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LISP - NOTES ON ITS PAST AND FUTURE

John MeCarthy

Computer Science Department, Stanford University

Abstract: LISP has survived for 21 years because it is an
approximate local optimum in the space of programming
languages. However, it has accumulated some barnacles
that should be scraped off, and some long-standing
opportunities for improvement have been neglected. It
would benefit from some co-operative maintenance
especially in creating and maintaining program libraries.
Computer checked proofs of program correctness are now
possible for pure LISP and some extensions, but more
theory and some smoothing of the language itself are
required before we can take full advantage of LISP's
mathematical basis.

Introduction

On LISP's approximate 21st anniversary, no doubt
something could be said about coming of age, but it seems
doubtful that thé normal life expectancy of a programming
language is three score and ten. In fact, LISP seems to
be the second oldest surviving programming language after
Fortran, so maybe we should plan on holding one of these
newspaper interviews in which grandpa is asked to what
he attributes having lived to 100. Anyway the early
history of LISP was already covered in (McCarthy 1977)
which was given at the ACM conference on the history of
programming languages.

Therefore, these notes first review some of the
salient features of LISP and their realtion to its long
survival, noting that it has never been supported by a
computer company. LISP has a partiaily justified
reputation of being more based on theory than most
computer languages, presumably stemming from its
functional form, its use of lambda notation and basing the
interpreter on a universal function.

From the beginning, I have wanted to develop
techniques for making computer checkable proofs of LISP
programs, and now this is possible for a large part of
LISP. Still other present and proposed facilities are in a
theoretically more mysterious state. I will conclude with
some remarks on improvements that might be made in
LISP and the prospects for replacing it by something
substantially better.
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The Survival of LISP

As a programming language, LISP is characterized by
the following ideas:

1. Computing with symbolic expressions rather than
numbers.

2. Representation of symbolic expressions and other
information by list structure in computer memory.

3. Representation of information in on paper, from
keyboards and in other external media mostly by multi-
level lists and sometimes by S-expressions. It has been
important that any kind of data can be represented by a
single general type.

4. A small set of selector and constructor operations
expressed as functions, i.e. car, cdr and cons.

5. Composition of functions as a tool for forming
more complex functions.

6. The use of conditional expressions for getting
branching into function definitions.

7. The recursive use of conditional expressions as a
sufficient tool for building computable functions.

8. The use of A-expressions for naming functions.

9. The storage of information on the property lists
of atoms.

10. The representation of LISP programs as LISP
data that can be manipulated by object programs. This
has prevented the separation between system programmers
and application programmers. Everyone can “improve” his
LISP, and many of these “improvements” have developed
into improvements to the language.

11. The conditional expression interpretation of
Boolean connectives.

12. The LISP function eval that serves both as a
formal definition of the language and as an interpreter.

13. Garbage collection as the means of erasure.
14. Minimal requirements for declarations so that

LISP statements can be executed in an on-line
environment without preliminaries.



15. LISP statements as a command language in an
on-line environment,

Of course, the above doesn't mention features that
LISP has in common with most programming languages in
its “program feature”.

All these features have remained viable and the
combination must be some kind of approximate local
optimum in the space of programming languages, because
LISP has survived several attempts to replace it, some
rather determined. It may be worthwhile to review a few
of these and guess why they didn't make it.
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1. SLIP included list processing in Fortran. It used
bidirectional lists and didn't allow recursive functions or
conditional expressions. The bidirectional lists offered
advantages in only a few applications but otherwise took
up space and time. It didn’t encourage on-line use, since
Fortran doesn't.

2, Formac was another Fortran based language that
was pushed for a while by part of IBM. It was dedicated
to manipulating a class of algebraic formulas written in
Fortran style and was also oriented to batch processing.

3. Formula Algol was dedicated to the linguistic pun
that the elementary operations can be regarded as
operating on numbers or on formulas. The idea was that
if a variable x has no value, then operations on
expressions involving x must be regarded as operating on
the formula. A few programs could be written, but the
pun proved an inadequate basis for substantial programs.

4. ‘One of the more interesting rivals to LISP is (or
was) POP-2. It has everything that LISP has except that
its statements are written in an Algol-like form and don't
have any list structure internal form. Thus POP-2
programs can produce other POP-2 programs only as
character strings. This makes a much sharper distinction
between systemn programmers and application programmers
than in LISP. In LISP, for example, anyone can make is
own fancy macro recognizer and expander.

5. Microplanner is an attempt to make a higher level
general purpose language than LISP. The higher level
involves both data (pattern matching) and control (goal
seeking and failure mechanisms). Unfortunately, both
proved inadequately general, and programmers were forced
to very elaborate constructions, to new languages like
CONNIVER with even more elaborate control features,
and eventually many went back to LISP.

One generic trouble seems to be that no-one
adequately understands pattern directed computation which
always works very nicely on simple examples, but which
leads to over complicated systems when generalized. We
can see this in LISP in certain macro expansion systems
like that of the LISP machine (Weinreb and Moon 1978).

6. I should mention Prolog, but I don't understand it
well enough to comment.

I
f

Improvements

Like most everything, LISP is subject to
improvement. The various versions of LISP have
accumulated many barnacles with time, and these would
have to be scraped off before a definitive standardizable
language could be achieved - a worthwhile but long term
goal.  Meanwhile here are a few directions for
improvement. Some are purely operational and others
have more conceptual content.

1. Incorporating more standard functions into the
language and rationalizing the standard functions in the
present versions.

Designers of programming languages often propose
omitting from the definition of the language facilities that
can be defined within the language on the grounds that
the user can do it for himself. The result is often that
users cannot use each others programs, because each
installation and user performs various common tasks in
different ways. In so far as programmers use local
libraries without rewriting the functions, they are using
different languages if they use different local libraries.
Compatibility between users of LISP would be much
enhanced if there were more standard functions.

2. Syntax directed input and output.

A notation for representing symbolic information can
be optimized from three points of view: One can try to
make it easy to write. One can try to make it easy and
pleasant to read. One can make easy to manipulate with
computer programs. Unfortunately, these desiderata are
almost always grossly incompatible. LISP owes most of its
success to optimizing the third. LISP lists and S
expressions in which the car of an item identifies its kind
have proved most suitable as data for programming.
When the amount of input and output is small, users are
inclined to accept the inconvenience of entering the input
and seeing the output as lists or S-expressions. Otherwise
they write read and print  programs of * varying
elaborateness. Input and output programs are often a
large part of the work and a major source of bugs.
Moreover, input programs often must detect and report
errors in the syntax of input.

LISP would be much improved by standard facilities
for syntax directed input and output. Some years ago
Lynn Quam implemented a system that used the same
syntax description for both input and output, but this was
rather constraining. Probably one wants different syntaxes
for input and output, and input syntaxes should specify
ways of complaining about errors. The idea is to provide
standard  facilities for a programmer to describe
correspondences between data in an external medium and
S-expressions, e.g. he should be able to say something like

(PLUS x ... 2) > X+ ... + 2,

(DIFFERENCE x y) - x - y,
although I hold no brief for this particular notation.

3. Syntax directed computation in general.



It isn't clear whether this would be a feature to be
added to LISP or a new language. However, it seems
likely that both the functional form of computation that
LISP has now and syntax directed features are wanted in
one language.

4. LISP might benefit if we could find a way to
finance and manage a central agency that could keep
libraries, make agreed on machine independent
improvements, maintain a standard subset, and co-ordinate
pressure on computer ‘'manufacturers to develop and
maintain adequate LISPs on their machines. It shouldn't
get too powerful.

Taking Advantage of LISP’s Theoretical Foundation

As soon as pure LISP took its present form, it
became apparent that properties of LISP functions should
be provable by algebraic manipulation together with an
appropriate form of mathematical induction. This gave
rise to the goal of creating a mathematical theory -of
computation that would lead to computer checked proofs
(McCarthy 1962) that programs meet their specifications.
Because LISP functions are prima facie partial functions,
standard logical techniques weren’t immediately applicable,
although recursion induction (McCarthy 1963) quickly
became available as an informal method. The methods of
Kleene (1952) might have been adopted to proving
properties of programs had anyone who understood them
well been properly motivated and understood the
connections.

The first adequate formal method was based on
Cartwright's (1977) thesis, which permits a LISP function
definition such as

append[u,v} = if null u then v
else cons[car u, appendfcdr u, V1]

to be replaced by a first order sentence

Yu v.{append{u,v} = if null u then v
else cons{car u, append[cdr u, ¥]1]

without “first having to prove that the program terminates
for any lists ¥ and v. The proof of termination has exactly
the same form as any other inductive proof. See also
(Cartwright and McCarthy 1979).

The  Elephant  formalism  (McCarthy 1981
forthcoming) supplies a second method appropriate for
sequential LISP programs. Boyer and Moore (1979)
provide proof finding as well as proof checking in a
different formalisin that requires a proof that a function is
total as part of the process of accepting its definition.

I should say that I don't regard the LCF methods as
adequate, because the “logic of computable functions™ is
too weak to fully specify programs.

These methods (used informally) have been
succesfully taught as part of the LISP course at Stanford
and will be described in the textbook {(McCarthy and

Talcott 1980). It is also quite feasible to check the proofs
by machine using Richard Weyhrauch's FOL interactive
proof-checker for first order logic, but practical use
requires a LISP system that integrates the proof checker
with the interpreter and compiler.

The ultimate goal of computer proof-checking is a
system that will be used by people without mathematical
inclination simply because it leads more quickly to
programs without bugs. This requires further advances
that will make possible shorter proofs and also progress in
writing the specifications of programs.

Probably some parts of the specifications such as that
the program terminates are almost syntactic in their
checkability. However, the specifications of programs used
in Al work require new ideas even to formulate. I think
that recent work in non-monotonic reasoning will be
relevant here, because the fact that an Al program works
requires jumping to conclusions about the world in which
it operates.

While pure LISP. and the simple form of the
“program feature” are readily formalized, many of the
fancier features of the operational LISP systems such as
Interlisp, Maclisp and Lisp Machine LISP are harder to
formalize. Some of them like FEXPRs require more
mathematical research, but others seem to me to be
kludges and should be made more mathematically neat
both so that properties of programs that use them can be
readily proved and also to reduce ordinary bugs.

The following features of present LISP systems. and
proposed extensions require new methods for correctness
proofs:

1. Programs that involve re-entrant list structure.
Those that don’t involve rplaca and rplacd such as search
and print programs are more accessible than those that do.
1 have an induction method on finite graphs that applies
to them, but I don’t yet know how to treat rplaca, etc.
Induction on finite graphs also has applications to proving
theorems about flowchart programs.

2. No systematic methods are known for formally
stating and proving properties of syntax directed
computations.

3. Programs that use macro expansions are in
principle doable via axiomatizations of the interpreter, but
1 don't know of any actual formal proofs.

4. No techniques exist for correctness proofs of
programs involving lazy evaluators.

5. Programs with functional arguments are in
principle accessible by Dana Scott’s methods, but the
different kinds of functional arguments have been treated
only descriptively and informally.

6. Probably the greatest obstacle to making proof-
checking a useful tool is our lack of knowledge of how to
express the specifications of programs. Many programs
have useful partial specifications - they shouldn't loop or
modify storage that doesn't belong to them. A few satisfy
algebraic relations, and this includes compilers. However,
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programs that interact with the world have specifications
that involve assumptions about the world. AI programs in
general are difficult to specify; most likely their very
specification involves default and other non-monotonic
reasoning. (See McCarthy 1980).

Mysteries and other Matters

1. Daniel Friedman and David . Wis¢ have argued
that cons should not evaluate its arguments and have
shown that this allows certain infinite list structures to be
regarded as objects. Trouble is avoided, because only as
much of the infinite structure is created as is necessary to
get the answers to be printed. Exactly what domain of
infinite list structures is assumed is unclear to me. While
they give interesting examples of applicatiors, it isn't clear
whether the proposed extension has practical value.

2. Many people have proposed implementations of
full lambda calculus. This permits higher level functions,
i.e. functions of functions of functions etc., but allows
only manipulations based on composition and lambda
conversions, not general manipulations of the symbolic
form of functions. While conditional expressions are not
directly provided, they can be imitated by writing (as
proposed by Dana Scott in an unpublished note) true as
Ax p.x, false as Ax y.p and if pthen aelse b as pfa)fb).
Another neat idea of Scott's (adapted from one of Church)
is to identify the natural number a with the operation of
taking the (n+/}th element of a list. The mystery is
whether extension to lambda calculus has any practical
significance, and the current best guess is no, although the
Scott’s notational idea suggests changing the notation of
LISP and writing O for car, 1 for cadr, 2 for caddr, etc.

3. Pure LISP would be much simpler conceptually if
all list structure were represented uniquely in memory.
This can be done using a hash cons, but then rplaca and
friends don’t work. Can’t we somehow have the best of
both worlds?

4, It seems to me that LISP will probably be
superseded for many purposes by a language that does to
LISP what LISP does to machine language. Namely it
will be a higher level language than LISP that, like LISP
and machine language, can refer to its own programs.
(However, a higher level language than LISP might have
such a large declarative component that its texts may not
correspond to programs. If what replaces the interpreter
is smart enough, then the text written by a user will be
more like a declarative description of the facts about a
goal and the means available for attaining it than a
program per se).

An immediate problem is that both the kinds of
abstract syntax presently available and present pattern
matching ~ systems are awkward for manipulating
expressions containing bound variables.

I
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