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Abstract

Simple methods for testing equivalence of term rewriting systems are
presented. Using the Church-Rosser property, sufficient conditions for
equivalence in a restricted domain of term rewriting systems are proved.
These conditions can be effectively applied to obtain equivalence
transformation rules for term rewriting systems. Program transformations
based on these rules are discussed.

1. Introduction

The concept of the equivalence in a restricted domain of two term
rewriting systems plays an important role in transforming recursive programs
[2]1[12] and proving an equation in abstract data types {[3]1[5][6]1[9]. For
example, consider a recursive program computing the factorial function on
the set N of natural numbers represented by 0, S(0), S(S(0)), ...:

F(x)=1IF equal(x,0) THEN S(0) ELSE x*F(x-S(0)).
By using the successor function S, we can also define the factorial function
by;

F(0)=s(0),

F(S(x))=S(x)*F(x).
Regarding equations as rewriting rules from the left hand side to the right
hand side, we can obtain two term rewriting systems [4][5] from the above
two definitions. The first term rewriting system can reduce "F(M)" +to
"IF equal(M,0) THEN S(O) ELSE M*F(M-S(0))" for any term M, but the second
system can not reduce "F(M)" unless M is either "0O" or the form of "S(M')".
Therefore the two term rewriting systems produce different results in the
reduction of "F(M)", although they can reduce "F(M)" to the same result
unless M can be reduced to a natural number. Thus, the eguivalence for the
recursive programs must be regarded as the equivalence in the restricted
domain N for the term rewriting systems.

We consider in this paper sufficient conditions for the equivalence in a
restricted domain for two term rewriting systems. We first treat this
problem in an abstract framework and show sufficient conditions for two
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abstract reduction systems. It is shown how one can formally validate the
equivalence in the restricted domain for term rewriting systems by using
these conditions. Finally, +the problems related to the rules for
transforming programs described by Burstall and Darlington [2], and Scherlis

[12] are discussed.
2. Reduction Systems

We explain notions of reduction systems and give definitions for the
following sections. These reduction systems have only an abstract
structure, thus they are called abstract reduction systems [4]1[7][11].

A reduction system is a structure R=<A,-—> > consisting of some object
set A and some binary relation -» on A, called a reduction relation. A
reduction (starting with xp) in R 1is a finite or infinite sequence
X)=?X]=>Xp—>.... The identity of elements of A (or syntactical equality) is
denoted by =. X is the transitive reflexive closure of —, S is the
reflexive closure of —, and = is the equivalence relation generated by =-»
(i.e., the transitive reflexive symmetric closure of ~»). If xeA is minimal
with respect to —», i.e., =-7yeAlx—y], then we say that x is a normal form,
and let NF be the set of normal forms. If xj$y and y¢NF then we say x has a

normal form y and y is a normal form of x.

Definition. R=<A,-»> has the Church-Rosser property, or Church-Rosser,
(denoted by CR(R)) iff

v x,y,zeA[xi+yAx1;z == 3'weA,yl*->w/\z-’-‘:‘7w].
The following properties are well known [1]1[4][7].

Property 2.1. Let R have the Church-Rosser property, then,
(1) ¥ x,yeAlx=y =% E'wéix,xﬁ?wAy--“—‘a‘w],

(2) ¥ x,yeNF[x=y => x=y],

(3) ¥ x¢A,” yeNF[x=y => x-5y].

3. Basic Results

Let R1=<A,j% >, Rp=<A, ¥ > be two abstract reduction systems having the
same object set A, and let %9 ;oF and NF; be the transitive reflexive
closure, the equivalence relation and the set of normal forms in Rj
respectively (i=1,2). Note that = and %5 are subsets of AX A: for example,

fg_z means that the set = is contained in the set 5-

Let B, C be any subsets of the object set A. We write ==



Vx,yéB[Xfy & x;y], and say Ry and Ry are equivalent in the restricted
domain B for the equivalence relation. We will show sufficient conditions
for = = =(in B).

! 2

Lemma 3.1. Let R;, Ry satisfy the following conditions:
(1)
(2)
(3) VxeB,ayeC[x?y].
Then ==z (in B).
Proof. Prove Vx,yéBEXfy & x§y]. =» is trivial from condition(l),
hence we show &. Assume x=y where x,y€B. By using condition(3), there are
some elements z,wé€C such that x=2 and y=w. Since RS2 and yzw are obtained

= (in C),

from condition(1l) , z;w can be derived from z;x;y;w. From condition(2), ZTW
holds. Therefore XTY from X=ZEWEY . I

If Ry has the Church-Rosser property, we can modify condition(2) in
Lemma 3.1 as follows.

Theorem 3.1. Assume the following conditions:
(1) =¢3,
(2) CR(Rp) and C & NFjp,
(3) YxeB,yeClx=y].

Then =3 (in B).

Proof. Show condition(2) of Lemma 3.1, i.e., Vx,yeC[Xfy & X3Y]’ from
the above conditions. = is trivial from condition(l), hence we prove <=.
By wusing property 2.1(2) and condition(2), x=y =» x=zy for any x,y¢C.
Therefore x=Y. |

4. Term Rewriting Systems

In this section we will explain term rewriting systems that are
reduction systems having a term set as an object set A.

Let V be a set of variable symbols denoted by x,v,z,..., and let F be a set
of function symbols denoted by f,g,h,..., where FnV=g. T(F,V) is the set of
terms on F and V. Let T(F) be the set of terms having no wariable symbols.
T is used for T(F,V) when F and V are clear from the context.

If M is a term and O is a substitution, then M@ is the result of applying &
to M; that is, each variable of M is replaced by the term specified in &.

Consider an extra constant [] called a hole and the set T(FY{[13},V). Then
Ce¢T(FU{[]},V) is called a contexzt on F. The notation C[ ] denotes a context



containing precisely one hole, and C[N] denotes the result of placing N in
the hole of C[ ].

A rewriting rule on T is a pair <M;,M,> of terms in T such that M;3V and any
variable in M, also occurs in Mj. The notation [> denotes a set of
rewriting rules on T and we write M;PMy for <Mj,My>¢p. A -yredex, or redex,
is a term M;Pp where My»M,, and in this case M,§ is called a -»contractum, or
contractum, of Mlé. The set D> of rewriting rules on T defines a reduction
relation —» on T as follows:
M->N iff M=C[M;p], N=C[M L], and M;>Mp
for some Mj, My, C[ 1, and{g.

Definition. A term rewriting system R on T is a reduction system
R=<T,-»> such that the reduction relation -» is defined by a set > of
rewriting rules on T. If R has Mj>M,, then we write MP>M€R.

If every variable in term M occurs only once, then M is called 1linear. We
say that R is linear iffVY MD>NE R, M is linear.

Let MPN and PrQ be two rules in R. We assume that we have renamed variables
appropriately, so that M and P share no variables. Assume S#V is a subterm
occurrence in M, i.e., M=C[S], such that S and P are unifiable, i.e., SH=P@H,
with a minimal wunifier @ [41[8]. Since MO=C[S]H=CH[PH], two reductions
starting with M@, i.e., M)—>COH[QAI=CI[QlP and MP-»NP, can be obtained by
using PpQ and MPN. Then we say that the pair <C[Q]4, NO > of terms is
critical in R [4][5]. We may choose MPN and P>Q to be the same rule, but in
this case we shall not consider the case S=M, which gives trivial pairs
<N,N>. If R has no critical pair, then we say that R is non-overlapping
(with itself) [4][5][8]1[13].

The critical pair for two term rewriting systems R; and Ry can be defined in
the same way. Let M?N and P%Q be in R; and in Ry respectively. Then we say
that the above pair <C[QJfH, NO > is critical between R; and Ryp. If there is
no critical pair between R; and Ry, then we say that R; and Ry are

non-overlapping with each other [13].

The following sufficient conditions for the Church-Rosser property are well
known [4][5][8].

Condition 4.1. Let R be strongly normalizing. If for any critical
pair <P,Q> in R, P and Q have the same normal form, then R has the

Church~Rosser property.



Condition 4.2. Let R be linear and non-overlapping. Then R has the
Church-Rosser property.

Let R1=<T,—> with B and Rp=<T,-»> withl . Then their union RjURy is
defined by RjURp=<T,—»> with > =Rul. The next condition is described in
[13] by using the commutativity of Rj and Rj3.

Condition 4.3. Let the two linear term rewriting systems R; and Ry
have the Church-Rosser property and let them be non-overlapping with each
other. Then RjURy has the Church-Rosser property.

5. Equivalence Transformation Rules

In this section, 1let us consider the correctness of the program
transformation rules discussed by Burstall and Darlington [2], and Scherlis
[{12]. They showed in many examples that by using their rules, a recursive
program can be transformed to an improved one computing the same function.
This problem can be seen as one of equivalence transformations for term
rewriting systems. We will give a formal proof, based on the equivalence in
a restricted domain, for the correctness of transformation rules.

Let R=<T(F,V),—> with [> , and let H be a subset of F such that H contains
all function symbols appearing in the rewriting rules of R. We propose the
equivalence transformation rules in the restricted domain T(H) for R. Set
Rp=R and  Fp=H, and then we transform Rn=<T(F,V),7?> with > to
Rn+1=<T(F,V),;z> with E}'by using the following rules:

(1) Definition: Add a new rewriting rule g(x;,...,%x,)> Q to Rp, where

g &€ F-Fp, g(x1,.0.,%g) is linear, and Q ET(Fp, V). Thus,
> =1 U {g(x1,.., %) > Q). Set Fhi=FyU {g}.

(2) Addition: Add a new rule PP Q to R,, where R;Q and P,Q €T(Fp,V).
Thus, I> =0z U{P>Q}. Set Fp,1=Fn.

(3) Elimination: Remove a rule PI>Q from Rp. Thus,£3,=]% -{P>0}. Set
Fn4+1=Fpn.

Remark. The above three rules include the transformation rules
suggested by Scherlis [12]: we can show easily that transformations by the
rules in [12] can be obtained by using the above rules.

an=>Rn+1 shows that R is transformed to Rp;; by rule(i) (i=1,2,or 3).
Rn==>Rn;1 shows that R, is transformed to Rn;1 by rule(l), (2), or (3).
Rmif>Rn and Rm=}F=>Rn (m<n) are the transitive reflexive closure of the two
relations.



Lemma 5.1. If Rj==>Rp==>Rg (i>j), then there is some R} such that
R1==>R}==>Rg3. ‘ ¢
¢ Proof. From the definition of the rules, it is obvious. [J
X
Lemma 5.2, Let R==>R'. Then there exists a transformation sequence
>
from R to R' such that R-—ft=>Ra=2=>Rb=>£->R‘ .
Proof. By using Lemma 5.1 repeatedly, we can construct a sequence
ESR=E>R,=E>R! SLoRe
R7~>Ra—1>Rb g>R from R==>R"'. [}
X
Theorem 5.1. Let Rg==>R,, where Rg is a linear system and CR(Rg). Let
GCH and T(G) S NFg. Assume the following property for Rg and Rp:

Y MeT(H) T NeT(G) [M=N] (i=0,n).
¢
Then = = = (in T(H)).
0 n * * ¥
Proof. By Lemma 5.2, we may assume that R0=f>Raf;>Rb=f>Rn- To prove
the theorem we will show that = = 5 (in T(H)) and = = ; (in T(H)). Consider
*
R0=f>Ra' It is clear that sc 5 Let
§={gl(x1,.,,xnl)D>Q1,.a,ga(xl,o,,xna)t>Qa} be the set of new rules added to
Rp through RO%;>R3, Define R' by I . Then Ry is the union of Rg and R'.

Since R' is linear and non-overlapping, by using condition 4.2, CR(R') can
be proved. Rg and R' are non-overlapping with each other since the function
symbols gp,..,gyz do not appear in the rewriting rules in Rgp. Hence, by

condition 4.3, CR(R,) is obtained. From the definition of rule (1),
T(G)C NF,. Y MeT(H) 3NéT(G)[MgN] has been assumed. Hence, by using
Theorem 3.1, we can obtain 5= S (in T(H)). By Rai§>Rb and the definition
of rule (2), E = ; is trivial. Now, consider Rb£%>Rn~ By = = E and ;ggi,

El
we can prove s¢z: It has been shown that CR(Ry) and T(G)<NF, hold.
VM&T(H)3 NET(G)[M=N] has been assumed. Hence, by using Theorem 3.1 for Ry4

= = (in T(H)). Therefore it follows that

and Ry, it can be proved that b

(in T(H)). [1

)

mn

oH

6. Applications to Program Transformations

By wusing Theorem 6.1, we will show the correctness of program
transformations discussed in [2][12]. Note that the transformation R==>R’

can be used in the reverse direction to obtain R from R'.

Example 6.1.(List Reverse) Let H={append, cons, rev, nil} and
G={cons, nil}, Note that T(G) can be regarded as the set of 1lists. Then
the append function is defined by:;

(1) append(nil,y)> vy,
(2) append(cons(x,v),z) > cons(x,append(y,z)).
The reverse function is given by the following rules:



(3) rev(nil) ™ nil,

(4) rev(cons(x,y))> append(rev(y),cons(x,nil)).
Let us define Ry by 2’={(1),(2),(3),(4)}. We will +transform R; to an
improved version Rg which equals R; in the restricted domain T(H). We first
add two rules(5),(6) to Rjp:

(5) append(append(x,y),z)> append(x,append(y,z)),

(6) append(x,nil)> x.
Let us define Ry by D3=57L){(5),(6)}. Note that R2=§>R1, i.e., fg;;. By
structural induction on nesting levels of function symbcocls occurring in a
term, it can be proved that v Mé&T(H)g Né'r(G)[MfN]. T(G) CNF, is obvious
from the definition of Rj. Since Ry is strongly normalizing, by using

Condition 4.1, it can be shown that CR(Rp). Hence T = (in T(H)) holds by

2
Theorem 5.1.

Now, 1let wus transform Ry to Rg by using the transformation rules:
definition, addition, and elimination. By using definition, we introduce a
new function £,

(7) £(x,y) P append(rev(x),y).
Define Rz by the union of % and rule(7). Then,

f(nil,y)=y,
and, :

f(cons(x,y),z)

;append(append(rev(y),cons(x,nil)),z)

;append(rev(y),append(cons(x,nil),z))

§f(y,append(cons(x,nil),z))

§f(y,cons(x,z)).
By using addition, we obtain Ry which is defined by the union of E and the
following:

(8) £(nil,y)Py,

(9) f(cons(x,y),z)™> £(y,cons(x,z)).
Then, rev(cons(x,y))zf(y,cons(x,nil)) holds. Hence we obtain Ry from Ry, by
addition:

(10) rev(cons(x,y))> £(y,cons(x,nil)).
Finally, by using elimination, remove unnecessary rules from Rg. Thus, we
obtain Rg defined by the union of {(1),(2)} and the rules:

(3) rev(nil) P> nil,

(10) rev(cons(x,y))> f(y,cons(x,nil)),

(8) £(nil,y)Pvy,

(9) f(cons(x,y),z)> £f(y,cons(x,z)).
By structural induction, it can be proved that v MET(H) = NET(G) [ME—-N] . Thus,
(in T(H)). [

= z (in T(H)) is obtained by Theorem 5.1. Therefore, == Z
2.

Example 6.2.(List Reverse-Append) Let the set of function symbols G



and the rewriting rule(l),...,(6) be the same as in Example 6.1. Let
H=G |) {append,rev,h} , where h is defined by the following rule:

(7) h(x,y)D append(rev(x),y)-
Let us define R; by P ={(1),(2),(3),(4),(7)} and Ry by [ =BV {(5),(6)}.
Then, since R2;}>R1, T = ?
Example 6.1. Here we obtain

(in T(H)) can be proved in the same way as in

rev(x)ih(x,nil),
h(nil,y);y,
and
h(cons(x,vy),z)
zappend(rev(cons(x,y),z)
iappend(append(rev(y),cons(x,nil)),z)
iappend(rev(y),append(cons(x,nil),z))
gappend(rev(y),cons(x,z))
§h(y,cons(x,z)).
Hence the following three rules can be added to Ry by using addition:
(8) rev(x)P> h(x,nil),
(9) h(nil,y)Pvy,
(10) h(cons(x,y),z)> h(y,cons(x,z)).
Finally, using elimination, we can obtain Rz which is defined by the union
of {(1),(2)} and,
(8) rev(x)P h(x,nil),
(9) h(nil,y) by,
(10) h(cons(x,y),z)> h(y,cons(x,z)).
By structural induction, it is possible to obtain V' M éT(H)E'Né T(G)[M;N].
(in T(H)). Therefore

Thus, by Theorem 5.1, it can be proved that
(in T(H)). [J
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7. Conclusion

In this paper we have proposed the  concept of +the equivalence in a
restricted domain for reduction systems. The key point of this concept is
that the equivalence in the restricted domain can be tested easily by using
the Church-Rosser property of reduction systems. We have shown that the
concept can be effectively applied to test the equivalence of term rewriting
systems and to prove the correctness of program transformations. We believe
firmly that these methods provide us with systematic means of proving the
equivalence which arises in various formal systems: program transformation,
program verification, semantics of abstract data types, and automated

theorem proving.
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