On the Three-Dimensional Orthogonal Drawing of Outerplanar Graphs (Extended Abstract)

Satoshi Tayu, Takuya Oshima, and Shuichi Ueno

Department of Communications and Integrated Systems Tokyo Institute of Technology, Tokyo 152-8550-S3-57, Japan

Abstract. It has been known that every series-parallel 6-graph has a 2-bend 3-D orthogonal drawing, while it has been open whether every series-parallel 6-graph has a 1-bend 3-D orthogonal drawing. We show in this paper that every outerplanar 5-graph has a 1-bend 3-D orthogonal drawing.

Keywords: 3-D orthogonal drawing, bend, face, k-graph, outerplanar graph

1 Introduction

We consider the problem of generating orthogonal drawings of graphs in the space. The problem has obvious applications in the design of 3-D VLSI circuits and optoelectronic integrated systems [3, 5].

Throughout this paper, we consider simple connected graphs G with vertex set V(G) and edge set E(G). We denote by $d_G(v)$ the degree of a vertex v in G, and by $\Delta(G)$ the maximum degree of a vertex of G. G is called a k-graph if $\Delta(G) \leq k$. The connectivity of a graph is the minimum number of vertices whose removal results in a disconnected graph or a single vertex graph. A graph is said to be k-connected if the connectivity of the graph is at least k.

It is well-known that every graph can be drawn in the space so that its edges intersect only at their ends. Such a drawing of a graph G is called a 3-D drawing of G. A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. Such a drawing of a planar graph G is called a 2-D drawing of G.

A 3-D orthogonal drawing of a graph G is a 3-D drawing such that each edge is drawn by a sequence of contiguous axis-parallel line segments. Notice that a graph G has a 3-D orthogonal drawing only if $\Delta(G) \leq 6$. A 3-D orthogonal drawing with no more than b bends per edge is called a bbend 3-D orthogonal drawing.

Eades, Symvonis, and Whitesides [2], and Papakostas and Tollis [6] showed that every 6-graph a graph isomorphic to G, and referred to as a plane

has a 3-bend 3-D orthogonal drawing. Symvonis, and Whitesides [2] also posed an interesting open question of whether every 6-graph has a 2-bend 3-D orthogonal drawing. Wood [8] showed that every 5-graph has a 2-bend 3-D orthogonal drawing. Tayu, Nomura, and Ueno [7] showed that every series-parallel 6-graph has a 2bend 3-D orthogonal drawing. Moreover, Nomura, Tayu, and Ueno [4] showed that every outerplanar 6-graph has a 0-bend 3-D orthogonal drawing if and only if it contains no triangle as a subgraph, while Eades, Stirk, and Whitesides [1] proved that it is NP-complete to decide if a given 5-graph has a 0-bend 3-D orthogonal drawing. Tayu, Nomura, and Ueno [7] also posed an interesting open question of whether every series-parallel 6-graph has a 1-bend 3-D orthogonal drawing.

We shown in this paper the following theorem.

Theorem 1 Every outerplanar 5-graph has a 1bend 3-D orthogonal drawing.

The proof of Theorem 1 is constructive and provides a polynomial time algorithm to generate such a drawing for an outerplanar 5-graph. It is still open whether every series-parallel 6-graph has a 1-bend 3-D orthogonal drawing.

Preliminaries

A 2-D drawing of a planar graph G is regarded as

graph. A plane graph partitions the rest of the plane into connected regions. A face is a closure of such a region. The unbounded region is referred to as the external face. We denote the boundary of a face f of a plane graph Γ by b(f). If Γ is 2-connected then b(f) is a cycle of Γ .

Given a plane graph Γ , we can define another graph Γ^* as follows: corresponding to each face f of Γ there is a vertex f^* of Γ^* , and corresponding to each edge e of Γ there is an edge e^* of Γ^* ; two vertices f^* and g^* are joined by the edge e^* in Γ^* if and only if the edge e in Γ lies on the common boundary of faces f and g of Γ . Γ^* is called the (geometric-)dual of Γ .

A graph is said to be *outerplanar* if it has a 2-D drawing such that every vertex lies on the boundary of the external face. Such a drawing of an outerplanar graph is said to be *outerplane*. It is well-known that an outerplanar graph is a series-parallel graph. Let Γ be an outerplane graph with the external face f_o , and $\Gamma^* - f_o^*$ be a graph obtained from Γ^* by deleting vertex f_o^* together with the edges incident to f_o^* . It is easy to see that if Γ is an outerplane graph then $\Gamma^* - f_o^*$ is a forest. In particular, an outerplane graph Γ is 2-connected if and only if $\Gamma^* - f_o^*$ is a tree.

3 2-Connected Outerplanar Graphs

We first consider the case when G is 2-connected. Let G be a 2-connected outerplanar 5-graph and Γ be an outerplane graph isomorphic to G. Since Γ is 2-connected, $T^* = \Gamma^* - f_o^*$ is a tree. A vertex r^* of T^* is designated as a root, and T^* is considered as a rooted tree. If l^* is a leaf of T^* then lis called a *leaf face* of Γ . If q^* is a child of f^* in T^* then f is called the parent face of g, and g is called a *child face* of f in Γ . The unique edge in $b(f) \cap b(g)$ is called the *base* of g. We choose r^* so that $b(r) \cap b(f_o) \neq \emptyset$, and any edge in $b(r) \cap b(f_o)$ is defined as the base of r. Let S^* be a rooted subtree of T^* with root r^* . If S^* is consisting of just r^* then S^* is denoted by r^* . $\Gamma[S^*]$ is a subgraph of Γ induced by the vertices on boundaries of faces of Γ corresponding to the vertices of S^* . It should be noted that $\Gamma[S^*]$ is a 2-connected outerplane graph. Let f^* be a vertex in $V(T^*) - V(S^*)$ which is a child of a vertex $p^* \in V(S^*)$. $S^* + f^*$ is a subtree of T^* obtained from S^* by adding f^* and edge (f^*, p^*) . Let $\overline{S^*}$ be a rooted subtree of T^* with root

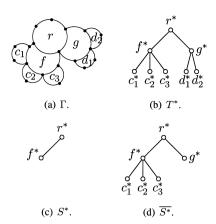


Figure 1: Example of an outerplanae graph Γ , rooted tree T^* , subtrees S^* and $\overline{S^*}$ of T^* .

 r^* induced by the vertices of S^* and the children of the vertices of S^* . Fig. 1 shows an example of an outerplane graph Γ , rooted tree T^* , and rooted subtrees S^* and $\overline{S^*}$.

For any face f of Γ , b(f) is a cycle since Γ is 2-connected. Let

$$V(b(f)) = \{u_i \mid 0 \le i \le k-1\}, \text{ and }$$

$$E(b(f)) = \{(u_0, u_{k-1})\} \cup$$

$$\{(u_i, u_{i+1}) \mid 0 \le i \le k-2\},$$

where (u_i, u_{k-1}) is the base of f. A 1-bend 3-D orthogonal drawing of b(f) is said to be *canonical* if b(f) is drawn as one of the following four configurations.

Configuration 1 (Rectangle-1): If k=3 then only (u_1,u_2) has a bend as shown in Fig. 2(a). If $k\geq 4$ then every edge has no bend, and u_1,u_2,\ldots,u_{k-2} are drawn on a side of a rectangle as shown in Fig. 2(b).

Configuration 2 (Rectangle-2): If k=3 then every edge has a bend, and u_1 is at a corner of a rectangle as shown in Fig. 2(c). If $k \ge 4$ then only (u_0, u_{k-1}) and (u_0, u_1) have a bend, $u_1, u_2, \ldots, u_{k-2}$ are drawn on a side of a rectangle, and u_0 and u_{k-1} are on another different sides of the rectangle as shown in Fig. 2(d).

Configuration 3 (Hexagon): If k = 3 then every edge has a bend as shown in Fig. 2(e). If $k \ge 4$ then only (u_0, u_{k-1}) and (u_0, u_1) have a bend, and $u_1, u_2, \ldots, u_{k-2}$ are on a side of a hexagon as shown in Fig. 2(f).

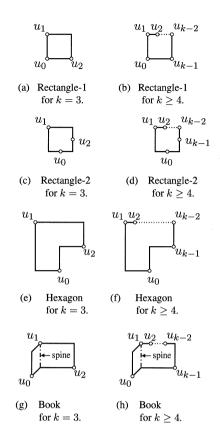


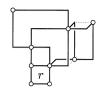
Figure 2: Rectangle-1 and -2, Hexagon, and Book.

Configuration 4 (Book): A *book* is obtained from a rectangle by bending at a line segment, called the *spine*, parallel to a side of the rectangle. If k=3 then every edge has a bend as shown in Fig. 2(g). If $k \geq 4$ then only (u_0, u_{k-1}) , (u_0, u_1) , and (u_{k-2}, u_{k-1}) have a bend, and $u_1, u_2, \ldots, u_{k-2}$ are on a side of a book as shown in Fig. 2(h).

A drawing of Γ is said to be *canonical* if every face is drawn canonically. Fig. 3 shows an example of an outerplane graph Γ , and a 1-bend 3-D orthogonal canonical drawing of Γ .

Roughly speaking, we will show that if $\Gamma[\overline{S^*}]$ has a 1-bend 3-D orthogonal canonical drawing then $\Gamma[\overline{S^*}+f^*]$ also has a 1-bend 3-D orthogonal canonical drawing, where f^* is a leaf of $\overline{S^*}$. The following theorem immediately follows by induction.

Theorem 2 A 2-connected outerplanar 5-graph has a 1-bend 3-D orthogonal drawing.



(a) Γ.

(b) 1-bend 3-D orthogonal canonical drawing of Γ .

Figure 3: Example of Γ and 1-bend 3-D orthogonal canonical drawing of Γ .

3.1 Proof of Theorem 2

For a grid point $p=(p_x,p_y,p_z)$ and a vector $\boldsymbol{v}=(v_x,v_y,v_z)$, let $p+\boldsymbol{v}$ be the grid point $(p_x+v_x,p_y+v_y,p_z+v_z)$. For a unit vector \boldsymbol{d} , we denote $-\boldsymbol{d}=\boldsymbol{d}$. Define that $\boldsymbol{e}_x=(1,0,0),\,\boldsymbol{e}_y=(0,1,0),\,\boldsymbol{e}_z=(0,0,1),$ and $D=\{\boldsymbol{e}_x,\boldsymbol{e}_y,\boldsymbol{e}_z,\overline{\boldsymbol{e}_x},\overline{\boldsymbol{e}_y},\overline{\boldsymbol{e}_z}\}$. Every vector in D is called a *direction*.

A 3-D orthogonal drawing of a plane graph Γ can be regarded as a pair $\langle \phi, \rho \rangle$ of one-to-one mappings $\phi: V(\Gamma) \to \mathbb{Z}^3$ and ρ which maps edges (u,v) to internally disjoint paths on the 3-D grid $\mathcal G$ connecting $\phi(u)$ and $\phi(v)$. For a direction $d \in D$ and a vertex $v \in V(\Gamma)$, $\langle \phi, \rho \rangle$ is said to be d-free at $\phi(v)$ if $\rho(e)$ does not contain the edge of $\mathcal G$ connecting $\phi(v)$ and $\phi(v) + d$.

Let Γ be a 2-connected outerplane graph, and $\langle \phi, \rho \rangle$ be a 3-D orthogonal canonical drawing of Γ . Let f be a leaf face of Γ , and

$$V(b(f)) = \{u_i \mid 0 \le i \le k - 1\},$$

$$E(b(f)) = \{(u_0, u_{k-1})\} \cup \{(u_i, u_{i+1}) \mid 0 \le i \le k - 2\},$$

where (u_0, u_{k-1}) is the base of f. We define three unit vectors $\mathbf{d}_0(f, u_0)$, $\mathbf{d}_1(f, u_0)$, and $\mathbf{d}_2(f, u_0)$ as follows:

- If f is drawn as a rectangle-1, we define that $d_0(f,u_0)$ is the unit vector directed from $\phi(u_{k-1})$ to $\phi(u_0)$, $d_1(f,u_0)=\overline{d_0(f,u_0)}$, and $d_2(f,u_0)$ is a unit vector orthogonal to the rectangle.
- If f is drawn as a rectangle-2, let p be the bend of base (u_0,u_{k-1}) . We define that $d_1(f,u_0)$ is a unit vector orthogonal to the rectangle, and $d_0(f,u_0)$ is the unit vector directed from $\phi(u_0)$ to p.
- If f is drawn as a hexagon, let p be the bend of base (u_0, u_{k-1}) . We define that $d_0(f, u_0)$ is the unit vector directed from p to $\phi(u_0)$, $d_1(f, u_0)$

is the unit vector directed from p to $\phi(u_{k-1})$, and $d_2(f, u_0)$ is a unit vector orthogonal to the hexagon.

• If f is drawn as a book, let p be the bend of base (u_0, u_{k-1}) . We define that $d_0(f, u_0)$ is the unit vector directed from $\phi(u_{k-1})$ to p, $d_1(f, u_0)$ is the unit vector directed from $\phi(u_0)$ to p, and $d_2(f, u_0)$ is the unit vector directed from the bend q of edge (u_{k-2}, u_{k-1}) to $\phi(u_{k-1})$.

A 1-bend 3-D orthogonal canonical drawing $\langle \phi, \rho \rangle$ of Γ is called a *1-bend 3-D orthogonal* τ -drawing of Γ if $\langle \phi, \rho \rangle$ satisfies one of the following conditions for every leaf face f. Let (u_0, u_{k-1}) be the base of a leaf face f.

Condition 1: f is drawn as a rectangle-1 or hexagon, and

- if $d_{\Gamma}(u_0) \leq 4$ then $\langle \phi, \rho \rangle$ is $d_0(f, u_0)$ -free or $d_2(f, u_0)$ -free at $\phi(u_0)$,
- if $d_{\Gamma}(u_{k-1}) \leq 4$ then $\langle \phi, \rho \rangle$ is $d_1(f, u_0)$ -free or $d_2(f, u_0)$ -free at $\phi(u_{k-1})$; (See Fig. 4(a) and (c).)

Condition 2: f is drawn as a rectangle-2, and

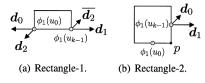
- $d_{\Gamma}(u_0) = 5$,
- $\langle \phi, \rho \rangle$ is $d_0(f, u_0)$ -free at $\phi(u_{k-1})$,
- if $d_{\Gamma}(u_{k-1}) \leq 3$ then $\langle \phi, \rho \rangle$ is $d_1(f, u_0)$ -free at $\phi(u_{k-1})$. (See Fig. 4(b).)

Condition 3: f is drawn as a book, and

- if $d_{\Gamma}(u_0) \leq 4$ then $\langle \phi, \rho \rangle$ is $d_0(f, u_0)$ -free or $\overline{d_1(f, u_0)}$ -free at $\phi(u_0)$,
- if $d_{\Gamma}(u_{k-1}) \leq 4$ then $\langle \phi, \rho \rangle$ is $d_1(f, u_0)$ free or $\overline{d_0(f, u_0)}$ -free at $\phi(u_{k-1})$,
- if $d_{\Gamma}(u_0) \leq 4$, $d_{\Gamma}(u_{k-1}) \leq 4$, $\langle \phi, \rho \rangle$ is not $d_0(f, u_0)$ -free at $\phi(u_0)$, and $\langle \phi, \rho \rangle$ is not $d_1(f, u_0)$ -free at $\phi(u_{k-1})$ then $\langle \phi, \rho \rangle$ is $d_2(f, u_0)$ -free at $\phi(u_{k-1})$, and $d_{\Gamma}(u_{k-1}) = 4$.
- spine except for their ends is not used in the drawing; (See Fig. 4(d).)

Fig. 5 shows an example of an outerplane graph Γ , and a 1-bend 3-D orthogonal τ -drawing of Γ . In order to prove Theorem 2, it suffices to prove the following.

Theorem 3 A 2-connected outerplanar 5-graph has a 1-bend 3-D orthogonal τ -drawing.



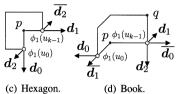


Figure 4: Directions for draiwing of face f.

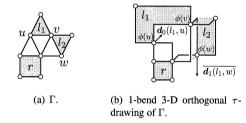


Figure 5: Example of Γ and 1-bend 3-D orthogonal τ -drawing of Γ .

Proof (scketch). Let G be a 2-connected outerplanar 5-graph, Γ be an outerplane graph isomorphic to G, and $T^* = \Gamma^* - f_o^*$ be a tree rooted at r^* . We prove the theorem by induction. The basis of the induction is stated as follows.

Lemma 1 $\Gamma[\overline{r^*}]$ has a 1-bend 3-D orthogonal τ -drawing.

Proof of Lemma 1. Let

$$V(b(r)) = \{v_i \mid 0 \le i \le k-1\},\$$

$$E(b(r)) = \{(v_0, v_{k-1})\} \cup \{(v_i, v_{i+1}) \mid 0 \le i \le k-2\},\$$

where (v_0,v_{k-1}) is the base of r. Let c_i be a child face of r with base (v_i,v_{i+1}) for $0 \le i \le k-2$, if any. Let $\langle \phi,\rho \rangle$ be a 1-bend 3-D orthogonal canonical drawing of $\Gamma[r^*]$ as shown in Fig. 6, where c_i is drawn as rectangle-1, if any. Since $\langle \phi,\rho \rangle$ is $d_0(c_0,v_0)$ -free at $\phi(v_0)$ and $d_1(c_0,v_0)$ -free at $\phi(v_1)$, $\langle \phi,\rho \rangle$ satisfies Condition 1 for c_0 , if any. If k=3, by taking $d_2(c_1,v_1)=e_z$, $\langle \phi,\rho \rangle$ is $d_2(c_1,v_1)$ -free at $\phi(v_1)$ and $d_1(c_1,v_1)$ -

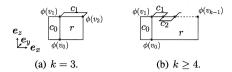


Figure 6: Drawing of initial case.

free at $\phi(v_2)$. Therefore, $\langle \phi, \rho \rangle$ also satisfies Condition 1 for c_1 , if any. Thus, we conclude that $\langle \phi, \rho \rangle$ is a 1-bend 3-D orthogonal τ -drawing of $\Gamma[\overline{r^*}]$. If $k \geq 4$, by taking $d_2(c_i, v_i) = e_z$ for $1 \leq i \leq k-3$, $\langle \phi, \rho \rangle$ is $d_2(c_i, v_i)$ -free at $\phi(v_i)$ and $\overline{d_2(c_i, v_i)}$ -free at $\phi(v_{i+1})$. Thus, $\langle \phi, \rho \rangle$ satisfies Condition 1 for c_i $(1 \leq i \leq k-3)$. Similarly, by taking $d_2(c_{k-2}, v_{k-2}) = \overline{e_z}$, $\langle \phi, \rho \rangle$ is $d_2(c_{k-2}, v_{k-2})$ -free at $\phi(v_{k-2})$ and $\overline{d_2(c_{k-2}, v_{k-2})}$ -free at $\phi(v_{k-1})$. Thus, $\langle \phi, \rho \rangle$ satisfies Condition 1 for c_{k-2} . So, we conclude that $\langle \phi, \rho \rangle$ is a 1-bend 3-D orthogonal τ -drawing of $\Gamma[\overline{r^*}]$.

Let S^* be a rooted subtree of T^* with root r^* . The inductive step is stated as follows.

Lemma 2 If $\Gamma[\overline{S^*}]$ has a 1-bend 3-D orthogonal τ -drawing then $\Gamma[\overline{S^*} + f^*]$ also has a 1-bend 3-D orthogonal τ -drawing, where f^* is a leaf of $\overline{S^*}$. \square

Proof of Lemma 2 (scketch). Let $\Lambda_1 = \Gamma[\overline{S^*}]$ and $\Lambda_2 = \Gamma[\overline{S^*} + f^*]$, and let $\langle \phi_1, \rho_1 \rangle$ be a 1-bend 3-D orthogonal τ -drawing of Λ_1 . We will construct a 1-bend 3-D orthogonal τ -drawing $\langle \phi_2, \rho_2 \rangle$ of Λ_2 . Let

$$\begin{array}{rcl} V(b(f)) & = & \{v_i \mid 0 \leq i \leq k-1\}, \\ E(b(f)) & = & \{(v_0, v_{k-1})\} \cup \\ & & \{(v_i, v_{i+1}) \mid 0 \leq i \leq k-2\}, \end{array}$$

where (v_0, v_{k-1}) is the base of f. We distinguish four cases depending on the configuration of f by $\langle \phi_1, \rho_1 \rangle$.

Case 1. f is drawn as a rectangle-1:

Without loss of generality, we assume that $d_0(f,v_0)=\overline{e_x},\ d_2(f,v_0)=\overline{e_y},\ \text{and}\ z$ -coordinate of $\phi_1(v_1)$ is larger than that of $\phi_1(v_0)$. Let c_i be a child face of f with base (u_i,u_{i+1}) for $0\leq i\leq k-2$, if any. We further distinguish three cases.

Case 1-1. k = 3:

Since $\langle \phi_1, \rho_1 \rangle$ is a 1-bend 3-D orthogonal τ -drawing, we distinguish four cases depending on free directions.

Case 1-1-1. $\langle \phi_1, \rho_1 \rangle$ is $d_0(f, v_0)$ -free at $\phi_1(v_0)$ and $d_1(f, v_0)$ -free at $\phi_1(v_2)$:

Since $\langle \phi_1, \rho_1 \rangle$ is $d_0(f, v_0)$ -free at $\phi_1(v_0)$ and $d_1(f,v_0)$ -free at $\phi_1(v_2)$, canonical drawings of c_0 and c_1 can be added to $\langle \phi_1, \rho_1 \rangle$ as shown in Fig. 7(a), if any. Let $\langle \phi_2, \rho_2 \rangle$ be the resultant 1-bend 3-D orthogonal canonical drawing. If c_0 exists and $d_{\Lambda_2}(v_0) \leq 4$ then $\langle \phi_2, \rho_2 \rangle$ is $\overline{e_z}$ -free or $\overline{e_y}$ -free at $\phi_2(v_0)$ (see Fig. 7(a)). Since $d_0(c_0, v_0) = \overline{e_z}$ by definition, by taking $d_2(c_0, v_0) = \overline{e_y}$, $\langle \phi_2, \rho_2 \rangle$ is $d_0(c_0, v_0)$ -free or $d_2(c_0, v_0)$ -free at $\phi_2(v_0)$. Also, $\langle \phi_2, \rho_2 \rangle$ is $\overline{d_2(c_0,v_0)}$ -free at $\phi_2(v_1)$, since $\overline{d_2(c_0,v_0)}=e_v$. Thus, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_0 if any. If c_1 exists and $d_{\Lambda_2}(v_2) \leq 4$ then $\langle \phi_2, \rho_2 \rangle$ is $\overline{e_z}$ free or e_y -free at $\phi_2(v_2)$. Since $d_1(c_1, v_1) = \overline{e_y}$ by definition, by taking $d_2(c_1, v_1) = \overline{e_y}, \langle \phi_2, \rho_2 \rangle$ is $d_1(c_1, v_1)$ -free or $\overline{d_2(c_1, v_1)}$ -free at $\phi_2(v_2)$. So, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_1 , if any, since $\langle \phi_2, \rho_2 \rangle$ is $\mathbf{d}_2(c_1, v_1)$ -free at $\phi_2(v_1)$. Thus, we conclude that $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for the child faces of f.

We now show that $\langle \phi_2, \rho_2 \rangle$ also satisfies one of Conditions 1–3 for any other leaf face g of $\Gamma[S^*+f^*]$. Let u and u' be endvertices of the base of g. If $\{u,u'\}\cap \{v_0,v_{k-1}\}=\emptyset$ then $\langle \phi_2,\rho_2\rangle$ is canonical for g, since $\langle \phi_2,\rho_2\rangle$ is d-free at $\phi_2(w)$ if and only if $\langle \phi_1,\rho_1\rangle$ is d-free at $\phi_1(w)$ for $w\in \{u,u'\}$. Otherwise, we assume without loss of generality that $u=v_0$. Then, $u'\neq v_{k-1}$. Since g is not a child face of f, none of the two edges of g incident with v_0 is contained in $E(b(f))\cup E(b(c_0))$, and so $d_{\Lambda_2}(v_0)=5$. Therefore, $\langle \phi_2,\rho_2\rangle$ satisfies one of Conditions 1–3 for g. Thus, we conclude that $\langle \phi_2,\rho_2\rangle$ is a 1-bend 3-

(a) $\langle \phi_1, \rho_1 \rangle$ is \boldsymbol{d}_0 -free at $\phi(v_0)$ and \boldsymbol{d}_1 -free at $\phi(v_{k-1})$.

(c) $\langle \phi_1, \rho_1 \rangle$ is d_0 -free at $\phi_1(v_0)$ and not d_1 -free at $\phi_1(v_{k-1})$.

(b) $\langle \phi_1, \rho_1 \rangle$ is d_1 -free at $\phi(v_{k-1})$ and not d_0 -free at $\phi_1(v_0)$.

(d) $\langle \phi_1, \rho_1 \rangle$ is not d_0 -free at $\phi_1(v_0)$ or d_1 -free at $\phi_1(v_{k-1})$.

Figure 7: Drawing of child faces of f in Case 1-1.

D orthogonal τ -drawing of $\Gamma[\overline{S^* + f^*}]$.

 $\langle \phi_1, \rho_1 \rangle$ is $\mathbf{d}_0(f, v_0)$ -free at $\phi_1(v_0)$ and not $d_1(f, v_0)$ -free at $\phi_1(v_2)$:

In this case, if $d_{\Gamma_1}(v_2) \leq 4$ then $\langle \phi_1, \rho_1 \rangle$ is $\overline{d_2(f,v_0)}$ -free at $\phi_1(v_2)$, since $\langle \phi_1,\rho_1 \rangle$ satisfies Condition 1 for f. So, canonical drawings of c_0 and c_1 can be added to $\langle \phi_1, \rho_1 \rangle$ as shown in Fig. 7(b), if any. Let $\langle \phi_2, \rho_2 \rangle$ be the resultant 1bend 3-D orthogonal canonical drawing. By the similar arguments to Case 1-1-1, we can see that $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_0 , if any. If c_1 exists and $d_{\Lambda_2}(v_2) \leq 4$ then $\langle \phi_2, \rho_2 \rangle$ is $\overline{e_z}$ -free at $\phi_2(v_2)$, since $\langle \phi_1, \rho_1 \rangle$ is not e_x -free at $\phi_1(v_2)$ and $d_{\Lambda_2}(v_2) \leq 4$. Also, $\langle \phi_2, \rho_2 \rangle$ is e_z -free at $\phi_2(v_1)$. Since $d_0(c_1, v_1) = e_z$ and $d_1(c_1, v_1) = e_x$ by definition, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 3 for c_1 . By the similar arguments to Case 1-1-1, $\langle \phi_2, \rho_2 \rangle$ also satisfies one of Conditions 1-3 for any other leaf face. Thus, we conclude that $\langle \phi_2, \rho_2 \rangle$ is a 1bend 3-D orthogonal τ -drawing of $\Gamma[\overline{S^* + f^*}]$.

Case 1-1-3. $\langle \phi_1, \rho_1 \rangle$ is not $d_0(f, v_0)$ -free at $\phi_1(v_0)$ and $d_1(f, v_0)$ -free at $\phi_1(v_2)$:

In this case, if $d_{\Gamma_1}(v_0) \leq 4$ then $\langle \phi_1, \rho_1 \rangle$ is $d_2(f, v_0)$ -free at $\phi_1(v_0)$, since $\langle \phi_1, \rho_1 \rangle$ satisfies Condition 1 for f. Let $\langle \phi_2, \rho_2 \rangle$ be a 1bend 3-D orthogonal canonical drawing obtained from $\langle \phi_1, \rho_1 \rangle$ by adding canonical drawings of c_0 and c_1 as shown in Fig. 7(c), if any. $d_{\Lambda_2}(v_0) \leq 4$ and c_0 exists then $\langle \phi_2, \rho_2 \rangle$ is $\overline{e_z}$ -free at $\phi_2(v_0)$, since $\langle \phi_1, \rho_1 \rangle$ is not $\overline{e_x}$ -free at $\phi_1(v_0)$ and $d_{\Lambda_2}(v_0) \leq 4$. Thus by taking $d_2(c_0, v_0) =$ e_x , $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_0 , since $\langle \phi_2, \rho_2 \rangle$ is $\mathbf{d}_2(c_0, v_0)$ -free at $\phi_2(v_1)$. Also, by the similar arguments to Case 1-1-1, we can see that $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_1 , if any. By the similar arguments to Case 1-1-1, $\langle \phi_2, \rho_2 \rangle$ also satisfies one of Conditions 1-3 for any other leaf face. Thus, we conclude that $\langle \phi_2, \rho_2 \rangle$ is a 1-bend 3-D orthogonal τ -drawing of $\Gamma[\overline{S^* + f^*}]$.

Case 1-1-4. $\langle \phi_1, \rho_1 \rangle$ is not $d_0(f, v_0)$ -free at $\phi_1(v_0)$ nor $d_1(f, v_0)$ -free at $\phi_1(v_2)$: In this case, $\langle \phi_1, \rho_1 \rangle$ is $\mathbf{d}_2(f, v_0)$ -free at $\phi_1(v_0)$ if $d_{\Gamma_1}(v_0) \leq 4$ and $d_2(f, v_0)$ -free at $\phi_1(v_2)$ if

 $d_{\Gamma_1}(v_2) \leq 4$, since $\langle \phi_1, \rho_1 \rangle$ satisfies Condition 1 for f. Let $\langle \phi_2, \rho_2 \rangle$ be a 1-bend 3-D orthogonal canonical drawing obtained from $\langle \phi_1, \rho_1 \rangle$ by adding canonical drawings of c_0 and c_1 as shown in Fig. 7(d), if any. Then by similar arguments to Case 1-1-3 and Case 1-1-2, we can see that $\langle \phi_2, \rho_2 \rangle$ satisfies Conditions 1 and 3 for c_0 and c_1 , respectively. By the similar arguments to Case 11-1, $\langle \phi_2, \rho_2 \rangle$ also satisfies one of Conditions 1–3 for any other leaf face. Thus, we conclude that $\langle \phi_2, \rho_2 \rangle$ is a 1-bend 3-D orthogonal τ -drawing of $\Gamma[\overline{S^*+f^*}].$

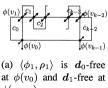
Case 1-2. $k \geq 4$, k is even. Similarly to Case 1-1, we distinguish four cases depending on free directions.

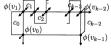
Case 1-2-1. $\langle \phi_1, \rho_1 \rangle$ is $\mathbf{d}_0(f, v_0)$ -free at $\phi_1(v_0)$ and $d_1(f, v_0)$ -free at $\phi_1(v_2)$:

Let $\langle \phi_2, \rho_2 \rangle$ be a 1-bend 3-D orthogonal canonical drawing obtained from $\langle \phi_1, \rho_1 \rangle$ by adding canonical drawings of c_i ($0 \le i \le k-1$) as shown in Fig. 8(a), if any. By the similar arguments to Case 1-1-1, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_0 . For each v_i with $1 \le i \le k-2$, $\langle \phi_2, \rho_2 \rangle$ is e_y - and $\overline{e_y}$ -free at $\phi_2(v_i)$. So, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_i , if any. If $d_{\Lambda_2}(v_{k-1}) \leq 4$ then $\langle \phi_2, \rho_2 \rangle$ is $\overline{e_z}$ -free or e_y -free at $\phi_2(v_{k-1})$. Also, $\langle \phi_2, \rho_2 \rangle$ is $\overline{e_y}$ -free at $\phi_2(v_{k-2})$. So, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_{k-2} . By the similar arguments to Case 1-1-1, $\langle \phi_2, \rho_2 \rangle$ also satisfies one of Conditions 1– 3 for any other leaf face. Thus, we conclude that $\langle \phi_2, \rho_2 \rangle$ is a 1-bend 3-D orthogonal τ -drawing of $\Gamma[\overline{S^*+f^*}].$

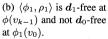
Case 1-2-2. $\langle \phi_1, \rho_1 \rangle$ is $\mathbf{d}_0(f, v_0)$ -free at $\phi_1(v_0)$ and not $d_1(f, v_0)$ -free at $\phi_1(v_2)$:

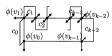
Since $\langle \phi_1, \rho_1 \rangle$ satisfies Condition 1 for f, $\langle \phi_1, \rho_1 \rangle$ is $\overline{d_2(f,v_0)}$ -free at $\phi_1(v_2)$. Let $\langle \phi_2, \rho_2 \rangle$ be a 1bend 3-D orthogonal canonical drawing obtained from $\langle \phi_1, \rho_1 \rangle$ by adding canonical drawings of c_i $(0 \le i \le k-1)$ as shown in Fig. 8(b), if any. Then by similar arguments to Case 1-2-1, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_i with $0 \le i \le k-3$. Since $\langle \phi_2, \rho_2 \rangle$ is e_y -free at $\phi_2(v_{k-3})$ and $\overline{e_y}$ -free

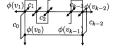




 $\phi(v_{k-1}).$







(c) $\langle \phi_1, \rho_1 \rangle$ is d_0 -free at $\phi_1(v_0)$ and not d_1 -free at $\phi_1(v_{k-1}).$

(d) $\langle \phi_1, \rho_1 \rangle$ is not \boldsymbol{d}_0 free at $\phi_1(v_0)$ or d_1 -free at $\phi_1(v_{k-1})$.

Figure 8: Drawing of child faces of f in Case 1-2.

at $\phi_2(v_{k-2})$, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_{k-3} . If $d_{\Lambda_2}(v_{k-1}) \leq 4$ then $\langle \phi_2, \rho_2 \rangle$ is $\overline{e_z}$ -free at $\phi_2(v_{k-1})$, since $\langle \phi_1, \rho_1 \rangle$ is not e_x -free at $\phi_2(v_{k-1})$. So, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_{k-3} , since $\langle \phi_2, \rho_2 \rangle$ is $\overline{e_y}$ -free at $\phi_2(v_{k-1})$. By the similar arguments to Case 1-1-1, $\langle \phi_2, \rho_2 \rangle$ also satisfies one of Conditions 1-3 for any other leaf face. Thus, we conclude that $\langle \phi_2, \rho_2 \rangle$ is a 1-bend 3-D orthogonal τ -drawing of $\Gamma[S^* + f^*]$.

Case 1-2-3. $\langle \phi_1, \rho_1 \rangle$ is not $d_0(f, v_0)$ -free at $\phi_1(v_0)$ and $d_1(f, v_0)$ -free at $\phi_1(v_2)$: Since $\langle \phi_1, \rho_1 \rangle$ satisfies Condition 1 for $f, \langle \phi_1, \rho_1 \rangle$ is $d_2(f, v_0)$ -free at $\phi_1(v_0)$. Let $\langle \phi_2, \rho_2 \rangle$ be a 1bend 3-D orthogonal canonical drawing obtained from $\langle \phi_1, \rho_1 \rangle$ by adding canonical drawings of c_i $(0 \le i \le k-1)$ as shown in Fig. 8(c), if any. Then by similar arguments to Case 1-1-3, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_0 , if any. Also, by the similar arguments to Case 1-1-1, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_i for $2 \le i \le k-2$, if any. Since $\langle \phi_2, \rho_2 \rangle$ is e_y -free at $\phi_2(v_1)$ and $\overline{e_y}$ free at $\phi_2(v_2)$, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_1 , if any. By the similar arguments to Case 1-1-1, $\langle \phi_2, \rho_2 \rangle$ also satisfies one of Conditions 1–3 for any other leaf face. Thus, we conclude that $\langle \phi_2, \rho_2 \rangle$ is a 1-bend 3-D orthogonal τ -drawing of $\Gamma[\overline{S^*+f^*}].$

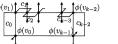
Case 1-2-4. $\langle \phi_1, \rho_1 \rangle$ is not $d_0(f, v_0)$ -free at $\phi_1(v_0)$ and $d_1(f, v_0)$ -free at $\phi_1(v_2)$:

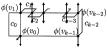
Since $\langle \phi_1, \rho_1 \rangle$ satisfies Condition 1 for $f, \langle \phi_1, \rho_1 \rangle$ is $d_2(f, v_0)$ -free at $\phi_1(v_0)$ and $d_2(f, v_0)$ -free at $\phi_1(v_2)$, Let $\langle \phi_2, \rho_2 \rangle$ be a 1-bend 3-D orthogonal canonical drawing obtained from $\langle \phi_1, \rho_1 \rangle$ by adding canonical drawings of c_i (0 < i < k-1) as shown in Fig. 8(d), if any. Then by similar arguments to Case 1-2-3, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_0 and c_1 , if any, by similar arguments to Case 1-2-2, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_{k-3} and c_{k-2} , if any, and by similar arguments to Case 1-2-1, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_i for $2 \le i \le k-4$, if any. By the similar arguments to Case 1-1-1, $\langle \phi_2, \rho_2 \rangle$ also satisfies one of Conditions 1–3 for any other leaf face. Thus, we conclude that $\langle \phi_2, \rho_2 \rangle$ is a 1-bend 3-D orthogonal τ -drawing of $\Gamma[\overline{S^*+f^*}]$.

Case 1-3. $k \ge 5$, k = 6 is odd. Similarly, we distinguish four cases depending on free directions.

Case 1-3-1. $\langle \phi_1, \rho_1 \rangle$ is $d_0(f, v_0)$ -free at $\phi_1(v_0)$ and $d_1(f, v_0)$ -free at $\phi_1(v_2)$:

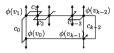
Let $\langle \phi_2, \rho_2 \rangle$ be a 1-bend 3-D orthogonal canonical drawing obtained from $\langle \phi_1, \rho_1 \rangle$ by adding canonical drawings of c_i ($0 \le i \le k-1$) as shown





(a) $\langle \phi_1, \rho_1 \rangle$ is d_0 -free at $\phi(v_0)$ and d_1 -free at $\phi(v_{k-1})$.

(b) $\langle \phi_1, \rho_1 \rangle$ is d_1 -free at $\phi(v_{k-1})$ and not d_0 -free at $\phi_1(v_0)$.





(c) $\langle \phi_1, \rho_1 \rangle$ is d_0 -free at $\phi_1(v_0)$ and not d_1 -free at $\phi_1(v_{k-1})$.

(d) $\langle \phi_1, \rho_1 \rangle$ is not d_0 -free at $\phi_1(v_0)$ or d_1 -free at $\phi_1(v_{k-1})$.

Figure 9: Drawing of child faces of f in Case 1-3.

in Fig. 9(a), if any. If c_0 exists and $d_{\Lambda_2}(v_0) \leq 4$ then $\langle \phi_2, \rho_2 \rangle$ is $\overline{e_z}$ -free or $\overline{e_y}$ -free at $\phi_2(v_0)$, since $d_{\Lambda_2}(v_0) \leq 4$ (see Fig. 9(a)). Since $d_0(c_0, v_0) =$ $\overline{e_z}$ by definition, by taking $d_2(c_0, v_0) = \overline{e_y}$, $\langle \phi_2, \rho_2 \rangle$ is $d_0(c_0, v_0)$ -free or $d_2(c_0, v_0)$ -free at $\phi_2(v_0)$. Also, $\langle \phi_2, \rho_2 \rangle$ is $\mathbf{d}_0(c_0, v_0)$ -free at $\phi_2(v_1)$ by definition. Thus, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_0 . For v_i with $2 \le i \le k-3$, $\langle \phi_2, \rho_2 \rangle$ is e_{v} and $\overline{e_y}$ -free at $\phi_2(v_i)$. Also, $\langle \phi_2, \rho_2 \rangle$ is e_y -free at $\phi_2(v_1)$ and at $\phi_2(v_{k-2})$. Thus, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_i with $1 \le i \le k-3$ since k-2>1. If c_{k-2} exists and $d_{\Lambda_2}(v_{k-1})\leq 4$ then $\langle \phi_2, \rho_2 \rangle$ is $\overline{e_z}$ -free or e_y -free at $\phi_1(v_{k-1})$. Also, $\langle \phi_2, \rho_2 \rangle$ is e_z -free at $\phi_2(v_{k-2})$. So, by taking $d_2(c_{k-2}, v_{k-2}) = e_y, \langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_{k-2} . By the similar arguments to Case 1-1-1, $\langle \phi_2, \rho_2 \rangle$ also satisfies one of Conditions 1–3 for any other leaf face. Thus, we conclude that $\langle \phi_2, \rho_2 \rangle$ is a 1-bend 3-D orthogonal τ -drawing of

Case 1-3-2. $\langle \phi_1, \rho_1 \rangle$ is $d_0(f, v_0)$ -free at $\phi_1(v_0)$ and not $d_1(f, v_0)$ -free at $\phi_1(v_2)$:

Since $\langle \phi_1, \rho_1 \rangle$ satisfies Condition 1 for f, $\langle \phi_1, \rho_1 \rangle$ is $\overline{d_2(f,v_0)}$ -free at $\phi_1(v_2)$. Let $\langle \phi_2, \rho_2 \rangle$ be a 1-bend 3-D orthogonal canonical drawing obtained from $\langle \phi_1, \rho_1 \rangle$ by adding canonical drawings of c_i $(0 \le i \le k-1)$ as shown in Fig. 9(b), if any. By the similar arguments to Case 1-3-2, $\langle \phi_2, \rho_2 \rangle$ is canonical for c_i with $0 \le i \le k-3$, if any. If c_{k-2} exists and $d_{\Lambda_2}(v_{k-1}) \le 4$ then $\langle \phi_2, \rho_2 \rangle$ is $\overline{e_z}$ -free, since $\langle \phi_1, \rho_1 \rangle$ is not e_x -free at $\phi_1(v_{k-1})$. Also, $\langle \phi_2, \rho_2 \rangle$ is e_z -free at $\phi_2(v_{k-2})$. So, $\langle \phi_2, \rho_2 \rangle$ is $d_0(c_{k-2}, v_{k-2})$ -free at $\phi_2(v_{k-2})$ and $\overline{d_0(c_{k-2}, v_{k-2})}$ -free at $\phi_2(v_{k-1})$. Thus, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_i with

 $1 \le i \le k-3$, if any, since k-2 > 1. By the similar arguments to Case 1-1-1, $\langle \phi_2, \rho_2 \rangle$ also satisfies one of Conditions 1–3 for any other leaf face. Thus, we conclude that $\langle \phi_2, \rho_2 \rangle$ is a 1-bend 3-D orthogonal τ -drawing of $\Gamma[\overline{S^*} + f^*]$.

Case 1-3-3. $\langle \phi_1, \rho_1 \rangle$ is not $d_0(f, v_0)$ -free at $\phi_1(v_0)$ and $d_1(f, v_0)$ -free at $\phi_1(v_2)$: Since $\langle \phi_1, \rho_1 \rangle$ satisfies Condition 1 for $f, \langle \phi_1, \rho_1 \rangle$ is $d_2(f, v_0)$ -free at $\phi_1(v_0)$. Let $\langle \phi_2, \rho_2 \rangle$ be a 1bend 3-D orthogonal canonical drawing obtained from $\langle \phi_1, \rho_1 \rangle$ by adding canonical drawings of c_i $(0 \le i \le k-1)$ as shown in Fig. 9(c), if any. If c_0 exists and $d_{\Lambda_2}(v_0) \leq 4$ then $\langle \phi_2, \rho_2 \rangle$ is $\overline{e_z}$ -free at $\phi_2(v_0)$, since $\langle \phi_1, \rho_1 \rangle$ is not $\overline{e_x}$ -free at $\phi_1(v_0)$. Also, $\langle \phi_2, \rho_2 \rangle$ is e_z -free at $\phi_2(v_1)$. Thus, $\langle \phi_2, \rho_2 \rangle$ satisfies Condition 1 for c_0 , if any. By similar arguments to Case 1-3-2, $\langle \phi_2, \rho_2 \rangle$ is canonical for c_i with $1 \le i \le k-2$, if any. Thus, we conclude that $\langle \phi_2, \rho_2 \rangle$ is a 1-bend 3-D orthogonal τ -drawing of $\Gamma[\overline{S^*+f^*}]$. By the similar arguments to Case 1-1-1, $\langle \phi_2, \rho_2 \rangle$ also satisfies one of Conditions 1–3 for any other leaf face.

Case 1-3-4. $\langle \phi_1, \rho_1 \rangle$ is not $d_0(f,v_0)$ -free at $\phi_1(v_0)$ and $d_1(f,v_0)$ -free at $\phi_1(v_2)$: Since $\langle \phi_1, \rho_1 \rangle$ satisfies Condition 1 for $f, \langle \phi_1, \rho_1 \rangle$ is $d_2(f,v_0)$ -free at $\phi_1(v_0)$ and $\overline{d_2(f,v_0)}$ -free at $\phi_1(v_2)$, Let $\langle \phi_2, \rho_2 \rangle$ be a 1-bend 3-D orthogonal canonical drawing obtained from $\langle \phi_1, \rho_1 \rangle$ by adding canonical drawings of c_i $(0 \le i \le k-1)$ as shown in Fig. 9(d), if any. By the similar arguments to Cases 1-3-2 and 1-3-3, $\langle \phi_2, \rho_2 \rangle$ is canonical for c_i with $0 \le i \le k-2$. By the similar arguments to Case 1-1-1, $\langle \phi_2, \rho_2 \rangle$ also satisfies one of Conditions 1-3 for any other leaf face. Thus, we conclude that $\langle \phi_2, \rho_2 \rangle$ is a 1-bend 3-D orthogonal τ -drawing of $\Gamma[S^* + f^*]$.

The following remaining cases can be proved similarly. The proof is omitted in the extended abstract due to space limitation.

Case 2. f is drawn as a rectangle-2:

Case 3. f is drawn as a hexagon:

Case 4. f is drawn as a book:

4 General Outerplanar Graphs

In this section, we shall complete the proof of Theorem 1. We assume without loss of generality that G is a connected outerplanar 5-graph.

Let G_1,G_2,\ldots,G_m be 2-connected components of G. It is well-known that E(G) can be partitioned into $E(G_1),E(G_2),\ldots$, and $E(G_m)$. An adjacent graph A_G of G is defined as follows: $V(A_G)=\{G_1,G_2,\ldots,G_m\}$, and $(G_i,G_j)\in E(A_G)$ if and only if $V(G_i)\cap V(G_j)\neq\emptyset$. It is easy to see that A_G is connected. Suppose (G_1,G_2,\ldots,G_m) is a preorder of $V(A_G)$ obtained by applying DFS on A_G . Then a subgraph H_i of G induced by the vertices in $\bigcup_{k=1}^i V(G_k)$ is connected for $1\leq i\leq m$. We prove Theorem 1 by induction on i. Since $H_1=G_1$ is a 2-connected outerplanar 5-graph, we know by Theorem 2 that H_1 has a 1-bend 3-D orthogonal drawing. The inductive step is stated as follows.

Lemma 3 For $1 \le i \le m-1$, if H_i has a 1-bend 3-D orthogonal drawing then H_{i+1} has a 1-bend 3-D orthogonal drawing.

This proves Theorem 1 since $H_m = G$. The proof of Lemma 3 is omitted in the extended abstract due to space limitation.

References

- P. Eades, C. Strik, and S. Whitesides, "The techniques of Komolgorov and Bardzin for three-dimensional orthogonal graph drawings," Information Processing Letters, vol.60, pp.97–103, 1996.
- [2] P. Eades, A. Symvonis, and S. Whitesides, "Threedimensional orthogonal graph drawing algorithms," Discrete Applied Mathematics, vol. 103, pp.55–87, 2000.
- [3] F.T. Leighton and A.L. Rosenberg, "Three-dimensional circuit layouts," SIAM J. Comput., vol.15, no.3, pp.793– 813, 1986.
- [4] K. Nomura, S. Tayu, and S. Ueno, "On the orthogonal drawing of outerplanar graphs," IEICE Trans. Fundamentals, vol.E88-A, no.6, pp.1583-1588, 2005.
- [5] S. Obenaus and T. Szymanski, "Embedding of star graphs into optical meshes without bends," J. of Parallel and Distributed Computing, vol.44, no.2, pp.97–106, 1997.
- [6] A. Papakostas and I. Tollis, "Algorithm for incremental orthogonal graph drawing in three dimensions," J. Graph Algorithms and Applications, vol.3, no.4, pp.81–115, 1999.
- [7] S. Tayu, K. Nomura, and S. Ueno, "On the three-dimensional orthogonal drawing of series-parallel graphs," Proceedings of 2008 IEEE International Symposium on Circuits and Systems, 2008. to appear.
- [8] D. Wood, "Optimal three-dimensional orthogonal graph drawing in the general position model," Theoretical Computer Science, vol.299, no.1–3, pp.151–178, 2003.