FEEREN LB B
IPSJ SIG Technical Report

2008—AL—119
2008,79,712

On the Three-Dimensional Orthogonal Drawing
of Outerplanar Graphs (Extended Abstract)
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Abstract. It has been known that every series-parallel 6-graph has a 2-bend 3-D orthogonal
drawing, while it has been open whether every series-parallel 6-graph has a 1-bend 3-D
orthogonal drawing. We show in this paper that every outerplanar 5-graph has a 1-bend 3-D

orthogonal drawing.

Keywords: 3-D orthogonal drawing, bend, face, k-graph, outerplanar graph

1 Introduction

‘We consider the problem of generating orthogonal
drawings of graphs in the space. The problem has
obvious applications in the design of 3-D VLSI cir-
cuits and optoelectronic integrated systems [3, 5].

Throughout this paper, we consider simple con-
nected graphs G with vertex set V(G) and edge set
E(G). We denote by dg(v) the degree of a vertex
v in G, and by A(G) the maximum degree of a ver-
tex of G. G is called a k-graph if A(G) < k. The
connectivity of a graph is the minimum number of
vertices whose removal results in a disconnected
graph or a single vertex graph. A graph is said to
be k-connected if the connectivity of the graph is
at least k.

It is well-known that every graph can be drawn
in the space so that its edges intersect only at their
ends. Such a drawing of a graph G is called a 3-
D drawing of G. A graph is said to be planar if it
can be drawn in the plane so that its edges intersect
only at their ends. Such a drawing of a planar graph
G is called a 2-D drawing of G.

A 3-D orthogonal drawing of a graph G is a 3-
D drawing such that each edge is drawn by a se-
quence of contiguous axis-parallel line segments.
Notice that a graph G has a 3-D orthogonal draw-
ing only if A(G) < 6. A 3-D orthogonal drawing
with no more than b bends per edge is called a b-
bend 3-D orthogonal drawing.

Eades, Symvonis, and Whitesides [2], and Pa-
pakostas and Tollis [6] showed that every 6-graph

has a 3-bend 3-D orthogonal drawing. Eades,
Symvonis, and Whitesides [2] also posed an in-
teresting open question of whether every 6-graph
has a 2-bend 3-D orthogonal drawing. Wood [8]
showed that every 5-graph has a 2-bend 3-D or-
thogonal drawing. Tayu, Nomura, and Ueno [7]
showed that every series-parallel 6-graph has a 2-
bend 3-D orthogonal drawing. Moreover, Nomura,
Tayu, and Ueno [4] showed that every outerplanar
6-graph has a 0-bend 3-D orthogonal drawing if
and only if it contains no triangle as a subgraph,
while Eades, Stirk, and Whitesides [1] proved that
it is NP-complete to decide if a given 5-graph has
a 0-bend 3-D orthogonal drawing. Tayu, Nomura,
and Ueno [7] also posed an interesting open ques-
tion of whether every series-parallel 6-graph has a
1-bend 3-D orthogonal drawing.
We shown in this paper the following theorem.

Theorem 1 Every outerplanar 5-graph has a 1-
bend 3-D orthogonal drawing.

The proof of Theorem 1 is constructive and pro-
vides a polynomial time algorithm to generate such
a drawing for an outerplanar 5-graph. It is still
open whether every series-parallel 6-graph has a
1-bend 3-D orthogonal drawing.

2 Preliminaries

A 2-D drawing of a planar graph G is regarded as
a graph isomorphic to G, and referred to as a plane
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graph. A plane graph partitions the rest of the
plane into connected regions. A face is a closure
of such a region. The unbounded region is referred
to as the external face. We denote the boundary
of a face f of a plane graph I" by b(f). If I is
2-connected then b(f) is a cycle of I

Given a plane graph I', we can define another
graph I'* as follows: corresponding to each face f
of I there is a vertex f* of I'*, and corresponding
to each edge e of I there is an edge e* of I'*; two
vertices f* and ¢g* are joined by the edge e* in I'™*
if and only if the edge e in I lies on the common
boundary of faces f and g of I. T'* is called the
(geometric-)dual of T'.

A graph is said to be outerplanar if it has a 2-D
drawing such that every vertex lies on the boundary
of the external face. Such a drawing of an outerpla-
nar graph is said to be outerplane. It is well-known
that an outerplanar graph is a series-parallel graph.
Let I be an outerplane graph with the external face
fo, and T — f* be a graph obtained from I'"* by
deleting vertex f together with the edges incident
to f¥. It is easy to see that if I is an outerplane
graph then I'* — fX is a forest. In particular, an
outerplane graph I' is 2-connected if and only if
'™ — frisatree.

3 2-Connected Outerplanar
Graphs

We first consider the case when G is 2-connected.
Let G be a 2-connected outerplanar 5-graph and I'
be an outerplane graph isomorphic to G. Since I
is 2-connected, T* = I'* — fJ is a tree. A vertex
r* of T™* is designated as a root, and T is consid-
ered as a rooted tree. If [* is a leaf of 7™ then [
is called a leaf face of . If g* is a child of f* in
T* then f is called the parent face of g, and g is
called a child face of f in I'. The unique edge in
b(f)Nb(g) is called the base of g. We choose 7* so
that b(r) Nb(f,) # 0, and any edge in b(r) N b(f,)
is defined as the base of r. Let S* be a rooted sub-
tree of 7™ with root 7*. If S* is consisting of just
r* then S* is denoted by *. I'[S*] is a subgraph of
I' induced by the vertices on boundaries of faces of
T corresponding to the vertices of S*. It should be
noted that I'[S*] is a 2-connected outerplane graph.
Let f* be a vertex in V(T™) — V(S*) which is a
child of a vertex p* € V(S*). S* + f* is a sub-
tree of T* obtained from S* by adding f* and edge
(f*,p*). Let 5* be arooted subtree of T™* with root
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Figure 1: Example of an outerplanae graph T,
rooted tree T, subtrees S* and S* of T*.

r* induced by the vertices of S* and the children
of the vertices of S*. Fig. 1 shows an example of
an outerplane graph I, rooted tree T, and rooted
subtrees S* and S*.

For any face f of I, b(f) is a cycle since T is
2-connected. Let

V(b(f))
E((f))

= {(uo’uk—l)} U
{(Ui, ui-}—l) | 0 < 1 < k— 2}7

where (u;,ug—1) is the base of f. A 1-bend 3-D
orthogonal drawing of b(f) is said to be canoni-
cal if b(f) is drawn as one of the following four
configurations.

Configuration 1 (Rectangle-1) : If £ = 3 then
only (uj,ug) has a bend as shown in Fig. 2(a).
If & > 4 then every edge has no bend, and
U1, U9, ..., uUp—o are drawn on a side of a rect-
angle as shown in Fig. 2(b).

Configuration 2 (Rectangle-2) : If £k = 3 then
every edge has a bend, and u; is at a corner of a
rectangle as shown in Fig. 2(c). If k& > 4 then
only (up,ug—1) and (ug,u;) have a bend, uy,
ug,...,Ux—o are drawn on a side of a rectangle,
and ug and ug_; are on another different sides of
the rectangle as shown in Fig. 2(d).

Configuration 3 (Hexagon) : If k£ = 3 then every
edge has a bend as shown in Fig. 2(e). If &k > 4
then only (uo,uk—1) and (up,u;) have a bend,
and u,ug,...,ux—2 are on a side of a hexagon
as shown in Fig. 2(f).
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Figure 2: Rectangle-1 and -2, Hexagon, and Book.

Configuration 4 (Book) : A book is obtained
from a rectangle by bending at a line segment,
called the spine, parallel to a side of the rectan-
gle. If & = 3 then every edge has a bend as
shown in Fig. 2(g). If k£ > 4 then only (uo, ug_1),
(uo,u1), and (ug—2,ug—1) have a bend, and u;,
U2, ..., Ur—o are on a side of a book as shown in
Fig. 2(h).

A drawing of T is said to be canonical if every
face is drawn canonically. Fig. 3 shows an example
of an outerplane graph I, and a 1-bend 3-D orthog-
onal canonical drawing of I'.

Roughly speaking, we will show that if T'[S¥]
has a 1-bend 3-D orthogonal canonical drawing
then I'[S* + f*] also has a 1-bend 3-D orthogonal
canonical drawing, where f* is a leaf of S*. The
following theorem immediately follows by induc-
tion.

Theorem 2 A 2-connected outerplanar 5-graph
has a 1-bend 3-D orthogonal drawing.

w
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(b) 1-bend 3-D orthogonal
canonical drawing of I".

Figure 3: Example of I' and 1-bend 3-D orthogonal
canonical drawing of I.

3.1 Proof of Theorem 2

For a grid point p = (py, py, p,) and a vector v =
(ve, vy, v,), let p+-v be the grid point (py+vg, py+
vy, Pz + v;). For a unit vector d, we denote —d =
d. Define that e, = (1,0,0), e, = (0,1,0), e,
(0,0,1), and D = {ez, ey, e,,€5,€,,€,}. Every
vector in D is called a direction.

A 3-D orthogonal drawing of a plane graph I’
can be regarded as a pair (¢, p) of one-to-one map-
pings ¢ : V([') — Z3 and p which maps edges
(u,v) to internally disjoint paths on the 3-D grid G
connecting ¢(u) and ¢(v). For a direction d € D
and a vertex v € V(T'), (¢, p) is said to be d-free
at ¢(v) if p(e) does not contain the edge of G con-
necting ¢(v) and ¢(v) + d.

Let I' be a 2-connected outerplane graph, and
(¢, p) be a 3-D orthogonal canonical drawing of T
Let f be a leaf face of I', and

V(b(f)
E(b(f))

= {uiIOSiSk—l},
{(uo, ug-1)} U
{(ui,uip1) |0 < i < k—2},

where (ug, ux—1) is the base of f. We define three
unit vectors do(f, uo), di(f, uo), and da(f,ug) as
follows:

e If f is drawn as a rectangle-1, we define that
do(f, uo) is the unit vector directed from ¢(uy_1)

to ¢(uo), di(f,uo) = do(f, uo), and da(f, uo) is
a unit vector orthogonal to the rectangle.

If f is drawn as a rectangle-2, let p be the bend of
base (ug, ux—1). We define that d (f, uo) is a unit
vector orthogonal to the rectangle, and do(f,uo)
is the unit vector directed from ¢(ug) to p.

o If f is drawn as a hexagon, let p be the bend of
base (ug,ur—1). We define that do(f,uo) is the

unit vector directed from p to ¢(uog), di(f,uo)



is the unit vector directed from p to ¢(ug—_1),
and da(f,up) is a unit vector orthogonal to the
hexagon.

If f is drawn as a book, let p be the bend of
base (ug, ur—1). We define that do(f, uo) is the
unit vector directed from ¢(uy—1) to p, d1(f,uo)
is the unit vector directed from ¢(ug) to p, and
da(f, up) is the unit vector directed from the bend

q of edge (ug—2,ux—1) t0 P(ug—1).

A 1-bend 3-D orthogonal canonical drawing (¢, p)
of I is called a 1-bend 3-D orthogonal T-drawing
of I" if (¢, p) satisfies one of the following condi-
tions for every leaf face f. Let (ug,ur—1) be the
base of a leaf face f.

Condition 1 :
hexagon, and

o if dp(up) < 4 then (@, p) is do(f,uo)-free
or da(f, ug)-free at ¢(ug),

o if dr(ux—1) < 4 then (¢, p) is di(f,uo)-
free or dy(f,uo)-free at ¢(ug—1); (See
Fig. 4(a) and (c).)

f is drawn as a rectangle-1 or

Condition 2 : f is drawn as a rectangle-2, and

e dr(u) =5,
e (#,p) is do(f,uo)-free at Pp(ug_1),

o if dr(ux—1) < 3 then (¢, p) is d1(f,uo)-
free at ¢(ug—1). (See Fig. 4(b).)

Condition 3 : f is drawn as a book, and

o if dp(up) < 4 then (@, p) is do(f, uo)-free

or d (f,uo)-free at ¢(uo),

o if dr(ukfl) < 4 then <¢), p> is dl(f, uo)-
free or do(f, uo)-free at p(ug_1),

o if dr(up) < 4, dr(ug—1) < 4, (¢, p) is
not do(f,uo)-free at ¢(up), and (¢, p) is
not d; (f, uo)-free at p(ug—1) then (@, p) is
day(f,up)-free at ¢(ug—1), and dr(ug—1) =

o spine except for their ends is not used in the
drawing; (See Fig. 4(d).)

Fig. 5 shows an example of an outerplane graph T,
and a 1-bend 3-D orthogonal 7-drawing of I". In
order to prove Theorem 2, it suffices to prove the
following.

Theorem 3 A 2-connected outerplanar 5-graph
has a 1-bend 3-D orthogonal T-drawing.
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(a) Rectangle-1.

(b) Rectangle-2.

(c) Hexagon. (d) Book.

Figure 4: Directions for draiwng of face f.

(@ T.

(b) 1-bend 3-D orthogonal 7-
drawing of I".

Figure 5: Example of I' and 1-bend 3-D orthogonal
T-drawing of T".

Proof (scketch). Let G be a 2-connected outer-
planar 5-graph, I" be an outerplane graph isomor-
phic to G, and T* = I'* — f be a tree rooted at
r*. We prove the theorem by induction. The basis
of the induction is stated as follows.

Lemma 1 I'[r*] has a 1-bend 3-D orthogonal T-
drawing. O

Proof of Lemma 1. Let

V(b(r))
E(b(r) =

{vi]0<i<k-1},
{(vo,vk-1)} U
{(i,vit1) |0 < i <k -2},

where (vg, vg—1) is the base of 7. Let ¢; be a child
face of r with base (v;,v;41) for 0 < i < k — 2,
if any. Let (¢,p) be a 1-bend 3-D orthogonal
canonical drawing of I'[r*] as shown in Fig. 6,
where ¢; is drawn as rectangle-1, if any. Since
(¢, p) is do(co,vo)-free at ¢(vg) and di(co,vo)-
free at ¢(v1), (¢, p) satisfies Condition 1 for cq,
if any. If & = 3, by taking da(c1,v1) = e,
(¢, p) is da(c1,v1)-free at ¢(vy) and dy(cy,v1)-
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Figure 6: Drawing of initial case.

free at ¢(vq). Therefore, (¢, p) also satisfies Con-
dition 1 for ¢;, if any. Thus, we conclude that
(¢, p) is a 1-bend 3-D orthogonal 7-drawing of
L[r*. I k > 4, by taking da(c;,v;) = e,
for 1 < i < k— 3, (¢,p) is da(c;,v;)-free
at ¢(v;) and dq(c;,v;)-free at ¢(viy1). Thus,
(¢, p) satisfies Condition 1 for ¢; (1 < i <
k — 3). Similarly, by taking da(cg—2,vk—2) =
€, (¢, p) is da(ck—2,vk—2)-free at ¢(vg_2) and
da(ck—2, vk—2)-free at d(vg—1). Thus, (4, p) sat-
isfies Condition 1 for cx_o. So, we conclude that
(¢, p) is a 1-bend 3-D orthogonal 7-drawing of
[r*]. O

Let S* be a rooted subtree of T with root r*.
The inductive step is stated as follows.

Lemma 2 IfT'(S*] has a 1-bend 3-D orthogonal
7-drawing then U'[S* + f*] also has a I1-bend 3-D
orthogonal T-drawing, where f* is a leaf of S*. O

Proof of Lemma 2 (scketch). Let A; = I'[S¥|
and Ay = I'[S* + f*], and let (¢1, p1) be a 1-bend
3-D orthogonal 7-drawing of A;. We will con-
struct a 1-bend 3-D orthogonal 7-drawing (@2, p2)
of As. Let

V(b(f))
E(b(f))

{vilogiﬁk—l},
{(vo,vk-1)} U
{(i,vit1) |0 <0 <k -2},

where (v, vg—1) is the base of f. We distinguish
four cases depending on the configuration of f by

<¢17p1>'

Case 1. f is drawn as a rectangle-1:
Without loss of generality, we assume that
dO(f? 'l)()) = €, d2(f7 'UO) = e_y, and z-
coordinate of ¢ (v;) is larger than that of ¢ (vo).
Let ¢; be a child face of f with base (u;, u;41) for
0 < i < k—2,if any. We further distinguish
three cases.

Case1-1. k=3:
Since (¢1,p1) is a 1-bend 3-D orthogonal -
drawing, we distinguish four cases depending on
free directions.

Case 1-1-1.  (¢1, p1) is do(f, vo)-free at ¢1(vo)
and d; (f,vo)-free at ¢ (ve):
Since (¢1,p1) is do(f,vo)-free at ¢;(vg) and
di(f,vo)-free at ¢1(v2), canonical drawings of
co and ¢; can be added to (¢1,p1) as shown
in Fig. 7(a), if any. Let (¢2,p2) be the re-
sultant 1-bend 3-D orthogonal canonical draw-
ing. If cg exists and dp,(vg) < 4 then (¢, po)
is e;-free or €,-free at ¢o(vg) (see Fig. 7(a)).
Since do(co,v9) = €, by definition, by tak-
ing da(co,v0) = €y, (P2, p2) is do(co,vo)-free
or da(cop,vo)-free at ¢o(vg). Also, (@2, p2) is
dy(co,vo)-free at ¢z (v1), since da(co,vo) = ey.
Thus, (¢2, p2) satisfies Condition 1 for ¢y if any.
If ¢; exists and d, (ve) < 4 then (Pg, po) is €;-
free or ey-free at ¢o(v2). Since dy(c1,v1) = €
by definition, by taking da(c1,v1) = €y, (¢2, p2)
is d1(c1, v1)-free or da(c1, v1)-free at o (v2). So,
(¢2, p2) satisfies Condition 1 for c;, if any, since
(2, p2) is da(c1,v1)-free at ¢o(v1). Thus, we
conclude that (¢9, p2) satisfies Condition 1 for
the child faces of f.

We now show that (g9, p2) also satisfies one
of Conditions 1-3 for any other leaf face g of
I'[S* 4+ f*]. Let u and u’ be endvertices of the
base of g. If {u,u'} N {vo,vg_1} = 0 then
(¢2, p2) is canonical for g, since (¢o, po) is d-free
at ¢o(w) if and only if (¢1, p1) is d-free at ¢1 (w)
for w € {u,u'}. Otherwise, we assume without
loss of generality that u = vg. Then, u’ # vg_1.
Since g is not a child face of f, none of the
two edges of g incident with vg is contained in
E(b(f)) UE(b(cop)), and so dp,(vo) = 5. There-
fore, (@2, p2) satisfies one of Conditions 1-3 for
g. Thus, we conclude that (@9, p2) is a 1-bend 3-

é(v1) a é(v1) “a

$(vo)
B(v2)

(@) (¢1,p1) is do-free
at ¢(vo) and d;-free at
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(b) (¢1,p1) is d1-free at
¢(vk—1) and not do-free

B (vk-1). at ¢1(vo).
$(v1) a #(v1) <
! g(u0) | |g()
B(v2) B(v2)

(©) {1, p1) is do-free at
¢1(vo) and not d1-freeat  free at ¢ (vo) or dy-free

¢1(’Uk—1). at ¢1(’Uk_1).
Figure 7: Drawing of child faces of f in Case 1-1.

@) (¢1,p1) is not do-



D orthogonal 7-drawing of I'[S* + f*|.

Case 1-1-2. <¢)1,p1> is do(f, vo)-free at ¢ (’Uo)
and not d; (f, vo)-free at ¢ (vq):
In this case, if dr,(v2) < 4 then (¢1,p1) is
do(f,vo)-free at ¢1(vq), since (g1, p1) satisfies
Condition 1 for f. So, canonical drawings of
co and ¢; can be added to (¢, 1) as shown in
Fig. 7(b), if any. Let (¢, p2) be the resultant 1-
bend 3-D orthogonal canonical drawing. By the
similar arguments to Case 1-1-1, we can see that
(@2, p2) satisfies Condition 1 for co, if any. If ¢;
exists and dj, (v2) < 4 then (¢, po) is €;-free at
¢2(v2), since (@1, p1) is not e, -free at ¢; (vy) and
da, (v2) < 4. Also, (2, p2) is e,-free at ¢o(v1).
Since doy(ci,v1) = e, and dy(c1,v1) = e by
definition, (¢o, po) satisfies Condition 3 for c;.
By the similar arguments to Case 1-1-1, (g2, p2)
also satisfies one of Conditions 1-3 for any other
leaf face. Thus, we conclude that (¢, po) is a 1-
bend 3-D orthogonal 7-drawing of T'[S* + f*].

Case 1-1-3. (1, p1) is not do(f,vo)-free at
$1(vo) and d; (f, vo)-free at ¢y (vo):
In this case, if dr,(vo) < 4 then (¢1,p1) is
dg(f, vo)—free at ¢ (’Uo), since <¢1, p1> satis-
fies Condition 1 for f. Let (¢a,p2) be a 1-
bend 3-D orthogonal canonical drawing obtained
from (¢1,p1) by adding canonical drawings of
co and c; as shown in Fig. 7(c), if any. If
da,(vo) < 4 and ¢ exists then (¢, po) is €,-free
at ¢o(vp), since (¢1, p1) is not e5-free at ¢y (vo)
and dj,(vo) < 4. Thus by taking ds(co,v9) =
ez, (P2, p2) satisfies Condition 1 for cp, since
(@2, p2) is da(co, vo)-free at ¢ (vy). Also, by the
similar arguments to Case 1-1-1, we can see that
(¢2, p2) satisfies Condition 1 for ¢y, if any. By
the similar arguments to Case 1-1-1, (2, p2) also
satisfies one of Conditions 1-3 for any other leaf
face. Thus, we conclude that (¢o, po) is a 1-bend
3-D orthogonal 7-drawing of I'[S* + f*].

Case 1-1-4. (¢1,m) is not do(f,vo)-free at
¢1(vo) nor dy (f, vo)-free at ¢y (v2):
In this case, <¢1,p1> is dg(f, vo)-free at ¢1(vo)
if dp,(vo) < 4 and da(f,vo)-free at ¢;(vy) if
dr,(v2) < 4, since (¢1, p1) satisfies Condition
1 for f. Let (¢2,p2) be a 1-bend 3-D orthogo-
nal canonical drawing obtained from (¢, p1) by
adding canonical drawings of ¢g and c; as shown
in Fig. 7(d), if any. Then by similar arguments
to Case 1-1-3 and Case 1-1-2, we can see that
(¢2, p2) satisfies Conditions 1 and 3 for cg and ¢y,
respectively. By the similar arguments to Case 1-

1-1, {2, p2) also satisfies one of Conditions 1-3
for any other leaf face. Thus, we conclude that
(¢2, p2) is a 1-bend 3-D orthogonal 7-drawing of
L[S* + f*].

Case 1-2. k > 4, k is even.Similarly to Case
1-1, we distinguish four cases depending on free
directions.

Case 1-2-1. (1, p1) is do(f, vo)-free at ¢; (vp)

and d; (f, vo)-free at ¢ (vo):
Let (2, p2) be a 1-bend 3-D orthogonal canon-
ical drawing obtained from (¢;,p;) by adding
canonical drawings of ¢; (0 < ¢ < k—1) as shown
in Fig. 8(a), if any. By the similar arguments to
Case 1-1-1, (@9, p2) satisfies Condition 1 for cg.
Foreach v; with 1 < i < k—2, (2, p2) is ey- and
€,-free at ¢y (v;). So, (P2, p2) satisfies Condition
1 for ¢;, if any. If da, (vg—1) < 4 then (¢o, po) is
€, -free or e,-free at ¢o(vg—1). Also, (p2, p2) is
€,-free at ¢o(vk_2). SO, (P2, po) satisfies Condi-
tion 1 for cx_o. By the similar arguments to Case
1-1-1, {¢2, p2) also satisfies one of Conditions 1—
3 for any other leaf face. Thus, we conclude that
(¢2, p2) is a 1-bend 3-D orthogonal 7-drawing of
LS* + f*].

Case 1-2-2. <¢1, p1> is do(f, vo)-free at ¢ (’Uo)
and not d; (f, vo)-free at ¢ (v2):

Since (¢1, p1) satisfies Condition 1 for f, (¢1, p1)

is da(f,vo)-free at ¢1(va). Let (¢o, p2) be a 1-
bend 3-D orthogonal canonical drawing obtained
from (¢1, p1) by adding canonical drawings of ¢;
(0 <4 < k—1) as shown in Fig. 8(b), if any. Then
by similar arguments to Case 1-2-1, (¢, po) sat-
isfies Condition 1 for ¢; with 0 < ¢ < k — 3.
Since (g2, p2) is ey-free at ¢o(vi—_3) and €,-free
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Figure 8: Drawing of child faces of f in Case 1-2.



at ¢o(vk—2), (P2, po) satisfies Condition 1 for
ck—3. If dpy(vg—1) < 4 then (P, po) is €5-
free at ¢o(vk—1), since (o1, p1) is not e,-free at
¢2(vk—1). So, {¢a, p2) satisfies Condition 1 for
Cr—3, since (g2, p2) is €y-free at ¢o(vp_1). By
the similar arguments to Case 1-1-1, (¢, p2) also
satisfies one of Conditions 1-3 for any other leaf
face. Thus, we conclude that (¢2, p2) is a 1-bend
3-D orthogonal 7-drawing of I'[S* + f*].

Case 1-2-3. (¢1,p1) is not do(f, vo)-free at
¢1(vo) and d; (f, vo)-free at ¢y (vo):
Since (¢1, p1) satisfies Condition 1 for f, (¢1, p1)
is da(f,vo)-free at ¢1(vo). Let (@2, p2) be a 1-
bend 3-D orthogonal canonical drawing obtained
from (¢1, p1) by adding canonical drawings of c;
(0 £ % £ k —1) as shown in Fig. 8(c), if any.
Then by similar arguments to Case 1-1-3, (¢2, p2)
satisfies Condition 1 for cy, if any. Also, by the
similar arguments to Case 1-1-1, (¢2, p2) satis-
fies Condition 1 for ¢; for 2 < ¢ < k — 2, if
any. Since (¢o, p2) is ey-free at ¢o(v1) and €,-
free at ¢o(v2), (@2, p2) satisfies Condition 1 for
¢, if any. By the similar arguments to Case 1-
1-1, (¢, p2) also satisfies one of Conditions 1-3
for any other leaf face. Thus, we conclude that
(¢2, p2) is a 1-bend 3-D orthogonal T-drawing of
LS* + ).

Case 1-2-4. (¢1,p1) is not do(f,vp)-free at
¢1(vo) and dy (f, vo)-free at ¢y (vq):
Since (¢1, p1) satisfies Condition 1 for £, (¢1, p1)
is dg(f, vo)-free at ¢1 (’Uo) and dg(f, vo)-free at
#1(v2), Let (¢, p2) be a 1-bend 3-D orthogo-
nal canonical drawing obtained from (¢1, p;) by
adding canonical drawings of ¢; (0 < ¢ < k — 1)
as shown in Fig. 8(d), if any. Then by similar ar-
guments to Case 1-2-3, (@9, po) satisfies Condi-
tion 1 for ¢y and ¢y, if any, by similar arguments
to Case 1-2-2, {¢q, p2) satisfies Condition 1 for
ck—3 and ck_o, if any, and by similar arguments
to Case 1-2-1, (¢9, po) satisfies Condition 1 for c;
for 2 < i < k — 4, if any. By the similar argu-
ments to Case 1-1-1, (¢a, p2) also satisfies one of
Conditions 1-3 for any other leaf face. Thus, we
conclude that (@2, p2) is a 1-bend 3-D orthogonal
T-drawing of T'[S* + f*].

Case 1-3. £ > 5, k is odd. Similarly, we distin-
guish four cases depending on free directions.

Case 1-3-1. <¢1,p1> is d()(f, vo)-free at ¢ (’Uo)
and d; (f, vo)-free at ¢; (vq):
Let (¢2, p2) be a 1-bend 3-D orthogonal canon-
ical drawing obtained from (¢1,p;) by adding
canonical drawings of ¢; (0 < ¢ < k—1) as shown
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Figure 9: Drawing of child faces of f in Case 1-3.

in Fig. 9(a), if any. If cg exists and da, (vo) < 4
then (¢, p2) is €;-free or €,-free at ¢ (vy), since
da,(vo) < 4 (see Fig. 9(a)). Since do(co,vg) =
e, by definition, by taking da(co,v0) = €,
(@2, p2) is do(co,vo)-free or da(co,vo)-free at
b2 (1)0). Also, <¢2, p2> is do(CO, vo)-free at ¢ ('Ul)
by definition. Thus, (¢, p2) satisfies Condition 1
for co. For v; with 2 <4 < k — 3, (¢, p2) is ey-
and € -free at go(v;). Also, (¢a,p2) is ey-free
at ¢o(v1) and at ¢o(vg—2). Thus, (@g, po) satis-
fies Condition 1 for ¢; with 1 < ¢ < k — 3 since
k—2> 1. If ¢ exists and dp, (vg—1) < 4 then
(@2, p2) is €;-free or ey-free at ¢y (vg—1). Also,
(@2, p2) is e,-free at ¢o(vi_2). So, by taking
da(ck—2,Vp—2) = ey, (P2, p2) satisfies Condition
1 for cx—o. By the similar arguments to Case 1-
1-1, {¢2, p2) also satisfies one of Conditions 1-3
for any other leaf face. Thus, we conclude that
(¢2, p2) is a 1-bend 3-D orthogonal 7-drawing of
L[S* + f+].

Case 1-3-2.  (¢1, p1) is do(f,vo)-free at ¢ (vo)
and not d; (f, vo)-free at ¢ (v2):
Since (¢1, p1) satisfies Condition 1 for f, (¢1, p1)

is da(f, vo)-free at ¢1(va). Let (g2, p2) be a 1-
bend 3-D orthogonal canonical drawing obtained
from (¢1,p1) by adding canonical drawings of
¢ (0 < ¢ < k — 1) as shown in Fig. 9(b),
if any. By the similar arguments to Case 1-3-
2, (¢2,p2) is canonical for ¢; with 0 < ¢ <
k — 3, if any. If cx_o exists and dp,(vg—1) < 4
then (g9, po) is €;-free, since (@1, p1) is not e,-
free at ¢1(vk—1). Also, (¢, p2) is e,-free at
¢2(Vk—2). So, (P2, p2) is dp(ck—2,vk—2)-free at
¢2(Uk_2) and do(ck_g,vkkg)-free at ¢2(’Uk_1).
Thus, (p2, p2) satisfies Condition 1 for ¢; with




1 <i< k-3, ifany, since k —2 > 1. By
the similar arguments to Case 1-1-1, (¢, p2) also
satisfies one of Conditions 1-3 for any other leaf
face. Thus, we conclude that (¢, p2) is a 1-bend
3-D orthogonal 7-drawing of T'[S* + f*].

Case 1-3-3. (¢1,p1) is not do(f,vo)-free at
¢1(vo) and dy (f, vo)-free at ¢1(v2):
Since (¢1, p1) satisfies Condition 1 for £, (¢1, p1)
is da(f,vo)-free at ¢1(vp). Let (da, p2) be a 1-
bend 3-D orthogonal canonical drawing obtained
from (¢1, p1) by adding canonical drawings of c;
(0 £ ¢ < k —1) as shown in Fig. 9(c), if any. If
cp exists and dp, (vo) < 4 then (¢g, p2) is €,-free
at ¢2(vo), since (¢1, p1) is not €;-free at ¢y (vg).
Also, (¢a, p2) is e,-free at ¢a(v1). Thus, (P2, p2)
satisfies Condition 1 for co, if any. By similar ar-
guments to Case 1-3-2, (2, p2) is canonical for c;
with 1 < ¢ < k-2, if any. Thus, we conclude that
(2, p2) is a 1-bend 3-D orthogonal 7-drawing of
I'[S* + f*]. By the similar arguments to Case 1-
1-1, (¢, p2) also satisfies one of Conditions 1-3
for any other leaf face.

Case 1-3-4. (¢1,p1) is not do(f,vo)-free at
$1(vo) and dy (f, vo)-free at ¢ (ve):
Since (¢1, p1) satisfies Condition 1 for f, (¢1, p1)
is da(f,vo)-free at ¢1(vo) and da(f,vo)-free at
¢1(ve), Let (¢a,p2) be a 1-bend 3-D orthogo-
nal canonical drawing obtained from (¢1, p1) by
adding canonical drawings of ¢; (0 < i < k —1)
as shown in Fig. 9(d), if any. By the similar argu-
ments to Cases 1-3-2 and 1-3-3, (¢2, p2) is canon-
ical for ¢; with 0 < ¢ < k—2. By the similar argu-
ments to Case 1-1-1, {¢o, po) also satisfies one of
Conditions 1-3 for any other leaf face. Thus, we
conclude that (¢, p2) is a 1-bend 3-D orthogonal
7-drawing of I'[S* + f*].
The following remaining cases can be proved
similarly. The proof is omitted in the extended
abstract due to space limitation.

Case 2. f is drawn as a rectangle-2:
Case 3. f is drawn as a hexagon:

Case 4. f is drawn as a book: O

4 General Outerplanar Graphs

In this section, we shall complete the proof of
Theorem 1. We assume without loss of gener-
ality that G is a connected outerplanar 5-graph.

Let G1,Ga,...,Gp, be 2-connected components
of G. It is well-known that E(G) can be parti-
tioned into E(G1), E(G2),..., and E(Gp,). An
adjacent graph Ag of G is defined as follows:
V(Ag) = {Gl, Go,... ,Gm}, and (Gi,Gj) S
E(Ag) if and only if V(G;) N V(G;) # 0. It
is easy to see that A¢ is connected. Suppose (G,
Ga,...,Gp,) is a preorder of V(Ag) obtained by
applying DFS on Ag. Then a subgraph H; of G in-
duced by the vertices in | J;,_, V(Gy) is connected
for 1 < ¢ < m. We prove Theorem 1 by induction
on i. Since H; = G is a 2-connected outerplanar
5-graph, we know by Theorem 2 that H; has a 1-
bend 3-D orthogonal drawing. The inductive step
is stated as follows.

Lemma3 For1 <i<m-—1,if H; has a 1-bend
3-D orthogonal drawing then H; 1 has a 1-bend
3-D orthogonal drawing. a

This proves Theorem 1 since H,,, = G. The proof
of Lemma 3 is omitted in the extended abstract due
to space limitation.
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