2.9. For any spanning tree T of the first oc-
tant of G1 such that all leaves are on the grid boundary,
there is a leaf q such that the vertical distance between the
line 0G and the path from q to o in the tree exceeds clogn,
where ¢ is the constant considered in Theorem 2.8.

We remark that the above argument implies that the
sequence xo,Z1,...Tn—1 defined by z¢ = 0 and z; =
2 % max{b| fi(b,1) = yi—1} for i > 1 is a low-discrepancy
sequence [9], where y;_; is the y-value of the unique
branching vertex in the (i — 1)-th column of our tree
T defined in the previous section. Although we have
not yet obtained relation of this sequence to known low-
discrepany sequences.

2.3 Star shapes
grids

in higher-dimensional

We can give an d-dimensional analogue of digital lines and
digital star shapes. We utilize the fact that a line in the
d-dimensional space is uniquely determined by its pro-
jections to all two-dimensional subspaces spanned by the
first coordinate and the i-th coordinate for¢ = 2,3,... ,d.
We demonstrate our construction for the case d = 3.

We use our tree T = T in G covering the first octant.
Although the path from (2%, 2%) to 0 was not included in
T in our construction, we add the path to T here in order
to make the rest of the argument. Thus, the tree covers
the range 0 < y < x < 2% = n in the plane. We call this
tree T(2) implying that it is a tree in the two-dimensional
grid.

A vertex in the three-dimensional grid is represented
by an integer triple (¢,7,k). We first consider the grid
structure with diagonal connections where (4, 7, k) is con-
nected to all grid points (¢, k") with |/ — ¢ < 1,
|77 —J] <1, and |k’ — k| < 1. We set the point o to



be the origin (0,0, 0) and consider the part Q defined by
0 <z <y <z < nof the grid.

In order to define a tree T(3) in Q, it suffices to de-
fine the parent of each vertex (i,j k) in the tree. We
define two copies T'(2; z,y) and T(2;x, z) of T(2) for the
dimension pairs (z,y) and (z, z), which we call (x, y)-tree
and (z, z)-tree, respectively. The (z,y)-tree covers the
range 0 < y < x < n and T(2;z,2) covers the range
0 <z <z < n Given a grid point u = (4,5, k) € Q, we
call u (z,y)-horizontal (resp. (z,y)-diagonal) if the edge
between (i, 7) and its parent in the (z,y)-tree is horizon-
tal (resp. diagonal). Similarly, v is called (z, z)-horizontal
(resp. (z,z)-diagonal) if the edge between (i, k) and its
parent in the (z,z)-tree is horizontal (resp. diagonal).
The following rule defines the parent: If (¢, j, k) is (z,y)-
horizontal and (z, z)-horizontal, then it is connected to
(1—1,4,k). If it is (z, y)-horizontal and (z, z)-diagonal, it
is connected to (i — 1, 7,k — 1). If it is (z, y)-diagonal and
(2, z)-horizontal, it is connected to (: — 1,5 — 1, k). And
if it is (z, y)-diagonal and (z, z)-diagonal, it is connected
to (¢ — 1,5 — 1,k — 1). The following lemma is observed:

Lemma 2.10. For each (1,7, k) € Q, there is a unique
path p towards o. The projection of p to the (x,y)-
plane (resp. (z,z)-plane) coincides with the path from
(4,7) (resp. (i,k)) to o in the (x,y)-tree (resp. (z, z)-tree).
Moreover, all the leaves of the tree lie in the plane x = n.

The following lemma is a consequence of Lemma 2.10
and Theorem 2.5:

Lemma 2.11. For any plane x = a where 0 < g < n,
let (a,b,¢) and (a,b',c") be its intersection points with po
and dig(po), respectively. Then, |b—b'| < (logn)/2 and
e - | < (logn)/2.

Therefore, the distance from po to dig(po) is less than
v2(logn)/2. If we consider the orthogonal topology such
that (i, 7, k) can only connect to the vertices to which the
hamming distance is 1, we transform T(3) by a linear
transformation.

For the general d-dimensional grid, we have the fol-
lowing theorem, and we can define digital star-shapes in
the d-dimensional grid accordingly:

Theorem 2.12. Given a d-dimensional grid with n? grid
points in the orthogonal topology, we can define a span-
ning tree T(d) such that the Hausdorff distance between
the line segment po and the digital line segment dig(po) is
less than @ logn if d is odd and less than @ logn if
d is even.

3 Mountain construction and im-

age segmentation
In this section we deal with problems of approximat-
ing an image (or a function) on the pixel grid P with
N = n? pixels. The results can be easily extended to the
d-dimensional case.

3.1 Mountain construction

The mountain construction problem is as follows: Given
a real-valued function f defined on P, we would like to
find a pyramid ¢ minimizing the L, distance |f — ¢|2 =
[>=pep(f(p) — #(p))*]'/? such that its level sets are in the
family S of digital star-shaped regions. This is a natu-
ral variant of the least-squares method: Instead of giving
some algebraic condition for ¢, we give a geometric condi-
tion by using S. Note that the origin o will give the peak
of the mountain. We can either examine all candidates of
peaks naively, or use some more efficient methods given
by Chen et al. [2].

The following fact by Chen et al. [2] is our basic tool:
Let R = R(f,t) be the region in a family O maximiz-
ing > cr(f(p) —t) for a given real value t. If there is
more than one such region, there is a maximum and a
minimum (in terms of inclusion) among those regions if
O is closed under intersection and union of regions. We
denote them Rumax(f,t) and Ruyin(f,t). Further, we call ¢
a critical height if Runax(f,t) # Rmin(f,t). The following
theorem shows that it suffices to compute R(f,t) for each
critical height ¢ in order to compute ¢.

Theorem 3.1. If O is a region family closed under in-
tersection and union of regions then P(¢,t) = R(f,t)
for the optimal ¢ € O minimizing the Ly distance from
f. Moreover, if ¢(p) = t for a pizel p € P then
pc Rmax(f;t) \ Rmin(f’t)-

Let us consider § and our tree T defining S. For each
vertex v € V of the tree T, we give a parametric weight
w(v,t) = f(v) —t, where f(v) is the value of the input
function f at the pixel corresponding to v. Since S cor-
responds to the set of all rooted subtrees of T, R(f,t)
must be a rooted subtree of T maximizing the sum of
the parametric weights of the vertices. For a given t,
it is quite easy to compute R(f,t): We traverse T in a
bottom-up fashion starting at the leaves and cut off a
vertex v (and the subtree rooted at v) if the sum of the
parametric weights of v and all its descendents is nega-
tive. The final subtree obtained like this gives Rumax(f, t).
If we replace "negative” by "non-positive” in the above
procedure, we obtain Ry, (f,t). Clearly, this can be done
in linear time in terms of the tree size.

Now, we can apply a so-called hand probing opera-
tion: Given t; < ty where Ry = Ruax(f,t1) # R2 =
Rinax{(f,t2), we find ¢; < t3 < ¢z such that R; and
R, have the same parametric weight at ¢3, and compute
R3 = Rumax(f,t3). Apparently, this operation can be done
in linear time in terms of the tree size. Thus, we can ei-
ther find a critical height or a new level set, and we can
thus find all critical heights in O(h) hand-probing opera-
tions, where h is the number of different level sets in the
mountain. In total we have a O(h|T|) = O(AN) time com-
plexity. We can replace h by log N + log I if each f(p) is



an integer value less than I" by using a method given in [2],
which is based on the fact that we can contract the region
R> and also the outside of Ry when we compute R3. We
omit the details here but observe that the time complexity
to compute the mountain is O(min{h, (log N +log ')} N).

3.2 Image segmentation problems

Given f and O, consider the optimized image segmen-
tation problem to minimize the intra-class variance. Let
RoPt and P\ R°P! be the extracted image and background,
respectively. Without loss of generality, we assume that
the average brightness of R°P! is darker than that of the
background. Asano et al. [1] showed that for any given
family O of regions, there exists a real number t; such
that R°P* = Ry.x(f,to). Thus, for the family S, RoP! is
a level set of the optimal mountain, and the optimal im-
age segmentation problem can be solved within the same
time bounds as the optimal mountain problem. Consider
the set A = {P\ Q| P,Q € S} of star-shaped annuli.
We can apply a trick proposed by Wu [11] to segment a
region that is the set difference of two regions in a family
represented by a domination closure of a graph (in our
case, T'). With this trick we can solve the optimal image
segmentation problem in O(N?2®log NlogT) time.

It is an interesting question whether or not we can
extract a region that is represented as the union of two
digital star-shaped regions with different centers. More
generally, we consider the following problem:

Problem 3.2. Maximum weight union of domination
closures (MWUDC)

Given a verter set V and vertex weight function w:V —
R, consider two DAG’s Hy = (V, Ey) and Hy = (V, E3).
A vertex set X C V is called coupled-union of domination
closures ¢f it is represented as the union X, U X3 such that
X, are domination closures in H; for i =1,2. The prob-
lem then is to compute the coupled-union of domination
closures mazimizing the weight w(X) = 3 v w(v).

To the authors’ knowledge, the complexity of
MWUDC has not been addressed before, and we show
the NP-hardness of MWUDC even for a very restricted
case, where H; are rooted trees and X; form rooted sub-
trees.

Theorem 3.3. MWUDC is NP-hard even if V is the set
of vertices of an n x n grid, and H, and Ha are rooted
trees with roots 01 # 02.

Moreover, as shown in the proof, those trees can be
realized as copies of our spanning tree in the grid.

4 Concluding remarks.

There are several open problems: 1. Convex regions are
also useful regions in Euclidean geometry, and it is an in-
teresting problem to define a family of regions in a digital

grid approximating convex regions such that the segmen-
tation problems can be solved in polynomial time.

2. The extraction of a union of two star-shaped poly-
gons is NP-hard, and it is impossible to have a solution
with a provable approximation ratio if we consider the
sum of weights as the objective function, since we can
control the value of the objective function to any small
value € by giving suitable weights to the roots o; and
0z. However, it is an interesting problem to design an
approximation algorithm if the objective value is the L,
distance of f and ¢ (i.e., the intraclass variance). Note
that we have not yet proven NP-hardness for this objec-
tive function, although we believe we can modify our proof
to attain it.

3. Although our O(logn) bound for the distance is
asymptotically optimal, we may improve the constant fac-
tor. The current factor for the upper bound in the octag-
onal topology is 1/2, while the current best lower bound
factor obtained from the discrepancy theory is 0.06 [9].

The authors gratefully acknowledge to Janos Pach for
his stimulating discussion on this topic, especially on the
lower bound problem of the distance.

References

[1] T. Asano, D.Z. Chen, N. Katoh, T. Tokuyama, Efficient
Algorithms for Optimization-Based Image Segmentation,
IJCGA, 11(2), pp.145-166, 2001.

[2] D. Z. Chen, J. Chun, N. Katoh, T. Tokuyama, Efficient
Algorithms for Approximating a Multi-dimensional Voxel
Terrain by a Unimodal Terrain, COCOON 2004, LNCS
3106, pp.238-248, 2004.

[3] J. Chun, K. Sadakane, T. Tokuyama, Efficient Algo-
rithms for Constructing a Pyramid from a Terrain, Proc.
JCDCGO2, LNCS 2866(2003) ,pp.108-117.

[4] P. Erdds, Problems and results on Diophantine approxi-
mation, Composito Math., 16, pp.52-66, 1964,

[5] D. S. Hochbaum, A New-old Algorithm for Minimum
Cuts in Closure Graphs, Networks 37 (2001) 171-193.

[6] T. Fukuda, Y. Morimoto, S. Morishita, T. Tokuyama,
Data Mining with optimized two-dimensional association
rules, ACM Transactions on Database Systems, 26(2),
pp.179-213, 2001.

{7] A. V. Goldberg, S. Rao, Beyond the Flow Decomposition
Barrier, J. ACM 45-5, pp. 783-797, 1998.

[8] J. Matousék, Geometric Discrepancy,
Guide, Springer Verlag, 1999.

H. Niederreiter, Random Number Generation and Quasi-
Monte Carlo Methods, CBMS-NSF Regional Conference
Series in Applied Mathematics 63, STAM, 1992.

{10} W. M. Schmids, Lectures on irreguralities of distribution,
Tata Institute of Fundamental Research, Bombay, 1977.
[11] X. Wu, Efficient Algorithms for the Optimal-Ratio Re-

gion Detection Problems in Discrete Geometry with Ap-
plications, ISAAC 2006, LNCS 4288, pp.289-299, 2006.

[12] X. Wu and D. Z. Chen, Optimal Net Surface Problems
with Applications, Proc. 29th International Colloquium
on Automata, Languages and Programming (2002) 1029-
1042.

An  Hlutrated

9





