BN LS SRS 2008—AL—118 (9)
IPSJ SIG Technical Report 2008,75,727

IRF R D & B X B RE IR S5
INAFKGE EHEISH/N T A —F G
HA SR, O A 2
LREKE, ? AEEAY

e D EEEFTHERE I U TNABREBE Y TO0—F 2 RET 5. AMERRICSAH/ES, BIHERE,
BEIN/NT A —F D 3 DNS RIS, NABEEE T, TNETORBEPICE DI BWEZ A
BOETHLWEERMEESDERIEEZRET S, ERENMIRFTRERECLVUERZITY . RFER
1EDEEE & U Tl 2-opt*, cross exchange, Or-opt 2 VY, & 5 ICHIRMIGEBRRZIT I -DIEREY 2
FNEEHEL, TNEFHAL GEBEOY A X&2HIRT 5. AMERIIETRATEBRHRERONSREL, HEEK
EERFINVT 4 EUTHHMEBERICEAFETRELEDLES ZETHREMMETS. 7IVIYU XLOMEREIZZFD
BHARAIKREKET D20, BRRNEZ T4 — RNy 7 LD DEAZBEISHICHB T 228875, &
BIZ, NF— I U CEHREEREITY, RMRIEORREHRT 5.

Path Relinking and Adaptive Parameter Control
for the Vehicle Routing Problem with Time Windows

Hideki Hashimoto!, Mutsunori Yagiura?

! Kyoto University, 2 Nagoya University

We propose a path relinking approach for the vehicle routing problem with time windows. In our algo-
rithm, solutions generated by path relinking operations are improved by a local search whose neighbor-
hood consists of the representative neighborhoods called 2-opt*, cross exchange and Or-opt. To make
the search more efficient, we propose a neighbor list that prunes the neighborhood search heuristically.
Infeasible solutions are allowed to be visited during the search, while the amount of violation is penalized.
As the performance of the algorithm crucially depends on penalty weights that specify how such penalty
is emphasized, we propose an adaptive mechanism to control the penalty weights. The computational
results on well-studied benchmark instances with up to 1000 customers revealed that our algorithm is
highly efficient especially for large instances. Moreover, it updated 41 best known solutions among 356
instances.

1 Introduction

The vehicle routing problem with time windows (VRPTW) is the problem of minimizing the total traveling
distance of a number of vehicles, under capacity and time window constraints, where every customer must
be visited exactly once by a vehicle. The capacity constraint signifies that the total load on a route cannot
exceed the capacity of the assigned vehicle. The time window constraint signifies that each vehicle must
start the service at each customer in the period specified by the customer. The VRPTW has a wide
range of applications such as bank deliveries, postal deliveries, school bus routing and so on, and it has
been a subject of intensive research focused mainly on heuristic and metaheuristic approaches.

We propose a path relinking approach for the VRPTW. Our algorithm invokes a path relinking
operation for generating new candidate solutions, which are then improved by a local search whose
neighborhood consists of slight modifications of the representative neighborhoods called 2-opt*, cross
exchange and Or-opt. To reduce the computation time for searching these neighborhoods, we propose
a neighbor list that prunes the neighborhood search heuristically. In our algorithm, infeasible solutions
are allowed to be visited during the search, while the amount of violation is penalized. The amount
of violation for the capacity constraint is estimated by the amount of capacity excess. To estimate the
amount of violation of time window constraints of each route, we consider the total amount of traveling
time to be shortened to satisfy the constraints. We also incorporate in our algorithm a frequency-based
penalty, in which a customer who often appears in an infeasible route of locally optimal solutions is
penalized to direct the search to make those routes with many heavily penalized customers feasible. As
the evaluation of these penalties takes time if naively implemented, we propose an efficient algorithm,

which enables us to evaluate each neighborhood solution in O(1) time. We also propose an adaptive
mechanism to control the weights of these penalties. Finally we report computational results on well-
studied benchmark instances with up to 1000 customers. The results show the high competence of our
algorithm against existing methods; it updates 41 best known results among 356 instances within a
reasonable amount of computation time.

2 Problem Definition

Here we formulate the vehicle routing problem with time windows. Let G = (V, E) be a complete directed
graph with vertex set V = {0,1,...,n} and edge set E = {(i,J) | i,j € V,i # j}, and M = {1,2,...,m}
be a vehicle set. In this graph, vertex 0 is the depot and other vertices are customers. Each customer 4
and each edge (i,j) € E are associated with: (1) fixed quantity a; (> 0) of goods to be delivered to i,
(2) a time window [e;, 15], (3) a traveling time t;;(> 0) and a traveling distance ¢;;(> 0) from i to j. We
assume ag = 0 and ep = 0 without loss of generality. Each vehicle has an identical capacity u.

Let o) denote the route traveled by vehicle k, where o (h) denotes the hth customer in o, and let

o= (0170'27“'70'711)'

Note that each customer 7 is included in exactly one route oy, and is visited by vehicle & exactly once. We

denote by ny the number of customers in 0. For convenience, we define 0% (0) = 0 and ox(ng +1) =0

for all k (i.e., each vehicle k € M departs from the depot and comes back to the depot). Moreover, let s;

be the start time of service at customer i (by exactly one of the vehicles) and s be the arrival time of

vehicle k£ at the depot. Note that each vehicle is allowed to wait at customers before starting services.
Let us introduce 0-1 variables y;x (o) € {0,1} for i € V' \ {0} and k € M by

yik(0) =1 <= i = ox(h) holds for exactly one h € {1,2,...,n4}.

That is, y; (o) = 1 holds if and only if vehicle k visits customer ¢. The traveling distance of a vehicle k
is expressed as d(o%) = sz:o Coy(h),ox(h+1)- Then the problem we consider in this paper is formulated
as follows:

minimize Z d(ok) (1)
keM
subject to Z vik(o) =1, ieV\ {0} (2)
keM
> awyir(o) <wu, keM (3)
i€V {0}
20,00 (1) < Sop (1) ke M (4)
801.(3) T Low(e),0n(i+1) < Sop(it+1)s 1<i<ng—-1,keM (5)
Son(ni) T tan(ni),0 < sk < lo, keM (6)
e; <8<l ieV\{0} (7)
yir(o) € {0,1}, ieV\{0}, ke M. (8)

Constraint (2) means that every customer ¢ € V'\ {0} must be served exactly once by a vehicle. Constraint
(3) means a capacity constraint for vehicle k. Constraints (4)—(6) require that each vehicle cannot serve a
customer before arriving at the customer. Constraint (7) is a time window constraint for each customer.

3 Local Search

In this section, we describe our local search (LS). Our LS searches a visiting order o = (01,02,...,0m),
which can be infeasible with respect to the capacity and time window constraints. The algorithm evaluates
each route o by a function p(ox), which is the sum of its traveling distance d(ox) and the penalty for
violation of constraints if oy is infeasible, and it evaluates a solution o by > .., p(0k). The details

of function p(ox) will be discussed in Section 4. Our LS starts from an initial solution o and repeats
replacing o with a better solution (with respect to)., P(0x)) in its neighborhood N(o) until no
better solution is found in N(o). To define the neighborhood N(o), we use the 2-opt*, cross exchange
and Or-opt neighborhoods with slight modifications. For the 2-opt* and cross exchange neighborhoods,
we propose a neighbor list to prune the neighborhood search heuristically.

3.1 Neighbor List

We consider a neighbor list for each customer 4, which is a set of customers preferable to visit immediately
after 4. Each customer j that can be visited after i (i.e., e; +t;; < I;) is evaluated by max{¢;;,e; — [;}.
When a vehicle visits j immediately after 4, it takes at least max{t;;, e; —l;} time between the start times
of ¢ and j. Hence, if this value is small, it is preferable to visit j immediately after i. The algorithm
computes these values once at the beginning and stores the best Nyjst (a parameter) customers as a
neighbor list of i. We set Npjisy = 20 in the experiments.

3.2 Neighborhoods

We use the 2-opt* [10], cross exchange [14] and Or-opt neighborhoods [12] with slight modifications,
wherein we restrict the 2-opt* and cross exchange neighborhoods by using the neighbor lists.

A 2-opt* operation removes two edges from two different routes (one from each) to divide each route
into two parts and exchanges the second parts of the two routes. Our algorithm searches only those
solutions obtainable by a 2-opt* operation in which at least one of the newly added edges is in the
neighbor list. The size of this neighborhood is O(Nyjistn).

A cross exchange operation removes two paths from two routes (one from each) of different vehicles,
whose length (i.e., the number of customers in the path) is at most L% (a parameter), and exchanges
them. Our algorithm searches only those solutions obtainable by a cross exchange operation in which a
newly added edge linking the former part of a route and the path from another route is in the neighbor
list. The size of this neighborhood is O((L"mSS)ZNnnsm). We set L% = 3 in the experiments.

The cross exchange and 2-opt* operations always change the assignment of customers to vehicles. We
also use an intra-route neighborhood to improve individual routes. An intra-route operation removes a
path of length at most Lg:f{ﬁ‘ (a parameter) and inserts it into another position of the same route, where
the position is limited within length Litt™® (a parameter) from the original position. The size of the

intra-route neighborhood is O(LIMALint™n). We set Linti = 3 and Liji™ = 10 in the experiments.

(a) 2-opt™ (b) Cross exchange (c) Intra-route

Figure 1: Neighborhood operations in our local search

Figure 1 is an illustration of the neighborhoods. In Figure 1, squares represent the depot (which is
duplicated at each end) and small circles represent customers in the routes. A thin line represents a route
edge and a thick line represents a path (i.e., more than two customers may be included). The dotted
boxes mean that edges in them are in the neighbor lists.

Our LS searches the above intra-route, 2-opt* and cross exchange neighborhoods, in this order. When-
ever a better solution is found, the LS immediately accepts it (i.e., we adopt the first admissible move
strategy) and resumes the search from the intra-route neighborhood.

4 Evaluation Function p(oy)

We first define the function p(-) to evaluate a route ok. For convenience, throughout this section, we

assume that vehicle k visits customers 1,2,...,ny in this order and let customer ny + 1 represent the
arrival at the depot (i.e., sp,+1 = s3). The function we adopt is

d(og) if oy, is feasible

p(ok) = ' nk . 9)

d(ok) + apc(or) + Boe(or) + D opEq Ths otherwise,

where pc(oy) is the amount of capacity excess (ie., po(or) = max{0,Y 1+, a; —u}) and p(o) is the
minimum total amount of traveling times to be shortened to satisfy the constraints; i.e.,

1
. 80 >0, sp—1+th—1,n — Th < Sp,
pi(0k) = min Z Th .
pyrt Th 20, ep <sp<lp, h=1,...,np +1

In function p, o, B and +; for each i € V' are parameters, which are controlled adaptively (see Section 5).
Parameters oo and are controlled reflecting the difficulties in satisfying the capacity constraint and
the time window constraint, respectively. -Parameter «; reflects the difficulty in visiting customer i by
a feasible route. In the evaluation of (9), each traveling time can be shortened by an arbitrary amount
(i.e., the resulting traveling time tp_1 5 — 75 can be negative) to satisfy time window constraints while
the shortened amount is penalized as py(oy). This idea of defining p; was proposed by Nagata [8]. The
algorithm computes p(oy) by each term separately. In the rest of this section, we focus on the computation
of py(ok), since the other terms can be efficiently computed by using standard data structures.

A key observation to the efficient computation is that each route oy, of a neighborhood solution is a
recombination of a few paths of the current solution. Hence we consider a speeding up approach that
stores some useful information of paths from the depot to customers and those from customers to the
depot, among those paths of the current routes. For each customer h in a new route o, let Fp, (resp.,
B},) be some data structure that contains the information of the path (of o) from the depot to h (resp.,
from h to the depot). Note that Fj and By, signify the information of the paths of the new route oy.
For example, if oy is generated by a 2-opt* operation, and the path from the depot to h and the path
from h + 1 to the depot are from the current solution, then F, and B4 are available from the stored
information when they are used to compute p(ok). On the other hand, for the cross exchange and intra-
route neighborhoods, F;, and By, for customers A in inserted paths need to be recomputed, because in
the new route o the path from the depot to such an h and that from A to the depot are different from
those in the current route. What is important in this approach is to execute the followings efficiently for
a given og:

1. construction of Fp41 from Fj, (the forward computation),
2. construction of By, from B4 (the backward computation), and
3. computation of py(ox) from F, and Bp41.

Tt is not hard to show that each neighborhood solution can be evaluated in O(T') time, if the above oper-
ations can be done in O(T') time for any h (0 < h < ny). However, to accomplish this, the neighborhood
need to be searched in an appropriate search order. The detailed description of such a search order is
explained in Ibaraki et al. [4]. Below we show that the forward and backward computation can be done
in O(1) time and the computation of py(ox) from F and Bp1 can also be done in O(1) time. Hence the
algorithm can evaluate each neighborhood solution in O(1) time.

Let f, be the minimum total amount of traveling times to be shortened to satisfy the time window

constraints for customers 1,2,...,h when vehicle k visits them along the route. Let 32 be the start
time of service at h that attains f together with sf,..., s}, and let Fj, = (f3, s}). Then the forward
computation can be done by:
shi1 = min{th,max{s% + thh+1s €ht1)} (10)
faxr = fo+max{sh +tnne1,enia} = shia (11)

In (10), if lp41 < max{sg +th,ht1, €n+1} holds, the traveling time is shortened to satisfy the time window
constraint and this amount is added to fr41 in (11).

The backward computation can be done similarly. Let by, be the minimum total amount of traveling
times to be shortened to satisfy the time window constraints for customers h,h +1,...,n; + 1 when
vehicle k starts from h and returns to the depot along the route. Let s? be the start time of service at
h that attains by, together with s}’LH, ceey sng, and let By, = (bp, s';’L). Then the backward computation
can be done by:

Il

b max {min{lh,SEH —thht1}s €} (12)

b = bpy1+ 82 — min{lh, 32+1 — th,h+1}- (13)

We can compute py(ok) from Fp, = (fr, sf,) and Bpi1 = (bhy1, 32+1) by

52+1 = min {lh+1, max{sfl + thht1, 6h+1}} (14)
Pe(ok) = fu+ b1+ max{0,s],; — sy} (15)

5 Adaptive Mechanism to Control Parameters

In this section, we describe an adaptive mechanism to control the parameters o, 3 and +; for each
customer i. The algorithm (in which the local search (LS) is executed many times) updates these
parameters whenever the LS outputs a locally optimal solution. We set their initial values to oo = 1000,
6 = 1000 and 7; = 100 in the experiments.

Let p3*™(0) = Y pen Pe(ok) and pi*™ (o) = 3o ps Pe(ok), and let pPin (resp., pii") be the minimum
pe'™ (o) (resp., pi"™ (o)) of the solutions in the current reference set R of good solutions, where rules for
maintaining R are described in Section 6. Let P, (resp., P;) be the number of moves, during the last
call to the LS, to a solution o whose p§*™ (o) (resp., p;"™ (o)) is less than p™i" (resp., p™™) or equals
to 0. Let Niotal be the total number of moves during the last call to LS, and let N; = Niotal — P. and
Ni = Niotal — P;. We use parameters dinc, ddec, 0ot and 6525¢, and in the experiments, we set §inc = 0.05,
Odec = 0.1, 62%% = 0.1 and 65%° = 0.01. If the LS found, during last call, a solution ¢ that satisfied
P (o) < pPit and piU™ (o) < pii®, the parameters o and § are decreased by

P, P
= — T 5 Y%ec s = (1—- ———=70dec .
@ <1 max{ P, Pt}(Sd) @ p < max{F, Pt}éti) A

Even if the LS did not find such a solution, if No = 0 (resp, Ny = 0) holds, « (resp., 3) is decreased by
the same equation. Otherwise they are increased by

N, N¢
= T AT AT 1 il’lC b = 1 —6inc .
@ (1 + max{Ng, Nc}(s) @ A (+ max{Nc, N¢ }) p

In the locally optimal solution, if a route violates the capacity or time window constraint, +; of each
customer 7 in the route is increased by ; := (1 + 6525%)~,. For each customer i who is in a feasible route,
cust

7; is decreased by ~y; 1= (1 — 65u3t);.

6 Path Relinking Approach

Let R be a reference set of solutions. Initially R is prepared by applying the LS to randomly generated
solutions. Then it is updated by reflecting outcome of the LS. During the search, the algorithm always
keeps the size of R to p (a parameter). We set p = 10 in the experiments. Good solutions with respect to
p are kept in R, excluding at most two solutions: One which achieves pP™ and the other which achieves
pin. After a feasible solution is found (i.e., p™® = 0 and p"" = 0), the best feasible solution is always
stored as a member of R. Other solutions in R are maintained as follows. Whenever the LS stops,
the locally optimal solution oep is exchanged with the worst (with respect to p) solution o worst in R
(excluding the above solutions), provided that oopt is not worse than oworst and is different from all

solutions in R.

A path relinking operation is applied to two solutions o4 (initiating solution) and o' (guiding solu-
tion) randomly chosen from R, where a random perturbation is applied to o with probability 1/2 before
applying the path relinking (for the purpose of keeping the diversity of the search), and the resulting
solution is redefined to be og. We use a cyclic operation, which exchanges partial paths between different
routes cyclically, as a random perturbation. In the path relinking operation, we focus on route edges which
are used in vehicle routes of a solution. Let dist(o, o’) be the number of different route edges between two
solutions o and o’. It is not difficult to see that the distance dist(o, o) between two different solutions o
and o’ can be shortened by at least one by applying an appropriate 2-opt* operation or intra-route oper-
ation to o. The path relinking operation generates a sequence of solutions (oa = 01,02,...,0,,...,08)
by repeating the following procedure starting from ¢ = 1 until o4 = o holds: Let o411 be the best
solution with respect to p among those that satisfy dist(oq+1,08) < dist(oy, o) and obtainable from
o4 by a 2-opt* or intra-route operation, and then let g := ¢ + 1.

We call a solution o locally minimal in the sequence if p(o7y) < min{p(cq—1),p(04+1)} holds. Let S
be the best 7 (a parameter) solutions among the locally minimal solutions in the sequence. Every solution
in S is used as an initial solution of the LS. We set 7 = 20 in the experiments. The next path relinking
is initiated whenever all solutions in S are exhausted as the starting solutions for the local search.

The proposed algorithm is summarized in Algorithm 1. The algorithm stops when it reaches a given
time limit. In Algorithm 1, a call to the local search starting from a solution o is denoted by LS(o),
whose output is the obtained locally optimal solution.

Algorithm 1 Path Relinking Approach
1: Construct the neighbor lists.
2: Let R be p randomly generated solutions. For each o € R, let o1opt := LS(0) and then let R:= (R\ {c})U
Olopt-
: Let S :=0.
: while the stopping criterion is not satisfied do
while S =0 do
Randomly choose two solutions oa and o from R (oA # o).
With probability 1/2, apply a cyclic operation to os.
Apply the path relinking operation to oa and o, and then let S be the set of best 7 locally minimal
solutions in the generated sequence.
9: end while
10: Randomly choose o € S, and let S := S\ {o} and o1opt := LS(0).
11: Update the penalty weights.
12 Choose the worst oworst € R among those that satisfy (1) o'worst is not the unique feasible solution in R,
(2) Joc € R\ {U'worst}7 pium(ac) < pzum(a'worst) and (3) Joy € R\ {Uworst}v p:um(o,t) < P?“m(tfworsc).
13: if p(Olopt) < P(Oworst) and Tept is different from all solutions in R then
14: R:= (R\ {O'worst}) U Olopt
15: end if
16: end while

P3P hw

7 Computational Experiments

We conducted computational experiments to evaluate the proposed algorithm. The parameter setting
of the algorithm was determined by preliminary experiments on several instances, in which we observed
that the performance of the algorithm was not sensitive to parameter values.

We used Solomon’s benchmark instances [13] and Gehring and Homberger’s benchmark instances [3].
There are 356 instances in total, and all of them have been widely used in the literature. In Solomon’s
instances, the number of customers is 100, and in Gehring and Homberger’s instances, which are the
extended instances from Solomon’s instances, the number of customers is from 200 to 1000. The customers
are distributed in the plane and the distances between customers are measured by Euclidean distances.
For these instances, the number of vehicles m is also a decision variable, and the objective is to find a
solution with the minimum vehicle number and the total traveling distance in the lexicographical order
(i-e., a solution is better than another (1) if its vehicle number is smaller or (2) if the vehicle numbers

are the same but the distance is smaller).

As our algorithm deals with the problem with a fixed number of vehicles, we first set the number of
vehicles in each instance to the known smallest number to the best of our knowledge, and repeat the
followings. If the algorithm found a feasible solution and the number of vehicles is larger than a lower
bound [ZiEV a;/ u], we ran the algorithm again after decrementing the number of vehicles by one. On
the other hand, if the algorithm was not able to find a feasible solution, we ran the algorithm again after
incrementing the number of vehicles by one. Among the 356 instances, the algorithm found a feasible
solution in the first run for every instance except for six instances. Among the remaining six instances,
it was able to find feasible solutions with one more vehicle for five instances and with two more vehicles
for the one. The time limit for each run of the algorithm for 100, 200, 400, 600, 800 and 1000-customer
instances are 1000, 2000, 4000, 6000, 8000 and 10000 seconds, respectively.

Table 1: Comparison of our results with the existing methods for benchmark instances

References 100 200 400 600 800 1000
Hashimoto et al. CNV 405 692 1381 2069 2746 3430
(2008) [2] CTD 57,282 171,223 406,646 847,470 1,444,513 2,204,728

P4 2.8GHz 17 33 67 100 133 167

Ibaraki et al. CNV 407 694 1387 2070 2750 3431

(in press) [5] CTD 57,545 170,484 398,938 825,172 1,421,225 2,155,374

P4 2.8GHz 17 33 67 100 133 167

Prescott-Gagnon et al. CNV 405 694 1385 2071 2745 3432
(2007) [11] CTD 57,240 168,556 389,011 800,797 1,391,344 2,096,823

Opt 2.3GHz 5x30 5x53 5x89 5x105 5x129 5x162

Pisinger and Ropke CNV 405 694 1385 2071 2758 3438
(2007) [9] CTD 57,322 169,042 393,210 807,470 1,358,291 2,110,925

P4 3GHz 10x2 10x8 5x16 5x18 5x23 5x27

Mester and Braysy CNV - 694 1389 2082 2765 3446
(2005) [7] CTD - 168,573 390,386 796,172 1,361,586 2,078,110

P 2GHz - 8 17 40 145 600

Le Bouthillier et al. CNV 405 694 1389 2086 2761 3442
(2005) [6] CTD 57,360 169,959 396,612 809,494 1,443,400 2,133,645

5xP 850MHz 12 10 20 30 40 50

Gehring and Homberger CNV 406 696 1392 2079 2760 3446
(2001) [1] CTD 57,641 179,328 428,489 890,121 1,535,849 2,290,367

4xP 400MHz 5x14 3x2 3x7 3x13 3x23 3x30

Homberger and Gehring CNV 408 699 1397 2088 2773 3459
(2005) [3] CTD 57,422 180,602 431,089 890,293 1,516,648 2,288,819

P 400MHz 5x17 3x2 3x5 3x10 3x18 3x31

Ours CNV 405 694 1383 2068 2737 3420

CTD 57,484 169,070 392,507 800,982 1,367,971 2,085,125

Xeon 2.8GHz 17 33 67 100 133 167

Table 1 shows the comparison of our results with those obtained by existing methods. A number in
the first row shows the number of customers. Our results are denoted by “Ours.” For each method, we
provide the cumulative number of vehicles (CNV), the cumulative total distance (CTD), the CPU, and
the average computation time in minutes for solving an instance. In the notation of the CPU, “P,” “P4,”
and “Opt” mean Pentium, Pentium 4 and Opteron, respectively. Marks “x” in the second column mean
the number of CPUs (e.g., “4xP 400MHz” means four CPUs of Pentium 400MHz), and those in other
columns mean the number of runs (e.g., “5x30” means five runs each with 30 minutes of computation
time). A number in bold in rows CNV indicates that the value is the best among all the algorithms in
the table and there is no tie. When there are ties for the best CNV, the corresponding distance value
that is the smallest among those ties is indicated by boldface.

From Table 1, the CNV obtained by our algorithm is much smaller than those of the other methods
for large instances with 600 customers or more, and the computation time spent by our algorithm seems
to be reasonable; e.g., for instances with n = 1000, the computation times spent by recent algorithms by
Hashimoto et al. [2], Ibaraki et al. [5], Prescott-Gagnon et al. [11], Pisinger and Ropke [9], and Mester
and Braysy [7] are similar to or sometimes larger than ours even if the difference of CPUs are taken into
consideration. Moreover, our algorithm updated 41 best known solutions among the 356 instances. This
indicates that our algorithm is highly efficient.

8 Conclusion

We proposed a path relinking approach for the vehicle routing problem with time windows with an
adaptive mechanism to control parameters. The generated solutions in the path relinking are improved
by a local search. In the local search, each neighborhood solution is evaluated in O(1) time and the
neighborhood search is pruned heuristically by the neighbor list. During the search, infeasible solutions are
allowed to be visited while the amount of violation is penalized. We also proposed an adaptive mechanism
to control the penalty weights. The computational results on representative benchmark instances indicate
that the proposed algorithm is highly efficient, and furthermore, the algorithm updated 41 best known
solutions among 356 instances.

References

[1] H. Gehring and J. Homberger. A parallel two-phase metaheuristic for routing problems with time-
windows. Asia-Pacific Journal of Operational Research, 18:35-47, 2001.

[2] H.Hashimoto, M. Yagiura, and T. Ibaraki. An iterated local search algorithm for the time-dependent
vehicle routing problem with time windows. Discrete Optimization, 5:434-456, 2008.

[3] J. Homberger and H. Gehring. A two-phase hybrid metaheuristic for the vehicle routing problem
with time windows. European Journal of Operational Research, 162:220-238, 2005.

[4] T. Ibaraki, S. Imahori, M. Kubo, T. Masuda, T. Uno, and M. Yagiura. Effective local search algo-
rithms for routing and scheduling problems with general time-window constraints. Transportation
Science, 39(2):206-232, 2005.

[5] T. Ibaraki, S. Imahori, K. Nonobe, K. Sobue, T. Uno, and M. Yagiura. An iterated local search
algorithm for the vehicle routing problem with convex time penalty functions. Discrete Applied
Mathematics, in press.

[6] A. Le Bouthillier, T. G. Crainic, and P. Kropf. A guided cooperative search for the vehicle routing
problem with time windows. IEEE Intelligent Systems, 20(4):36-42, 2005.

[7] D. Mester and O. Bréysy. Active guided evolution strategies for large-scale vehicle routing problems
with time windows. Computers and Operations Research, 32:1593-1614, 2005.

[8] Y. Nagata. Effective memetic algorithm for the vehicle routing problem with time windows: Edge
assembly crossover for the VRPTW. In Proceedings of the Seventh Metaheuristics International
Conference (MIC2007), 2007.

[9] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers and Operations
Research, 34:2403-2435, 2007.

[10] J.-Y. Potvin, T. Kervahut, B.-L. Garcia, and J.-M. Rousseau. The vehicle routing problem with
time windows part I: tabu search. INFORMS Journal on Computing, 8(2):158-164, 1996.

[11] E. Prescott-Gagnon, G. Desaulniers, and L.-M. Rousseau. A branch-and-price-based large neighbor-
hood search algorithm for the vehicle routing problem with time windows. Technical report, GERAD
(Group for Research in Decision Analysis), 2007.

[12] S. Reiter and G. Sherman. Discrete optimizing. Journal of the Society for Industrial and Applied
Mathematics, 13(3):864-889, 1965.

[13] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations Research, 35(2):254-265, 1987.

[14] E. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J.-Y. Potvin. A tabu search heuristic for the
vehicle routing problem with soft time windows. Transportation Science, 31(2):170-186, 1997.

