BN LS SRS 2008—AL—120 (7)
IPSJ SIG Technical Report 200871177

SEEDAUSAUR—-BEBBEICH T HLUWETR
iy

BIRRKFRZRBRBEH AR BT HEREFHL
T 920-1192 &R A RIET

BE KR—UBBHEELIL, VELw: E - Rt 2%D/57 G = (V,E), EE% D, &5
80,T1,..., Tk €V NEZ 5N, Ef=1(d5i‘17“i +D- d5i~15i) ZR/MET B LD 7 E5 81,...,8k EV %
ROZMETHS. 727U, duw B u & v ZESINSADTLOESLOR/NITH . FHETIXZ ORIEE
MG DRERRA > TA TINTVXLRDNTERS. TRTDFS5T7E DIIHLTI LD/AE
WREHZFEODTN IV XAIFEELRNI ERHGSNTWS. X/, 3R ETD=1088IIHT2
FFMAETIN TV XLNHASNTNS. L, 3HETD>2DBRAICHTS 3-BELT>S1> 7T
U ZXLNEETINEMNT, EENHBBDASN TR, ZBETIE, 38 ETD=208E3I2133-

BT7NTUXLNEETZH, D>30BBTIESHFEAETNI) XLBZEELEWIEERT. £
EED D ITXT 2 3.1467-HEA > T4 > 7 NIV XLEZRT.

New Bounds for Online Page Migration on Three Points

Akira Matsubayashi

Division of Electrical Engineering and Computer Science, Kanazawa University,
Kanazawa 920-1192, Japan

Abstract The page migration problem is as follows: given a graph G = (V, E) with edge weights
w: E — R*, a positive integer D, and nodes so,71,...,7x € V, to compute s1,...,5% € V so that
the cost function ZLI (ds;_yr; +D-ds;_, s;) is minimized, where dy. is the minimum sum of weights
of edges of a path connecting u and v. We consider deterministic online algorithms for the problem.
It is known that for any G and D, there exists no online algorithm with a competitive ratio less
than 3. It is also known that there exists a 3-competitive algorithm on three points for D = 1. In
this report, we prove that there exists a 3-competitive algorithm on three points if D = 2, while
there exists no 3-competitive algorithm if D > 3. We also present a 3.1467-competitive algorithm
on three points for any D.

1 Introduction

The problem of computing an efficient dynamic allocation of data objects stored in nodes of a network
so that the costs to serve requests for the data is minimized commonly arises in network applications
such as memory management in a shared memory multiprocessor system and Peer-to-Peer applications
on the Internet. In this report, we study one of the variations of the problem, called the page migration
problem, in which requests are to be served using unicast communication, and we are allowed to migrate
data objects, i.e, no replication is allowed. The objective function to be minimized is the total sum of
the service cost for each request, which is the distance between the server and client nodes, and of the
management cost for each migration, which is the migration distance multiplied by the data size.

We consider deterministic online page migration algorithms. Randomized algorithms have been
investigated in, e.g., [2, 4, 5, 7). Black and Sleator presented 3-competitive deterministic algorithms
for trees, uniform networks, and products of those networks, including grids and hypercubes [3]. The
tightness of the competitive ratio of 3 was also shown in [3] by proving that no deterministic algorithm
has a competitive ratio less than 3 even for one link networks. The current best upper and lower
bounds for general networks are 4.086 [1] and 3.1639 [6], respectively. The upper bound was improved
to 2 + /2 for the case that the data size D is 1. It was mentioned in [4] that the lower bound is more
than 3 even for 4-node networks. A lower bound of 3.1213 for five node networks was presented in [6].
We can obtain an explicit lower bound of 3.1062 for 4-node networks using a similar argument. For

3-node networks, a 3-competitive algorithm was presented in [4] for the case of D = 1. To the author’s
knowledge, however, it has not been known whether there exists a 3-competitive algorithm on 3-node
networks for D > 2. In this report, we answer the question by providing a lower bound of 3 + Q(ﬁlg)
for any D > 3 and a 3-competitive algorithm for D < 2. The algorithm achieves a competitive ratio of
3.1467 for any D.

2 Preliminaries

We suppose that graphs considered here have nodes V' = {a, b, ¢} and edge weights z, y, and z for edges
(a,b), (a,c), and (b, c), respectively. We assume without loss of generality that y > max{z,z}. The
distance between two nodes u and v, denoted by dy,, is the minimum sum of weights of edges of a path
connecting u and v.

The page migration problem is as follows: given a graph G, a node sp of G that initially holds
a page of size D, and a sequence 7, ..., 7, of nodes of G that issue a request for access to the
page, to compute a sequence Si, ..., S of nodes of G that hold the page so that the cost function
>ic1dsi_yri + D ds,_,s; is minimized. We call nodes s; and 7; a server and a client. An online page
migration algorithm determines s; without knowing 741, ..., rx. We denote by A(c) the cost of a
page migration algorithm A for a sequence o = (r1,...,7¢). An online page migration algorithm ALG
is p-competitive if there exists a value o independent of k such that ALg(c) < p- OPT(0) + « for an
optimal offline algorithm OPT and any o.

3 Lower Bound

In this section we show the following theorem:

Theorem 1 There exists no deterministic p-competitive page migration algorithm on 3-node networks
if p=3+o0(3z) and D > 3.

Assume in this section that z > 2. Let ALG be a deterministic online page migration algorithm.
Let OpPT, (o) be the optimal offline cost to leave the last server on u after processing a sequence o of
clients. We write o as o, if ALG leaves the last server on v after processing o.

Lemma 1 Let U and V be disjoint sets of nodes, and u € U and v € V be joined by an edge with the
minimum weight w overall edges joining U and V. If there exist p > 3 and a sequence o, of clients
such that (p — 1)OPTy(0y) + OPTy(0y) — ALG(0y) + (p — 5)Dw < 0, then there erists a sequence o’
with ALG(0y0l,) > pOPTy(0y0") or ALG(0y0,,) > pOPTy(0y0").

Proof We prove that o, := uF1oh .. yki-rpti-1ykiyt or of := uFr1oh .. ukivlivt is a desired sequence
for some i. Here, u® (resp. v') is a sequence of k (resp. l) requests from u (resp. v) after which ALG
moves the server from a node of V (resp. U). In addition, u* (resp. vT) is a sequence of requests from
u (resp. v) until ALG locates the server on u (resp. v).

Assume for contradiction that ALG(cy0;,) < pOPTy(0y0,) and ALG(ov ol) < pOPT,(0y0L). Tt
follows that ALG(u*) > (k; + D)w, ALc(v¥) > (I; + D)w, OPTy(0,0),) < OPT4(0y) + Li—jw, and
OPT,(0y0),) < OPT,(0y) + K;w, where L;_; := E;_lll and Kj : Z _1 kj. By the inequalities, we
have ALG(0y) + (K; + Di)w+ (Li—1+ D(i — 1)) < p(OPTy(0y) + L,_lwg and ALG(0y) + (K; + Di)w +
(L; + Di)w < p(OPTy(0y) + K;w). Therefore, it follows that K; < (p —1)L;—1 — D(2i — 1) + A and
Li < (p—1)Ki_1 — 2Di + B, where A := £2Tul0e)_AlG(0v) ypq B . LOPTu(ou)ALG(ow) T follows from

the recurrences that K; < (p — 1)2K;_1 —2pDi+ (20— 1)D+ A+ (p — 1)B < (p_;):)— (- p(p 1)D +

(p—1)A+B)+ %?—; + -E—Pp(—':é—(;l)B. The coefficient of (”—1)2)—

ﬂp—_QD +(p—1)A+ B = 2((p — 1)OPTy(0y) + OPTy(0y) — ALG(0y) — 3‘—1Dw) which is negative
by —P— < p—5 for p > 3 and by the assumption of the lemma. Therefore, K; decreases as i grows
sufﬁmently large, but it is impossible by definition. O

can be estimated as follows:

Figure 1: Strategy for o.

Lemma 2 Letu:=a andv:=b, or u:=b and v :=c. Let w be the weight of the edge (u,v). If there
exist p > 3, > 0, and a sequence o, of clients such that ALG(0,) > pOPT,(0y) and OPT,(0y) > BDw,
then there exists a sequence o’ such that ALG(oy0,) > p'OPTy(0y0"), or o’ is an arbitrarily long

sequence with ALG(oy0’) > p’OPT(0,0”’), where p' =1+ ﬂp+\/ﬁ2p2;?‘git)l)(ﬁp_ﬁ—4) > %(p —3)+3.

Proof We define ¢’ as follows:

1. Let 70 :=¢, i.e., an empty sequence, and j = 1.
2. Input u' to ALG, i.e., generate i requests from u until ALG locates the server on u. It should

be noted that wherever ALG moves the server during the requests, ALG(u?) > (i + D)w. This is
because w is at most the weight between v and p € {u,v} by y >z > 2.

3. Ifi> ((B+1)p' — Bp—1)D, then set o’ := 7°- .- 79~ 1%, and quit the procedure.

4. Otherwise, because ALGy(u?) > (i + D)w, OPT,(ut) < Dw, and OPT,(u?) < iw, it follows that
(o' —1)OPT, (u?) + OPT, (uf) — ALG(u?) + (p' —5)Dw < (p’ — 1)iw+ Dw — (i+ D)w+ (p' —5)Dw <
{7 —2)((B+1)p' — Bp—1) + p/ — 5}Dw = {(B+ 1) — (Bp+2(8 + 1))’ + 2Bp — 3} Dw, which
equals 0 by the definition of p’. Therefore, by Lemma 1, there exists a sequence 77 containing u®
such that ALG(7]) > p'OPTy(77) or ALG(7}) > p'OPT,(79).

5. If 79 = 7J, then set ¢’ := 7°--- 79, and quit the procedure. Otherwise, set j := j + 1, and repeat

the process from Step 2.

By definition, ¢’ is o7, or arbitrarily long. Because ((8+2)p—2(8+1))2—(82p2—4(8+1)(Bp—F—4)) =
4(B+1)(p+1)(p—3) > 0, it follows that p’ <1+ _@4%@ = p. Thus, if the procedure ends
in Step 2, then it follows that ALG(0y07,) — p'OPT(040") > {ALG(0w) + 3250 ALG(T7) + ALG(u')} -
{OPTy(0) + 2j>0 OPTy(77) + OPTy(u’)} > (p — p')OPTy(0y) + (B + 1)p' — Bp)Dw — p'Dw > (p —
0")BDw+B(p' — p)Dw = 0. Similarly, if the procedure ends in Step 5, then ALG(0,07,)— p'OPT(0,0") >
(p— p')OPTy(0y) > 0. O

Lemma 3 Let {u,v} := {a,b}, and w be the weight of the edge (u,v). If there exist p > 3, f > 0,
and a sequence o, of clients such that (p — 1)OPT,(0y) + OPTy(0y) — ALG(0y) + (p — 5)Dw < 0 and
OPT,(0y) > BDw, then there exists a sequence o’ such that ALG(0y0),) > p'OPT4(0y0’), or o’ is an
arbitrarily long sequence with ALG(0v0") > p'OPT(0,0"), where p' = g7 (p —3) + 3.

Proof By Lemma 1, there exists a sequence 7 with ALG(0,7,) > pOPT,(0,7) or ALG(0yT) >
pOPTy(0y7). If T = 74, then we have obtained a desired sequence. Otherwise, by Lemma 2, there
exists a sequence 7’ such that ALG(0,7p7.) > p'OPT, (04 7s7’), or 7/ is an arbitrarily long sequence with
ALG(0yTe7’) > p'OPT(0y7p7’). Therefore, 77’ is a desired sequence. g

Suppose that y = + 0 and z = yd with 3 < v < §. To prove Theorem 1, we carefully choose p,
v, and 4, and design a strategy to generate an arbitrarily long sequence o with ALG(c) > pOPT(0).
This proves that ALG(c) > pOPT(0) + a for any a independent of the number of clients. The strategy
is illustrated using an automaton as shown in Fig. 1. Here, a transition and a state represent a server
selected by ALG and a sequence of clients given to ALG after the selection, respectively. We set the

initial server on a and generate the first request from b. If ALG moves the server to b or c after it served
the first request, then we generate a*. Otherwise, we generate ¢, which is a sequence of requests from
c after which ALG moves the server from a to b or ¢. Outgoing arcs from ¢ have additional conditions
of i to be transited. For example, if ALG moves the server from a to c¢ after it served less than
requests from ¢, then we generate at. The state a’ represents a sequence of requests from a until ALG
locates the server on a. It should be noted that i in ¢* is the number to force ALG to move the server
somewhere else, while j in a’ is the number to force ALG to locates the server on a. The state Lm3
represents a sequence obtained by applying Lemma 3, which forces ALG to move the server to a or is
an arbitrarily long. Similarly, two states Lm2 represents a sequence obtained by applying Lemma 3
twice, which forces ALG to move the server to b, and then to a, or is arbitrarily long.

Let o be a sequence of clients that ends with the initial state or transits to a state of Lm2 or Lma3.

Case 1: o = bpcat. It follows that ALG(c) > 2(1 + D)z and OPT4(0) = z. Therefore, c’;,]fu(é’a))
D+22>5.

Case 2: o = baciQD 2. It follows that ALG(0) = (1 + D)z + iy, OPT,(0) = z + iy, and Dz

OpTy(0) < Dz + iz. Thus, it follows that (p — 1)OPT,(0) + OPTs(c) — ALG(0) + (p — 5)Dz
p((D+1)z+ (2D —2)y) — ((5D+2)z+2(2D —2)y — (2D — 2)z). Hence, if (p— 1)OPT4(0) + OPTy(0) —
ALG(0) + (p — 5)Dz > 0, then we can obtain p > CPHREHIGR WGPz — 3 4 HUIET-AS,
which can be greater than 3 + () by setting & to a sufficiently small value such that v6 = ©(%).
By Lemma 3, this means that there exists a sequence 7 such that ALG(07,) > pOPT4(07), or 7 is an
arbitrarily long sequence with ALG(cT) > pOPT(07) with p = 3 + Q(%).

INIA

Case 3: o = b,c;=*P~1¢t. 1t follows that ALG(0) > (14 D)z + iy + (1 + D)z and Dy < OPT,(0) <

Dy + z. Therefore, we have c‘;ff((") (1+Dﬂ+(2Dy+lz)y+(l+D)z 3+ (7(311)([,223;))6

greater than 3 + Q() by settmg < ~v:=0(1) and § := @(). By applying Lemma 2 twice, we
can obtain a sequence 7 such that ALG(UTa) > pOPT,(07), or T is an arbitrarily long sequence with
ALG(o7) > pOPT(07) With p = 3+ Q(%).

, which can be

Case 4: o = b,ciSP~1a*. It follows that ALG(0) >z + (i + D+ 1+ D)y = z + (i + 2D + 1)y and

OPT,4(0) < z + iy. Therefore, OAPLTG(& > z"'(”iDy”’l)y >1+ (25:2.;” >1+ 284 =34 L

Case 5: 0 = b,cPSis2D-1J<2D-1 [f A1G moves the server from c to b in the j’th request of a7, then

the cost for a7 is at least (j —j’)y+Dz+ (5’ + D)z = jy+ D(yé+1z) —j'8. Because v > 3 and j' < 2D,
this is at least jy + D(36 +z) —2Dé = jy+ D(6 +z) = (j + D)y, which is the cost that ALG moves the
server from c to a after a’. Therefore, it follows that ALG(c) > z+ (i+D+j+ D)y = z+ (i+j+2D)y,
Dy < OPT,(0) < z + 1y, and OPTy(0) < Dz + iz + jz = (j + D)x + iz. Thus, it follows that
(p —1)OPTy(0) + OPT.(0) — ALG(0) + (p — 5)Dz < p((4D — 1)z + (2D — 1)2) — ((8D — 1)z + (4D —
1)y + (2D — 1)z). Hence, if (p — 1)OPTy(0) + OPT4(0) — ALG(0) + (p — 5) Dz > 0, then we can obtain

p > &2 54)1’)*'(14)? +(12)1%+(12)1:4)z 3+ ’“}5%??)3;3?2%?})?”, which can be greater than 3 + Q(%) by

setting é to a sufficiently small value such that v = ©(1) and 6 = @(%). By Lemma 3, this means that
there exists a sequence 7 such that ALG(07,) > pOPT4(07), or 7 is an arbitrarily long sequence with
ALG(o7) > pOPT(07) With p = 3+ Q(%).

Case 6: 0 = b,cP<S2P-14722D If ALG moves the server from c to b in the j'th request of a?, then

the cost for a7 is at least (j ~j’)y+Dz + (' + D)z =jy+D(yé+1z)— 36 > jz+ D(vé + x). Because
v > 3 and j > 2D, this is at least 3D(6 +) = 3Dy. which is the cost that ALG moves the server
from c to a before a?. Therefore, it follows that ALG(c) >z+(@+D + 3D)y = z + (1 + 4D)y and

OPT4(0) < z + iy. Thus, it follows that %G(% >1 + >3+ m, which can be greater

than 3 + Q(£z) by setting 6 = ©(%).

75‘7

Case T: 0 = b,c2?P. Tt follows that ALG(c) > 2+ (i+ D)y and Dy < OPT.(c) < Dy+ z. Therefore,

C
we have g;fc((?) > I+D(Z:_Iz)y > Igjfzy =3+ Dzi_(‘ng'y) 5> which can be greater than 3+€(%) by setting &
to a sufficiently small value such that v6 = ©(1). By applying Lemma 2 twice, we can obtain a sequence
7 such that ALG(07g) > pOPT,(07), or 7 is an arbitrarily long sequence with ALG(o7) > pOPT(oT)
with p = 3 + Q(%).
Therefore, the proof of Theorem 1 is completed.

4 Algorithm

In this section we show the following theorems by providing a desired algorithm:

Theorem 2 There exists a 3.1467-competitive deterministic page migration algorithm on 3-node net-
works.

Theorem 3 There erists a 3-competitive deterministic page migration algorithm on 3-node networks
if D <2.
4.1 Definition

To describe our algorithm, called PM3, we need some notations as follows: Let p > 3 and L = z+y+z.

Let A be the set of nodes v incident to edges with weights w and w’ such that w < —éi — "’7 and

w' < % - %, and B := V' \ A. By the assumption that y > {z, z}, it follows that b € A. This is because
that for {e, f} = {z,2}, e— (% — %) =e—(&- L;;?—y) <(1- %)(e— L) < 0. We assume without loss of
generality that B € {0, {a}, {a,b}}. PMS3 has a counter C, > 0 for each node v so that }_ ., C, = 2D.
We define a function ® of counters and the servers of PM3 and OPT on s and ¢, respectively, so that

Q=53 v Cudiv+ (5 —1) D ey Codse.

We divide the input sequence of clients into phases so that a migration of PM3 ends the current phase.
When a new phase begins, PM3 sets counter of the previous server to 0. We define another function ¥
of a phase beginning with the servers of PM and OPT on s and t, as follows: If B =), then ¥ := 0
for s,t € V. Otherwise,

e U, :=0 for {s,t} = {a,c},
o Uy := max{Cy(—(§ — 1)dez — 5(dez — dbz)), Cv 5 (do — ditp — diz) — (p — 3) Ddyg)}, and
o Uy := Uy := max{Cy(—(§ — 1)dpz — £(dsz — dpe)), —(p — 3) Ddyz)} for {t,t} = {a, c} with C; = 0.

If a request is issued from a node r, then PM3 serves the request and performs as follows:

Algorithm PM3
1. If r = s, i.e., the current server, then PM3 performs nothing.

2. Ifr #s, s € A, and Cr > 1, then C;—— and C,++ for 7 € V — {s,7}. Otherwise, Cs—— and
Cr++.

3. If C; =0, then:

(a) If s € A, then C, = 2D and move the server to r.

(b) Otherwise, let 5 € V — {s,b}. Recall that b ¢ B, {s,5} = {a,c}, and y = ds.

(c) Move the server to b if Fy, < Fs.

(d) Move the server to 5 if Fy, > Fj, and set counters of b and 5 to 0 and 2D, respectively.

Here, for p € {b, 5},
o F, :=maxsqev{Mpq + Sq + Upg — ¥/, },

o My :=—(p—3)Ddgs + (p — 2)Cs(5 —dss) for g € V,

® Msq = —(p —3)Ddss + Cp((§ — 1)(dss — dsp) + §(dsqg — dbg)) for ¢ € V,
e S, :=0, and

o Sy = max{—pCs(% — dss), —pCh(% — dsv), —pCs(% — dps)} for q € {b,5}.

We use ¥’ to denote it is associated with counters at the beginning of the current phase. It should be
noted that ¥,,, which will possibly be that of the next phase, can be computed just before a migration.
This is because PM3 does not change counters if p = b, and because ¥, depends on no counters.

4.2 Competitiveness

For any event e, let APM3(e) and AOPT(e) be the costs of PM3 and OPT, respectively, for e. Moreover,
let A®(e) be the amount of change of ® for e. Furthermore, let f(e) := APM3(e)+A®(e) — pAOPT(e).
We will omit e in the notations if e is clear from the context.

By definition, we can observe following facts:

Lemma 4

1. If PM3 moves the server to p in Step 3(a) or 3(c), then f = —(p — 3)Ddsp + (p — 2)Cp(% — ds5),
where p € V '\ {s,p}. If PM3 moves the server from s to p in Step 3(d), then f = —(p —
3)Ddsp + C5((5 — 1)(dsp — dsp) + §(dpg — dpg)). In particular, if Cp = 2D (i.e., C; = 0), then
f=—(p—3)Ddsp.

2. If OPT moves the server from t to q, then f = §% -y, Cy(dgy — diy — dig) < 0.

8. Suppose that r € V issues a request, and that PM3 and OPT locates the servers on s and t,
respectively. If r = s, then f = —pd;y < 0. Ifr # s, s€ A, and Cr > 1, then f = pdrs + drs —
pE — 2(dys + dre — dpr) < 0. Otherwise, f = §(drs — dye — dst) < 0. O

Fix a phase. Suppose that PM3 and OPT locates the servers s and ¢, respectively, at the beginning
of the phase, and on p and g, respectively, at the end of the phase. We will prove g := f+¥p, — 0., <0
for the phase. If this holds, then by summing up the inequality overall the phases, we can prove that
PMS3 is p-competitive.

IfB=0ors=c¢g B, then s € A and ¥, = 0, and hence, g = f < 0 for p > 3 by Lemma 4. In
what follows, C, is the value of counter of v € V just before PM3 moves the server to p. This means
that C; = 0.

Lemma 5 Ifs=0b, then ¢ <0.

Proof Let C!, be the value of counter of v € V' at the beginning of the phase. By the definition of PM3,
C! or C! is 0. We may assume without loss of generality that C; = 0. Because b € A, either C, or C,
is 2D, ie., p € {a,c}. If p=c, then f < —(p — 3)Dz by Lemma 4. If p = a, then an amount of at
least C. of ¢’s counter must move to a in the phase. Thus, f < C(§z — (§ — 1)z — £y) by Lemma 4.
Therefore, g < f — ¥}, < 0ift € {b,c} or p=a.

It remains to prove the lemma for the case of t = a and p = ¢. An amount of at least C} of
b’s counter must move to ¢ by the definition of PM3. Thus, if OPT does not move the server during
the phase, then f < Cy4(z — ¢ — y) — (0o — 3)Dz by Lemma 4. Therefore, g < f — U3, < 0. If
OPT moves the server from a to ¢ after an amount § < C. of ¢’s counter moved to a, then f <
5(~(2 — 1)z — &(y — 2)) — p(CL— 8)y = 8(—(§ — 1)z + §(z +1)) — pCly < CL(~(§ — 1)z — B(y —).
Therefore, g < f — ¥}, <0 for t € V. If OPT moves the server from a to b after an amount 6 of b’s
and/or c’s counters moved to a, then f < 6(—(§ — 1)z — §(y — z)) < Ci(—(§ — 1)z — §(y — z)) if
§>CLIf6<C, then f <6(—(§—1)z—§(y—x))+ 5(—2C4z + (C. = 8)(z+y—1x)) — (p—3)Dz =
§(—=(p—1)z+ pz)+5(—(2C; + Clh)x — Cl(y — z)) — (p— 3) Dz, which is at most Cl(—(5§ —1)z—5(y —z))
if < £, at most E(-(2C,+Cx—Cl(y—2))—(p—3)Dz < §(—(Cy,+C)(y—2+1z)) - (p—3)Dz =
2D45((z —z —y)) — (p— 3)Dz if z > £5. Therefore, g < f — ¥, <Ofort e V. O

Lemma 6 If s € B, then f < Mpq+ Sq for p € {b,5} and t,qge V.

Proof We may assume without loss of generality that s = a. Let f™ and f5 be the amounts of change
of f in the move of PM3 and the other events, respectively, in the phase. It follows from Lemma 4 that
M = My, and f5 <0 = S,. Thus, it suffices to prove that f5 < S; = max{—pC.(% — y), —pCs(% —
2),—pCo(% — 2)} for g € {b,c}.

Suppose that OPT moves the server from u to v # u after amounts of §, and 4. of a’s counter to

b and ¢, respectively. It should be noted that counters of b and ¢ never decrease in the phase by the
definition of PM3.

Let fu» be the amount of change of f for the move of OPT. By Lemma 4,

o fov = §(—20ydav105(2 — z —y)) for {v,7} = {b,c},

o fuy = 5(—28,2+4 (2D — 65— 6c)(dav — daw — 2)) = 5((2D — u)(dav — dau — 2) — 0u(day — dau + 2)) <
(2D = 6,)(dav — dau — 2) < —pCy(% — day) for {u,v} = {b,c}, and

® fua = 5(—2(2D — b6y — dc)dau + 0a(dag — 2 — dau)) = §((2D — 6u)(dea — 2 — dau) — (2D — 0 —
6c)(daa — 2 + dau)) < —pCa(% — daa) for {u,a} = {b,c}.

Moreover, if OPT resides at ¢ after amounts of &, and d. of a’s counter moved to b and c, respectively,
then the amount f; of change of f for services of remaining requests is at most (Cg — dz) § (dag — 2 — dag)
by Lemma 4, where g € {b,c} \ {q}-

If t = a, then OPT moves the server from a to g, and then does not move it until the end of
the phase, or OPT moves the server from ¢ € {b,c} — {¢} to ¢ in the phase. In the former case,
F5 < fag+ £} < 8(Cq(dag — 2 — dag) — 264dag — 265(dag — 2) < 5(Cy(|dag — 2| — dag)) < Sy. In the latter
case, f5 < fzq < —qu(% —daq) £ 8, If t € {b,c}, then OPT moves the server from ¢ to g # t, or
locates the server on ¢ = t throughout the phase. In the former case, f5 < frg < —pCy(% —daq) < Sy
In the latter case, f¥ < f{|s;=0 < —pCi(5 — daz) < Sy O

Lemma 7 If s € B, then {Fy, F5} < 0 if p > 3.1467.

Proof We may without loss of generality that s = a. By Lemma 6 and ¥, = ¥/, = 0, we will prove
that min{Fy, F.} = min{maxgcy{Mpq + Sq + sy}, maxqev{Mecq + Sg}} < 0 for y > —121, y > z, and
0< Cy,C. < 2D.

We first estimate Fy. It follows that (p — 2)(% —y) +(=(8 — 1)z — £(y — 2)) = (p — 1)(z — y) < 0.
Thus, it follows that F, = —(p —3)Dz + (p— 2)Ce(% — y) + max{Cc(—(4 — 1)z — &(y — 2)), Co&(z —x —
y) — (p—3)Dz,—pCe(] —y) — (p—3)Dz,—pCy(5 —z) — (p— 3)Dz} < —(p— 3) D(L — y) + max{0, (p—
2)Ce(§ —y) + max{—pCy(z +y — §), ~pCs(§ — 2)}} = max{0, D(L — (p — 1)y) + max{~2Cy(y — 5 +
£2),—Cy((p— 1)L — pz — (p— 2)y)}}. If Cb > 2, then for p > 3, this is at most max{0, D(L — 2y) +
max{-D(y — £ + 3z), -D(L — $z - ¥)}} = max{0, -3D(y — £ + £),-3D(y —)} = 0. Therefore, the
lemma holds if Cp > %.

We next show that F, = My + S, = M, if Cp < D, ie., C, < C.. Because ¥, = ¥, and
Moo — Moy, = —2pChz < 0, F, = max{Mcq, My + Ucp}. It follows that Mep + ¥op — Meq = pC';,(—Izi -
y) + max{—pCe(5 — y), —pCs(§ — 2), —pCs(5 — 2)} < pCymax{0,z —y,z —y} = 0.

Therefore, it suffices to prove that F. = —(p — 3)Dy + Cy(p — 1)(y — z) or F, = max{F}, F?}
is at most 0 for Cp < % and p > 3.1467, where F} := D(L — (p — 1)y) — 2Cy(y — £ + 22) =
(D +GCy)L + (=(p—1)D —2Cy)y — pCyz and Ff := D(L — (p—1)y) — Co((p— 1)L — pz — (p - 2)y) =
(D= (p—1)Cy)L+ (—(p—1)D + (p — 2)Cb)y + pCrx. We provide a proof of this in Appendix. O

We have proved that if p > 3.1467, then g < 0 for every case. Therefore, the proof of Theorem 2 is
completed. Moreover, it follows from the proof of Lemma 7 that if Cy > % of C, =0, then g <0 for
p = 3. Therefore, if D <2, then g < 0 for p = 3, which proves Theorem 3.

References
[1] Y. Bartal, M. Charikar, and P. Indyk. On page migration and other relaxed task systems. Theoretical
Computer Science, 268(1):43-66, 2001.

[2] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data management. J. Computer
and System Sciences, 51(3):341-358, 1995.

[3] D. L. Black and D. D. Sleator. Competitive algorithms for replication and migration problems. Technical
Report CMU-CS-89-201, Department of Computer Science, Carnegie Mellon University, 1989.

[4] M. Chrobak, L. L. Larmore, N. Reingold, and J. Westbrook. Page migration algorithms using work functions.
J. Algorithms, 24(1):124-157, 1997.

[5] C. Lund, N. Reingold, J. Westbrook, and D. Yan. Competitive on-line algorithms for distributed data
management. SIAM J. Comput., 28(3):1086-1111, 1999.

[6] A. Matsubayashi. Uniform page migration on general networks. International Journal of Pure and Applied
Mathematics, 42(2):161-168, 2007.

[7) J. Westbrook. Randomized algorithms for multiprocessor page migration. In DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, volume 7, pages 135-150, 1992.

Appendix
We show min{F., max{Fy, FZ}} < 0 by proving both min{F, Fj } < 0 and min{F,, F?} < 0.

Lemma 8 min{F,F}} <0ify> % - £ and p > 3.1467.

Proof Tt suffices to show the lemma for F. = {—(p — 3) + (p — 1)k}y — (p — 1)kz and Fy = 2(1 + k) +
(=(p—1) — 2k)y — pkx with 0 < k < % and y > 1 — %. We will prove Fa,y := maxy,min{F., Fy} < 0.
It is easy to verify that if y = y; := %, then F, = F}, and that F.,, = maxg,k Fely=y,. Because
chlliy:y‘ = ((p;?;p&’;)}c)k)k = (p— 1k < 0, Fe|y=y, is maximized when z = z1 with S255r]

Thus, we have Fh., = maxi Fe|y=y;,c=z,, Where z1 := iﬂ;—},cﬂ and y1 :=1-— ("Z—Tkpﬁ. Because &”:j’gﬂl =
—@%7{(,02 —2)k* +4(p® — 2)k— 2(p— 1)}, Fely=y,,c=2, is maximized when k = -2+ ,/é%*z—zfgﬂ. Therefore,
Flax = 4p° — 3p% — 11p+ 12 — 2(p — 1)4/2(2p? + p — 5)(p? — 2), which is negative if p > 3.1467. O

2(1+k)—kzy =1-=1

Lemma 9 min{F,FZ} <0ify> % - £ and p 2 3.114.

Proof The proof proceeds in just a similar way as Lemma 8. Assume F. = {—(p—3)+ (p— 1)k}y — (p — 1)kz
and Ff = 2(1 — (p— k) + (=(p— 1) + (p — 2)k)y + pkz with 0 < k < j and y > 1 — 2. We will
prove F2,. = max,,,min{F.,FZ} < 0. Ify = y = Aﬂg;%;—_@_p:m, then F. = FZ, and that

dFc|y= —(p=3)+(p=1)k)(2p=1)k 2(p—1)2k—(2p2=5p+1))k
Fr?mx = maxz k Fc[y=y2~ Because dyz v2 — (=(p=3) (£+2))(2p=Dk _ (p— Dk = =1 k(+ﬁ27 p+1)) <
2 2 — . . . - — -—
(e=1) 'fﬁz's”“))k = —”(Z+i)k < 0, F.|y=y, is maximized when z = z2 such that 20=(1)’;2:5(2” Dkay —
1 — 2. Thus, we have F2,. = maxg Fe|y=y,,05=2,, Where x := @%Zfﬁl’;%_i and y2 = 1 — @2&%.
o mem _ C1\2(9,2 2 12k (002 . L.
Because dF°|y_dyk" 2 = =2(e=1)7(p (f;}z)fprligﬁ_'_gzk 2e"=8041) ' F|y=ys.c=c, is maximized when k =
—2+44/44(2p2 = p+1)(20% —5p+1)/(p—1)2 2 _ —4p°+20p* —29°+34p% —20p+12—4(p—1)+/(20—1)(2p% —5p> +4p—5)
57—t 1 . Therefore, Fipox = G2 ,
which is negative if p > 3.114. O

