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Abstract.

This report is concerned with a subclass of finite state transducers, called strict prefiz

deterministic finite state transducers (SPDFST for short), and studies a problem of identifying the
subclass in the limit from positive data. After providing some properties of languages represented
by SPDFST’s (that is, sets of pairs of input strings accepted by SPDFST’s and their corresponding
output strings), we show that the class of SPDFST’s is polynomial time identifiable in the limit from
positive data in the sense of Yokomori. This identifiability is proved by giving an exact characteristic
sample of polynomial size for a language represented by an SPDFST.

1 Introduction

In the study of inductive inference of formal lan-
guages, Gold [5] defined the notion of identifi-
cation in the limit and showed that the class of
languages containing all finite sets and one in-
finite set, which is called a superfinite class, is
not identifiable in the limit from positive data.
This means that even the class of regular lan-
guages is not identifiable in the limit from pos-
itive data. Angluin [1] has given several condi-
tions for a class of languages to be identifiable
in the limit from positive data, and she has pre-
sented some examples of identifiable classes. She
has also proposed subclasses of regular languages
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called k-reversible languages for each & > 0, and
has shown that these classes are identifiable in
the limit from positive data, requiring a polyno-
mial time for updating conjectures [2].

From the practical point of view, the induc-
tive inference algorithm must have a good time
efficiency in addition to running with only pos-
itive data. One may define the notion of poly-
nomial time identification in the limit in various
ways. Pitt [10] has proposed a reasonable defi-
nition for polynomial time identifiability in the
limit. By making a slight modification of his
definition, Yokomori [14] has proposed another
definition for polynomial time identifiability in
the limit from positive data, and he has proved
that a class of languages accepted by strictly de-
terministic automata (SDA’s for short) [11, 14],
which is a proper subclass of regular languages,
is polynomial time identifiable in the limit from
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positive data. He has also proved that a class of
very simple languages, which is a proper subclass
of simple languages, is polynomial time identi-
fiable in the limit from positive data [15, 16).
We have proved that a class of Szilard strict de-
terministic restricted one-counter automata (Szi-
lard strict DROCA’s for short), which is a proper
subclass of deterministic pushdown automata, is
also polynomial time identifiable in the limit from
positive data {12] in the sense of Yokomori. Note
that the class of languages accepted by Szilard
strict DROCA’s is incomparable to the class of
very simple languages.

An SDA is an extended deterministic finite
automaton, which is intuitively a state transition
graph in which the set X of labels for edges is
a finite subset of strings over an alphabet X,
that satisfies the following conditions: for any
z in X, there uniquely exists an edge (a pair of
states) whose label is z, and for any distinct la-
bels 21,22 in X, the first symbol of z; differs
from that of z2. This SDA can be also repre-
sented by a pair (M, ) of a corresponding de-
terministic finite automaton M and a homomor-
phism ¢ : ™ — 5* such that X = @(X') for
some alphabet X', where the language accepted
by M is in the class of Szilard languages of lin-
ear grammars [8]. That is, the class of languages
accepted by SDA’s is the extended class of Szi-
lard languages of linear grammars. In a similar
way to this, some kind of language classes can
be extended. Let £ be a class of languages over
2’ to be based on and X a class of finite sub-
sets of strings over X', where there exists a mor-
phism ¢ : J* — X* for some X € X. The ex-
tended class of £, denoted by C(L, X), is defined
by these £ and X. Kobayashi and Yokomori [7]
proved that for each k > 0, a class C(Revy, &) of
languages, where Revy, is a class of k-reversible
languages and A} is a class of codes [4], is identi-
fiable in the limit from positive data. In [13], we
have given a sufficient condition for the extended
class C(L, X) to be identifiable in the limit from
positive data and have presented a unified iden-
tification algorithm for it.

A transducer is an automaton which has out-
put mechanism. We can regard a class of trans-
ducers as an extended class of automata. Oncina,
et al. [9] have proved that a class of onward
subsequential transducers (OST for short), which
is a proper subclass of finite state transducers,
is polynomial time identifiable in the limit from

positive data.

The present report deals with a subclass of
finite state transducers called strict prefic deter-
ministic finite state transducers (SPDFST’s for
short), and discusses the identification problem of
the class of SPDFST’s. The class of SDA’s forms
a proper subclass of associated automata with
SPDFST’s. Moreover, the class of languages rep-
resented by SPDFST’s (that is, the class of sets
of pairs of input strings accepted by SPDFST’s
and their corresponding output strings) is incom-
parable to the class of languages represented by
OST’s. After providing some properties of lan-
guages represented by SPDFST’s, we show that
the class of SPDFST’s is polynomial time identi-
fiable in the limit from positive data in the sense
of Yokomori [14]. The main result in this report
provides another interesting instance of a class of
transducers which is polynomial time identifiable
in the limit. This identifiability is proved by giv-
ing an exact characteristic sample of polynomial
size for a language represented by an SPDFST.

2 Definitions

2.1 Basic Definitions and Notation

We assume that the reader is familiar with the
basics of automata and formal language theory.
For the definitions and notation not stated here,
see, e.g., [6].

An alphabet 3/ is a finite set of symbols. For
any finite set S of finite-length strings over X,
we denote by S* (respectively, S*) the set of
all finite-length strings obtained by concatenat-
ing zero (one, resp.) or more elements of S, where
the concatenation of strings u and v is simply de-
noted by uv. In particular, X* denotes the set
of all finite-length strings over X. The string of
length 0 (the empty string) is denoted by . We
denote by |w| the length of a string w and by | 5]
the cardinality of a set S. A language over X
is any subset L of X*. For a string w € X7,
first(w) denotes the first symbol of w. For a
string w € 2™, alph(w) denotes the set of sym-
bols appearing in w. Moreover, for a language
L C ¥*, let alph(L) = Uyer alph(w). For a
string w € X* and its prefix z € ¥*, z\w denotes
the string y € X* such that w = zy. Moreover,
for a language L C X* and a string z € X%, let
z\L = {y | zy € L}. For aset S C X*, lcp(S)
denotes the longest common prefiz of S.



Let X be any alphabet and suppose that ¥
is totally ordered by some binary relation <. Let
T=ai1 - Gp,Yy=1>by---bs, where r,s >0,a, € ¥
for1<i<r,and b; € X for 1 < i< s. We write
that ¢ < y if (i) |z| < |y|, or (ii) |z| = |y| and
there exists k > 1sothat a; = b; for 1 <i< k
and ar < br. The relation x < y means that
T<yorz=y.

2.2 Polynomial Time Identification in
the Limit from Positive Data

In this report, we adopt Yokomori’s definition in
[14] for the notion of polynomial time identifica-
tion in the limit from positive data.

For any class of languages to be identified,
let R be a class of representations for a class
of languages. Instances of such representations
are automata, grammars, and so on. Given an r
in R, L(r) denotes the language represented by
r. A positive presentation of L(r) is any infinite
sequence of data such that every w € L{r) oc-
curs at least once in the sequence and no other
string not in L(r) appears in the sequence. Each
element of L(r) is called a positive example (or
simply, ezample) of L(r).

Let r be a representation in R. An algorithm
A is said to identify v in the limit from positive
data iff A takes any positive presentation of L(r)
as an input, and outputs an infinite sequence of
representations in R such that there exist r’ in
R and j > 0 so that for all ¢ > j, the ¢-th con-
jecture (representation) r; is identical to 7' and
L{r"y = L(r). A class R is identifiable in the limit
from positive data iff there exists an algorithm A
that, for any r in R, identifies 7 in the limit from
positive data.

Let A be an algorithm for identifying R in
the limit from positive data. Suppose that af-
ter examining 7 examples, the algorithm A con-
jectures some 7;. We say that A makes an im-
plicit error of prediction at step ¢ if r; is not con-
sistent with the (¢ + 1)-st example wiyq, ie., if
Wi41 ¢ L(T‘z)

Definition 1.(Yokomori [14], pp.157-158, Defi-
nition 2) A class R is polynomial time identifi-
able in the limit from positive data iff there exists
an algorithm A for identifying R in the limit from
positive data with the property that there exist
polynomials p and ¢ such that for any n, for any
r of size n, and for any positive presentation of

L(r), the time used by A between receiving the i-
th example w; and outputting the i-th conjecture
r; is at most p(n, E§=1 |w;]), and the number of
implicit errors of prediction made by .A is at most
g(n,l), where the size of r is the length of a de-
scription for r and I = Max{|w;} | 1 < j < i}

d

3 Strict Prefix Deterministic
Finite State Transducers

Definition 2.([9],[3]) A finite state or rational
transducer (FST for short) is defined as a 6-tuple
T =(Q, X, A6 qo F), where @ is a finite set
of states, ¥ is an input alphabet, A is an output
alphabet, 6 is a finite subset of @ x IJ* x A* x Q
whose elements are called transitions or edges, qg
is the initial state, and F(C Q) is a set of final
states. 0

Associated with a transition {(p,z,y,q) € § in an
FST, there is a transition (p,z,q) € @ x X* x Q,
which corresponds to the conventional concept
in finite automata. A finite automaton M =
(@,2,8,q0, F), where 8’ C Q x X* x @ and
(p, z,y,q) € § implies that (p,z,q) € &, is called
an associated automaton with an FST T. In a
directed graph, called a transition graph, associ-
ated with an FST T, a transition (p,z,y,9) € §
is associated with an edge from node p to node ¢
labeled z/y.

A sequential transducer is an FST in which
é C Q x X x A* x Q) F = Q> and (paa'au,Q)a
(p,a,v,7) € § implies that u = v and q = r (de-
terminism condition) [9]. Since F can be omit-
ted, a sequential transducer is completely speci-
fied as a 5-tuple T' = (Q, ¥, 4, 4, q0)- Sequential
transducers are also called generalized sequential
machines (GSM’s for short) [6], where Mealy
and Moore machines are restricted instances of
GSM’s.

A path in an FST T is a sequence of
transitions m = (p07 1, yhpl)(ph x2, y2,P2) t
(Prn-1,%n, Yn, Pn), Where p; € Q for 0 < ¢ <
n, and z; € X*y; € A* for 1 < ¢ < n.
When the intermediate states involved in a path
are insignificant, a path is written as ©# =
(Po, T1Z2++  Tn, Y142+ *Yn, Pn).  For p,q € Q,
II7(p,q) denotes the set of all paths from p to
g. By convention, we let ¢ € Ilp(p,p) for any
p € . We extend this notation by setting



H7(p, Q") = Ugeq Tr(p, q) for any Q' € Q. A
path 7 from p to ¢ is successful if p = g¢ and
g € F. Thus, the set of all successful paths is
II7(qg, F). Here, for a state p € @, it is said to be
reachable if IIT{qq, p) # O, and it is said to be live
if r(p, F) # 0. For an FST T, the language rep-
resented by 7' is defined to be L(T) = {(x,y) €
It x At l (Q(],JI, Y, q) € HT(Q(], F)}‘ Moreover,
define Li(T) = {z € X* | (z,y) € L(T)} and
Lo(T) = {y € A" | (z,y) € L(T)}. Here, L;(T)
(respectively, Lo(T)) is called an input language
(output language, resp.) accepted by T

Definition 3. Let T = (Q, X, 4,6,q0, F) be
an FST. Then, T is a strict prefix deterministic
finite state transducer (SPDFST for short) iff T’
satisfies the following conditions:
1)C@x It x At xQ.

(2) for any (pvzh y17111)7 (p,m% y2,(12) € 61 if
first(zy) = first(z2), then z; = =2, y1 = y2 and
q1 = ¢2 (determinism condition).

(3) for any (pa Z1,Y1, ql)’ (pa T2, Y2, q2) € 4, if
first(z1) # first(zs), then first(y;) # first(ya).
(We say that 6 has the strict prefix property.)
(4) for any (p1, 1,1, q1), (P2, T2, Yo, ¢2) € & with
p1 # P2 O @1 # qo, first(z1) # first(zz) or
first(y;) # first(ye) (i.e., the uniqueness of la-
bels). o

Example 1. Consider an FST T = (Q, X, A4,

d,q0, F), where Q = {qo0,q1,42,43,04, 95}, ¥ =
{07 172}3 A = {a7 b, c7 d}’

0= { (qu 0) aba QI)v (qu 1) dda q3)5
(q17 Oa b7 q2)a (q17 17 C, q0)7 (QI, 27 ac, q4),
(Q27 07 cc, ql)a (Q27 17 a, q3)a
(q37 17 bC, ¢12),
(Q57 O) dav qfl), (q57 21 Cb’ q2) }7

and F = {g;}. This FST T is an SPDFST since
T satisfies the conditions in Definition 3. a

An SPDFST T = (Q, %, A, §, g, F) is said to be
in canonical form if, for any p € Q, p is reachable
and live, and for any p € Q@ — {qo}, it holds that
p€ Forl{(p,z,y,9)€d|z€ Xtye At qe
Q} > 2 (i.e., the number of outgoing edges from
node p in a transition graph is more than or equal
to 2).

For any SPDIST T, there exists an SPDFST
T" in canonical form. We can show this by using
the following procedure.

Input: a given SPDFST T = (Q, X, 4,9, g0, F)
Output: an SPDFST T = (@', X/, A", 8, g0, F')
in canonical form
Procedure
begin
/* eliminate useless states and transitions */
Qu :={p € Q | p is not reachable
or p is not live};
Q:=Q-Qu; F:=F-Qu;
¢":=0—{(p,%,94,9) €5 |pEQuorgeQu};
L' :=alph({zx € X* | (p,z,y,q) € §'});
A":=alph({y € A% | (p,z,y,9) € §'});
/* transformation to an SPDFST in canonical
form */
while there exists p € Q' — {go} such that
p & F' and |{(p,z,y,9) € &' |z € X',
ye At qgeQ} =1 do
§:=du {(1", uzx, vy, q) 1 (T7 U, 'pr) € 5,}
_{('ra u, 'Uap)a (P, Zy Y, q)};

Q' :=Q —{p}
od
end
Example 2. Let us apply the above proce-

dure to the SPDFST T in Example 1. The
resulting SPDFST in canonical form is 77 =
(Q,’ Efa A’,(SI,QQ,F,), where Q/ = {q07q1aq2})
2 ={0,1}, &' ={e,b,c, d},

8= { (qﬂa 07 ab’ ql)v (qO, 11a ddbc? q2)3
(qla 07 b’ q2)a (ql, 1’ c, (IO),
(Q2, 07 cc, QI)7 (q2a ]-]-a abc, Q2) }’

and F' = {g3}. m

For the above SPDFST T’, we can show that
L(T"y = L(T) for any SPDFST 7. Furthermore,
T’ has s minimum number of states and is unique
up to isomorphism.

Hereafter, we are concerned with SPDFST’s
T in canonical form.

The next lemma immediately follows from
Definition 3.

Lemma 1. Let T = (Q, X, A,4,q, F) be an
SPDFST, and let p,p’,q,¢' € Q, z,z’ € X, and
y,y € At

) If (p,z,y,9),(p,2',y',¢') € & such that
first(z) = first(z') and first(y) = first(y’), then
it holds that p=p', z=2',y =% and ¢ = ¢.
2) If (p,z,y,9),(p,z',y',q") €  such that ¢ #
¢, then it holds that first(z) # first(z') and
first(y) # first(y’). |



The following lemma is derived from Definition 3
and Lemma 1.

Lemma 2. Let T = (Q, X, 4, 8,490, F) be an
SPDFST, and let p,p',q,4 € Q, z,z' € X, and
y,9y’ € A*. Then, the followings hold.

(1) I (p,2,y,9) € Hr(p,q) and (p,z,y',q) €
Ir(p, '), then it holds that y = ¢’ and q = ¢'.
(2) If (p,z,y,9) € Hr(p,q) and (p',2,y,¢) €
Tz (p’, ¢'), then it holds that p = p’ and ¢ = ¢'.
(3) For some 7 = (p,%,y,q) € Ur(p,¢) and 7' =
(p 7'y, q') € Iix(p, ¢'), if first(z) = first(z') and
first(y) = first(y’), then 7 can be divided into
(p’ mc’ yc, T) (T, xc\x, yc\y’ q) a"Ild ﬂ.l can be di—
vided into (p, T¢, ¥, 7) (1,2 \T, ¥ \Y', ¢'), where
zc = lep({z,2'}) € Z7F, yo = lep({y,y'}) € A%,
and r € Q. ]

Using Definition 3 and Lemmas 1 and 2, it is easy
to obtain the following lemmas.

Lemma 3. Let T = (Q, X, A,6,q90, F) be an
SPDFST and let (z,y), (21, 1), (z2,y2) € L(T).
Then, for each a,a;,as € X (a1 # ag), b,b1,b2 €
A (b1 # be), the followings hold.

(1) Ifx = az” and y = by" forsome 2" € X*,y" ¢
A*| then there exists a transition (qg, u,v,p) € 6
such that first(u) = @ and first(v) = b for some
pEQ.

(2) If 21 = a1z, z9 = Fagzy, y1 = y'byyff
and yo = y'boyl for some z',zf 2§ € X*,
v, yl,y5 € A* then there exist p,qi,92 €
Q, u,uz € Xt and vy,vs € At such that
(p,u]_,'U]_,q1),(p,'U42,’U2,q2) € 6 with ﬁmt(ul) =
ay, first(ug) = ag, first(vy) = b; and first{vy) =
ba-

(3) If zo = zyaxy and yo = yi1by] for some
x4 € X*, yf € A*, then thereexist p€ F, q € Q,
uw € Xt and v € At such that (p,u,v,q) € 6
with first(u) = a and first(v) = b. a

Lemma 4. Let T = (Q,%X,A4,4,q0, F) be
an arbitrary SPDFST. Then, for z,z2 € X*
y € Tt uw € A% v € AY, if (zz,uw),
(zyz, uwvw), (xy?z, uv?w) are in L(T), then for
each i > 0, (zy'z, wv'w) € L(T). o

Finally, we mention the relationships among the
class of SPDFSTs, the class of SDA’s [14], and
the class of OST’s [9].

Definition 4.([14]) An extended deterministic
finite automaton (EDFA for short) over X' is de-
fined as a 5-tuple M = (Q, X, 4, qq, F'), where

X Cc Z+7 é C QXXXQ> and (pa xaql)’ (pv z, QZ) €
6 implies that g1 = ¢o. 0

The class of EDFA’s is a proper subclass of asso-
ciated automata with FST’s.

Definition 5.({14]) Let M = (Q, X, 4,90, F)
be an EDFA. Then, M is a strictly determinis-
tic automaton (SDA for short) iff M satisfies the
following conditions:

(1) for any xz € X, there uniquely exists a pair
{(p,q) € @ x Q such that (p,z,q) € 6.

(2) for any z3,x2 € X such that z; # =2,
first(z1) # frst(ze). o

From Definition 5, we can show that the class
of SDA’s is a proper subclass of associated au-
tomata with SPDFST’s.

Definition 6.([9]) A subsequential transducer
is defined as a 6-tuple T = (Q, %, A4,6,q0, ),
where T' = (Q, 2, 4, 4, qu) is a sequential trans-
ducer, and A : Q@ — A* is a function that as-
signs output strings to the state of 7. The
language represented by T is defined to be
L(T) = {(:I:,yz) € I x 4 l (q()vx’y’Q) €
7(q0, @), Ma) = 2} =

Definition 7.([9]) A subsequential transducer
T = (Q,X,A4,6,q0, ) is an onward subsequen-
tial transducer (OST for short) that satisfies the
following condition: lep({y € A* | (p,a,y,q) €
6}U{A(p)}) =eforanype Q—{qo},a € L. O

From Definitions 6 and 7, we can show that the
class of languages represented by OST’s is incom-
parable to the class of languages represented by
SPDFST’s.

4 Identifying SPDFST’s

4.1 A Characteristic Sample

Let T = (Q, %, A,8,q0, F) be any SPDFST in
canonical form. A finite subset R C X* x A* of
L(T) is called a characteristic sample of L(T) if
L(T) is the smallest language represented by an
SPDFST containing R, i.e., if for any SPDFST
T', R C L{T") implies that L(T) C L(T").

For each p € @, define pre(p) as the short-
est input string z € X* from ¢ to p, ie,
(90,2, y,p) € lr(go,p) and z <X 2’ for any z’
such that (go, %', 9, p) € (g0, p). Moreover, for
each p € Q and ¢ € F, define post(p,q) (€ X*)



as the shortest input string from p to ¢. Then,
define

R(T) = { pre(p) - post(p,q) | p € Q, g € F}
U { pre(p) - = - post(r, q) |
p€Q, (pz,y,7)€d,g€ F}
U { pre(p) - z1 - z2 - post(s, q) |
p€Q, (p,z1,y1,7), (1,72, 92,8) €4,
q € F}(C L(T))

and

R(T) = { (z,y) € £* x A* | & € Ry(T),
(qO)wyyaq) € HT(quF)}'

R(T) is called a representative sample of T. Note
that the cardinality |R(T')| of a representative
sample is at most |Q||F| (| X|2 + |X| + 1), that
is, |[R(T)| is polynomial with repect to the de-
scription length of T'.

Example 3. Consider an SPDFST T =
(Q, X, A,6,q0, F) in canonical form, where T is
isomorphic to the SPDFST 7" in Example 2. For
Y, let 0 < 1. Then, we have the following.

pre(q()) =E§g, POSt(‘IO, q2) = 00,
pre(q1) =0, post(gi,g2) =0,
pre{ge) = 00, post(ge,q2) = €.

Therefore, we have that

R;(T) = {00, 11, 0000, 0011, 0100,
0111, 1100, 1111,
000100, 001100, 001111 }.

Consequently, we obtain that

R(T) = { (00, abb), (11, ddbc),
(0000, abbecb), (0011, abbabe),
(0100, abeabb), (0111, abeddbe),
(1100, ddbeeeb), (1111, ddbeabc),
(000100, abbceeabb),
(001100, abbabcecd),
(001111, abbabeabc) }. O

The next lemma assures that the representative
sample R(T) is a characteristic sample of L(T).

Lernma 5. The representative sample R(T') of
an SPDFST T = (@, X, A, 4, g, F) in canonical
form is a characteristic sample of L(T"). That is,
it holds that for any language L’ (C X* x A*)
represented by an SPDFST, R(T") C L' implies
that L(T) C L'.

Proof: By construction, it holds that R(T)
C L(T). Let T" = (Q,X,A,¢,q), F') be an
SPDFST representing L' (i.e., L' = L(T")).
Then, it should follow that we have the following
claim.

[Claim] Let p € Q be any state of T, and let
(g0, u,v,p) € IIr(go,p) for some u € L*, v € A*.
Moreover, let (g4, u,v,p") € l1(qq, p’) for some
peqQ. fr=(pzy4q) € lr(p,F) with
z € X* and y € A" for some ¢ € F, then
(9, z,y,q") € Up(p, F') for some ¢’ € F'.
[Proof of Claim] Let © € Ilp(p,F) be a
path such that (po,wu1,v1,p1) (p1,u2,ve,p2) -
(Pr1;Un, Vn, pn) With pg = p, P = ¢, z =
U1 ~Up and ¥ = vy - - - Uy, where (p;—1, uj, vi, Pi)
€ 6 for 1 < i < n. Since R(T) C L(T"), this
claim can be proved by induction on n > 0 using
Lemmas 2, 3 and 4. m]

4.2 Identification Algorithm

Let T = (Qu, 2, As,04,q0, Fi) be a target
SPDFST. We now present an idenitification al-
gorithm [A. This algorithm is given in the fol-
lowing,

Input: a positive presentation (x1,y1), (z2,y2),
... of a language L(T\) for a target SPDFST T,
Output: a sequence of SPDFST’s Ty, Th, ...
Procedure 1A
begin
initialize £ = 0; g0 = p;
let To = ({go},9, 0,0, g0, §) be the initial
SPDFST,;
repeat (forever)
ir=1+1;
let Ty = (Qi—1, Xi-1, Ai_1,9i1, 90, Fi_1)
be the current conjecture;
read the next positive example (z;, y;);
if (zi,y:) € L(Ti-1) then
output 7; =T, ; as the i-th conjecture

else
Qi=Qi—y; X=Xy Ai=4iy
0 ==bi—;  Fii= Fiq;

if (z59:) = (e,¢) then
F, .= F_1 U{q};
output T; = (Q;, X, 4;,8;, qo, F3) as
the i-th conjecture

else
/* the case where z; # ¢ and y; # € */
2= U alph(a:i);
4A; = A; Ualph(y;);

Qi = QiU {pgh  Fi=F,U{pg,}



if 6,1 =0 then
9 := {(‘IO, Tiy Yis P[:c,])}

else
/* parse the i-th example */
P = qo;
u=gy Uiy 2 S E

while u#¢ do
if there exists (p,u/,v',q) € §;
such that first(u’) = first(u)

then
ue := lep({w', u});
Ug 1= U\Y; Ul = u\U;
ve := lep({v', v});
Vg 1=V \V; v 1= v \Y;
if u,=¢ then p:=g¢
else

Qi == Qi U{Puy s
6; := &; U {(p, ue, 'Uc;p[zuc])’
(p[zuc]a u.lsa ’U.;, q)}
_{(p7 ul> 'U,, q)}y

P = Plau.)
fi
U= 1Ug; VI=Ug 2= 2Uc
else
0; 1= 6;U {(p7ua U7p[a;i])};
Ui=¢g UV:iI=¢
fi od fi
T% = CONSTRUCT(Q,, Z'i, Ai, 6i,
q0, F3);
output 7T; as the i-th conjecture
fi fi
until (false)

end

Function CONSTRUCT(Q, X, A, 4, qo, F)
Procedure MERGE(p,}, Ps,])
begin
let 21 be a string so that m(p|;,}) = M(Pfe,))
and z; =< 2/ for any 2’
such that m(p[z/]) = 'm(p[zl]),
let 22 be a string so that m(p(,,)) = m(p,))
and z < 2’ for any 2/
such that m(p[z/]) = m(p[zz]);
if 21 X2 then m(ppg,) = m(py,)
else m(p[:tl]) = m(p[m]) fi
end
begin
repeat
flag :=true;
/* merge identical states */
for each pe Q do m(p):=p od;
while there exist two distinct transitions

(p[ul], z, Y, p[vl])’ (p[uz]» T Y, p[vz]) €46
do
call procedure MERGE(py,, ], Plu,));
call procedure MERGE(p|y,}, Plvy))i
5 = {(m®), 7',y', m(¢)) |
.7,y q) € 6};
F={m(p)|peF}
Q:={m(p)|peQ}
od
/* modify transitions to be deterministic */
while there exist two distinct transitions

(p[ul]a T1; Y1, ql)) (p[ug]a z2; Y2, q?) €d
such that z1 = 'z, 9 = 224,
o =lep({z1,x2}) € TT, 2 € T,
=y, %=y,
y' =lep({y1, 42}) € A%,95 € AT do
call procedure MERGE(pp,, ], Pju,))
let z be a string so that
m(PL)) = M(Pp,)) and z X 2’ for any 2’
such that m(z') = m(z);
§:=0- {(p[ulls x1, Y91, Q1),
(Plug)> T2, Y2, 92) 15
if {=c¢ (and yf =¢) then
6:=6U {(p[z]7 xla y,a q1)7 (q17 $,2,a yg, 42)}
else /* the case where
first(z]) # first(z5) */
Q:=QU {p[zz’]};
d:=6U {(p[z]v !, ylzp[z:z;’])a
(p[za:’]7 xllla yila q1)>
(p[zz’]: w’2/7 y,2/7 QQ)}
= {(m(p), z,5,m() | 7, %,5,9) € };
Fi={m(p) |pe F}
Q:={m(p) |p Q)
flag = false
od
until (flag = true);
return T = (Q, X, 4,4, qo, F)
end

fi
6

By analyzing the behavior of the identification
algorithm JA in the similar way as in [14], we
can prove the following lemma from Lemma 5.

Lemma 6. Let R(C X* x A*) be a character-
istic sample of a language represented by some
SPDFST T and let R’ be a finite set such that
R C R’ C L(T). Then, whenever the identifica-
tion algorithm IA receives all positive examples
in R', IA outputs an SPDFST which is isomor-
phic to T O

From Lemmas 5 and 6, the next lemma follows.



Lemma 7. LetTi,T5,...,T;,...be asequence
of conjectured SPDIST’s produced by IA. Then,
there exists r > 1 such that for all j > 0, T\, =
Try; and L(T,) = L(T,). m]

Thus, we have the following theorem.

Theorem 1. The class of SPDFST’s is identi-
fiable in the limit from positive data. 0

Let K; = 35 (@il + lysl), L = Max{|z4l, [yi |
1 < j < i}, and size(T.) = |Qu] + | Xe| + |A4] +
|Fel+ X poy.a)eo. (|21 1yl +2) + 1. By analyzing
the time cormplexity of /A in the same way as in
[14], we can show that (1) the time for updating
a conjecture is bounded by O(K;?) and (2) the
number of implicit errors of prediction 1A makes
is bounded by O(n? |X,|2 1;), where n = size(T,).
Then, we have the following theorem.

Theorem 2. The class of SPDFST’s is poly-
nomial time identifiable in the limit from positive
data. in the sense of Yokomori (Definition 1). O

5 Conclusions

We have shown that the class of SPDFST’s is
identifiable in the limit from positive data, and
have presented an algorithm that identifies any
SPDFST in polynomial time in the sense of Yoko-
mori.
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