7MY THEER 1910
Tmr5 3y rEE 9-10
(1986, 12 12)

= -
GHC 2D 7T amokiz2 0t
TOWARDS A SEMANTIC MODEL OF GHC

TA #—

Akikazu Takeuchi

ZETH TRORM

Central Research Laboratory, Mitsubishi Electric Corporation

HoFL

GHCE AT IHEPERIANT T TA T e - %1 > e BAT T A T4 & 1 -
- a2 YoMlapmeMEriLe vl 3w T3,

b - i REl S

=8
DEROEMIVIANRAMBE T TAFAT A Y e m ST o 3, AR IEA
NKEsm A AT 2B BEME EHME IS Brock 20 27 9T 4L ET v s

b
EFa(aHCoEnTTLES LS.
PRL T Lo ffa TS,

Abstract.

T RTILIEEN TN X v SR Re

A semantic model of GHC programs based on the scenario set model of Brock et al. is

presented. It provides as a meaning of a program a set of input-output histories each associated with
causality relation between input and output substitutions and can be regarded as a basis for devel-
oping theory of parallel logic programming such as declarative debugging and equivalence preserving

transformation.

1 Introduction

The semantics of logic programs has been exten-
sively investigated [EK76], [AE82|, [LL84]. These pro-
vide a rigid basis for various mathematical manipulations
of logic programs such as program verification, equiva-
lent program transformation and declarative debugging.
Logical foundations for parallel logic programming lan-
guages are also indispensable for the development of the
theory of parallel logic programming including verifica-
tion, transformation and debugging. However, the re-
sults for pure logic programs are not directly applicable
to parallel logic programming languages because of the
new control primitives such as commitment.

Given a program P (a set of Horn clause), the suc-
cess set of the program is defined to be the set of all A
in the Herbrand base of P such that P U {« A} has an
SLD-refutation. The finite-failure set is defined to be the
set of all A in the Herbrand base of P such that there
exists a finitely-failed SLD-tree with « A as root. It is
well known that the success set, the least model and the
least fixpoint of the function associated with the program
are equivalent. The finite-failure set is characterized by
the greatest fixpoint under a certain condition. If a goal
succeeds under sound computation rules, the result is

assumed of being included in the success set. If a goal
finitely fails, then the result is ensured to be included in
the finite-failure set.

Some literatures [CG84] recommends reading a
guarded clause as just a-Horn clause. This is sufficient
as long as a goal succeeds, but this does not happen suf-,
ficient in many cases. Suppose that a goal failed. This
implies neither that the result is not in the success set,
nor that the result is in the finite-failure set, since the
goal may fail even if there is a possibility of success be-
cause of commitment to an inappropriate clause. Such
semantics becomes insufficient also if two programs with
different input/output behavior need to be distinguished.

Parallel logic programming languages have two con-
trol primitives not appearing in pure logic programs.
These are a commitment operator and a synchronization
primitive. Parallel logic programming relies heavily on
these control primitives. However, a commitment oper-
ator changes the semantics of failure and a synchroniza-
tion primitive introduces procedural flavor. It is now
obvious that declarative semantics for pure logic pro-
grams cannot characterize such aspects. of parallel logic
programs as failure and input/output behavior.

Let us consider the algorithmic debugging for par-
allel logic programming languages, where the intended
interpretation of a program plays an important role in
guiding debugging. Declarative semantics such as a suc-
cess set is no longer sufficient. Intended interpretations
should be abstract semantics characterizing all aspects
which programmers intend to express. The author de-
veloped an algorithmic debugger for GHC, where the in-
tended interpretation with procedural flavor of a GHC
program was defined [TA86]. Lloyd and Takeuchi refined
the framework for the above algorithmic debugging and
discussed some difficult cases to handle [LT86].

Another application of the semantics of parallel logic
programs is to establish the equivalence relation between

two programs, one of which is, for example, the result’

of fold/unfold transformation to the other. The way
to establish such equivalence is to demonstrate that the
meanings of two programs are the same. Tamaki and
Sato [TS84] have proved that their program transforma-

tion system of logic programs has equivalence preserving’

property using the following scenario. First they adopt
the least model semantics as meaning of a logic program.
Secondly in order to demonstrate the equivalence of two
models they show that a ground literal A in one model
is included in the another model by constructing a proof
tree from the proof tree of A in the former program and
vise varsa.

The above framework can be applicable to establish
equivalence relation in parallel logic programs. However,
there are two problems; One is - caning of a parallel
logic program. The other relates to concept of a proof
tree. As for meaning of a parallel logic program, the first
approximation is to introduce input/output concept. It
leads to total history model of Kahn [KA74] which was
developed for deterministic functional languages.

For a pure logic program, the success set, the least
model and the least fixpoint of the function associated
with the program are equivalent. The success set is a
set of ground literals that can be finitely derived from
the program. It is possible to imagine the success set
of a parallel logic program. A success set of a "parallel
logic program corresponds to a set of literals which are
final forms of goals after the computation successfully
terminates. Usually it is called a set of total histories
since the final form of a goabl represents in itself all
the inputs received and all the output sent. However,
it is known that a set of total histories is insufficient for
the semantics of nondeterministic data flow languages
[BAS81]. The example used to prove this proposition is
also valid in parallel logic programs. Hence, the set of
total histories is insufficient for the semantics of parallel
logic progams. We illustrate this using the same example
in GHC form in [BA8I1].

Anomaly:

p1([AlInl,0)
P11 (Al In] 0)

p2([A,B1_1,0)
dup([A[I],0) :- true | O= [A,A].

merge([A|Ix],Iy,0) :

true | D—[AlOut] merge (Ix,Iy,0ut).
merge(Ix,[AlIy],0) :-

true | O=[AlOut], merge(Ix Iy,Out).
merge(Ix,[],0) :- true | I
merge([],Iy,0) :- true | Iy=0.

For i=1,2

s;(Ix, Iy, Out) :- true |
dup(Ix, 0x), dup(Iy, Oy),
merge(0x, Oy, 0z), p;(0z, Out).
For i=1,2
t;(In, Dut) :- true
8;(In, Mid, Out) plusi(Out, Mid).

plusi([A|In]l, 0) :- Al .:= A+1 | O=[A1].

;- true | 0=[AlOut], p;;(In,Out).
:- true | 0=[A].

:- true | 0=[A,B].

The first arguments of p1 and p2 are used as input
ports and the second arguments as output ports. In py,
the first two elements of a list received are output one
by one as they are received. On the other hand, in po,
the first two elements are output after both elements are
received. s; has two input ports, the first and second
arguments, and one output port, the third argument.
Internally it invokes four goals, two dup’s, merge and
pi- dup outputs doubleton, the elements of ‘which are
duplicates of the first element of the list received. The
total history set of s; is:

{s:([X1Ix],_,[X,X1), s:(.,[YIIy],[Y,YD),
s;([X1Ix], [YIIy], [X,Y]),
s; ([X1Ix1, [¥{Iy],[Y,XD)}

where X and Y denote the first element of lists received
at the first and second arguments, respectively. Note
that the total history set reveals several possibilities of
outputs for the same input, which results from the non-
determinism of the merge operator. t; consists of s; and
plusi where the output of s; is connected to the sec-
ond input port of s; through plusi. plusl outputs a
singleton at the second argument, the element of which
is equal to the value of the first element of the first ar-
gument plus one. The total history set of t; when it
receives [5] is:

{£:([51,(5,51), t;([6].[5.61)}

However, the total history set of t3 is:

{t1(I51,5,51)}.

Consequently, the example illustrates that, even if the
meanings of the intermediate modules (s;) are equiva-
lent with respect to the total history set, the meanings
of the entire modules (t;) can be different in the sense
of the total history set. It implies that the extraction of
the meaning in terms of the total history set is insuffi-
cient. The difficulty in modelling computation of parallel
logic programs and nondeterministic data flow languages

results from their nondeterminism introduced by, for ex-
ample, the merge operation.

What we need is not only total histories, but also
information about dynamic behavior of a program. The
latter information should be abstract enough in order not
to extract implementation detail. There are two preced-
ing works. Namely the scenario set model by Brock and
Ackermann [BA81| and the fixpoint model by Staples
and Nguyen [SN85]. The first approach extracts causal-
ity relation between input and output data. The second
extracts transition relation (partial order) among sub-
computations.

In this paper, we present a semantic model of GHC
programs. It is based on scenario set model and it pro-
vides as a meaning of a program a set of total histo-
ries each associated with causality relation between in-
put and output data. The method to construct semantic
model is procedural from the viewpoint of logic program-
ming, but it appears unavoidable.

The section 2 briefly introduces GHC. In section 3,

the concept of a derivation tree is introduced. A deriva-
tion tree is defined syntactically and constructed from
a program. The concept of causality relation between
"input and output is also defined over a derivation tree.
The section 4 establishes the tight relation between a
feasible derivation tree and a trace tree. We define a
meaning of a program in the section 5. The anomaly
presented in this section is revisited in section 6 with
our new semantic model and it is shown that the new
model can discriminate two modules with the same total
history sets. The section 7 discussed about a couple of
applications of this new semantic model. Related works
are discussed in section 8.

2 Guarded Horn Clauses

Guarded Horn Clauses (hereafter GHC) is a parallel
logic programming language {UE85]. A program of GHC
consists of a finite set of guarded clauses. A guarded
clause has the form:

H:—Gyy..,Gp | Bi, ... Bm.

where “H”, “Gy,...,G,” and “By,..., B, are called the
head, the guard part and the body part of the clause, re-
spectively. Each G; and Bj have the form, P(Ty, ..., Tx)
(k > 0), true or U =V, where “=" is unification. We do
not deal with other built-in predicates than a unification
and true in this paper.

Without loss of generality, we assume that a head
of a guarded Horn clause has a skeletal form, that is, all
the arguments are distinct variables.

A substitution set is a set of the form:

{01/t Ot}

where v; is a variable and t; is a term.

Definition 1

3 A PFeasible Derivation Tree

3.1 A derivation tree

We introduce a derivation tree for a program P.
A derivation tree is a syntactic object and there is no
explicit relation to real computation in this section. In
later section, we will establish tight relation between a
derivation tree and a trace tree of an actual computation.

Definition 2 Let a node be a triplet (R,0;,00). R is
a skeletal predicate p(vy,...,v,) where p is a predicate
symbol and vy,...,v, are distinct variables. 8; and 0o
are both substitution sets applicable to R.

Given a program P, we say that a tree T is a derivation

tree constructed from P iff

(1) T is a node (true, ¢,4), or

(2) T is a node (X =Y,0;,80), or

(3) T is a node (R,01,00), where R is a skeletal pred-
icate appearing in P. 6; and 8o are substitution
sets.

(4) T is a tree for which there exists a clause H :
—G1,...;Gp|By, ..., By, in P satisfying the following
conditions, 'l and I'2.

Let Ty, ..., Tgn, Ti,...,Ton be immediate substrees
of T and Vy,...,Vy, Wi, ...,W,, be their root nodes.
Let (H,81,00) be a root of T
(T't) Tgi,...,Tgy are derivation trees such that
fori=1,.,n
Vi = (skel(G:),0(G:) - 61 - 11, 70.)s
I = Uj#,' Y0;,
o ” H’
(T2} Ty,...,Ty are derivation trees such that
fori=1,...,m
W; = (skel(B;),0(B;) - 01 - 1o - Br,» Po.),
To = Ui:l,..,n To:,
B, = Uj;éi Bo;,
00 = Ui:l,..,m ﬁO;

01,00,71:,%0.,B1;,Bo, are all substitution sets. skel(F)
is a skeletal form of F and o(F) is a substitution set
which creates F' when applied to the skeletal form of
F. S || T means that no element of substitution set S
substitutes variables in a term T. Note that Yo, || H in
the above definition express synchronization condition of

GHC.

Here we show some examples.

Example 1

—71—

Program
p) :- true | q(X.Y,2), r(Y,2).

q(X,Y,Z) :- X=a | Y=b, qq(2).
qq(Z) :- Z=c | true.
r(Y,Z) :- Y=b | Z=c.

Derivation tree

(0 {X/2}.{}

(q(X,Y,2),
{x/a,z/c},{Y/0})

(qq(2) . {2/c}.{P

(r(Y,2),
{¥/v}.{2/cp

Example 2

Program
p2 :- true | q(X,Y,2), r2(Xx,Y.2).

q(X,Y,2) :- X=a | Y=b, qq(2).
qq(Z) :- Z=c | true.
r2(X,Y,Z2) :- Y=b | X=a, Z=c.
Derivation tree
(2.{}.{P
@y’ N war,

{X/a.z/c}, {Y/b})
(aq(2) ,{Z/c}.{P

In the first example, the derivation tree is similar
to the trace tree of an actual computation invoked by
p(a). However, in the second example, no computation
corresponds to the derivation tree. The reason why such
derivation tree can be constructed is that the definition of
a derivation tree does not consider the causality relation
between subcomputations. In the next, we introduce the
causality relation among subcomputations as those of
input and output substitution sets.

{Y/b}.{X/a,2/c})

3.2 Causality relation among substitutions

In our derivation tree modelling, both input and
output are substitution sets. Between elements of an
input substitution set and elements of an output substi-
tution set, there exists causality relation inferred from
the least input substitution set for commitment.

Definition 3 Let T and U be a derivation tree and a
node in T, respectively. Let 81 be a subset of the input
substitution set at the node U.

We say 0; 2 60 at U in T iff 0y is the least input sub-
stitution set for the commitment to the clause invoked at
U and 8o is equal to the set of all substitutions created
by unifications (=) in the body of the clause.

Definition 4 Let T and U be a derivation tree and a
node in T, respectively. Let 0 be a subset of the input
substitution set at the node U.

We say 0 at U causes 6o iff

(1) 60 > 80 at U

(2) 0; %, 4 at U, and ¢'(C ¥) at V causes 8o, where
V is one of immediate descendants of U.

(3) 6r = $Uxs ¥Nx = ¢, ¥ at U causes ¢, x at U
causes x', and ¢'J x' at V causes 0o, where V is one
of descendants of U in T'.

a at U causes § is denoted by a@U — B. Note
that g is a set of all substitutions which can be gener-
ated by unifications at some clause and that a is the least
set which can generate 8. Terms literally placed at argu-
ment positions of a goal are regarded as parts of an input
substitution set. Therefore, as well as substitutions that
are generated at run-time, such fixed term patterns are
also regarded as contributing to cause output substitu-
tions.

Definition 5 Let T and U be a derivation tree and
a node in T, respectively. Let 8 and 8o be subsets of
input and output substitution sets at the node U.

We say 01 + 0o at U iff 0;QU — §' and 0o is a subset
of ¢ including all the substitutions relevant to the node
U.

Relation ~ introduces causality structure into input
and output substitution sets of a node.

Proposition 1 Given a derivation tree, for any node
(R,01,00) in the derivation tree, there exists decomposi-
tion {90”...,00”} (i.e., 90‘. nﬁoi = ¢ and U?:l 90; =
00) of 8 such that there exists {01,,...,01,} such that
0y, (possibly empty) C 61 and 8y, — fo,.

In other words, a pair of 8;, and 6o, is a causally
dependent pair. Note that UL, 8r, C 8. 61 — Ui, b1,
is necessary for advancing computation, but it creates no
output substitution.

We define a causally consistent derivation tree

Definition 6 Let N be a node in a derivation tree,
(Ri,01,,90,) (i =1,...,n) be immediate descendants of
N. We say N is causally consistent iff there is no
directed loop among subsets of 0, and 8o, with respect
to relation.

Definition 7 We say a derivation tree T is causally
consistent iff every node in T is causally consistent.

Example 2 illustrated above is not a causally con-
sistent derivation tree.

2.{}.{b
(q(X,Y,2), (r2(x,Y,2),
{X/a, <~ ___ _» {¥/v}.
Q Z/c}, Tt {X/a, D
{x/vh — 7 Z/c})

(qq(2).{2/<}.{P

8.3 A feasible derivation tree

Definition 8
tree iff

A derivation tree T is called a guard

(1) the root of T corresponds to a goal in a guard part
of a clause, or

(2) T is a subtree of a guard tree.

Definition 9 A node with label U is a success node

iff

(1) P = (true,¢,9), or

(2) P=(X =Y,0;,00) where X - 01 - 0o is equivalent
toY - 01 . 60

Definition 10 A derivation tree T is a success
derivation tree iff

(1) T is finite, and

(2) T is causally consistent, and

(3) all its leaf nodes are success nodes.

Definition 11 A node with label U is a failure node

iff :

(1) U = (X =Y,0;,—) where there is no substitution
making X -0y and Y - §; identical, or

(2) a node which has no clause satistying the condition

(T'1) such that all its associated guard trees are finite and

causally consistent.

Analyzing the case (2), we can classify the second
type of failure into the following three. A node is called
an infinite guard iff there is at least one clause which
only violates finite condition. A node is called block-
ing iff it is not an infinite guard and there is at least
one clause which only violates consistency condition. A
node is called finite failure iff it is neither blocking nor
infinite.

Definition 12 A derivation tree T is a failure deriva-
tion tree iff '

(1) T is finite and causally consistent, and

(2) all its guard trees are success derivation trees, and

(3) there exists at least one failure node except in the
guard tree.

Note that a failure node in a failure derivation tree
is either a blocking or a finite failure node.

Definition 13 We say a failure derivation tree is a
finite failure derivation tree iff at least one of its
failure nodes is finite failure.

Definition 14 We say a failure derivation tree is a
suspension derivation tree iff all the failure nodes
are blocking.

Definition 15 We say a derivation tree T is a feasible
derivation tree iff T is a success derivation tree, a finite
failure derivation tree or a suspension derivation tree.

4 A Feasible Derivation Tree = A Trace Tree

So far, we have syntactically defined a feasible der-
ivation tree. In this section we prove that there is a
clear correspondence between a feasible derivation tree
and a trace tree formed by an actual computation. First

we define a trace tree which is slightly different from
ordinary definition.

A trace tree is an AND free formed by a compu-
tation. Each node is represented by triplet (R, 8,00),
where R is a head of the clause invoked at the node. 6,
and o are substitution sets comming from outside and
comming up from inside, respectively.

Theorem 1 Let P and A be a program and a goal.
A trace tree of any legal finite computation invoked by
A on P is a feasible derivation tree constructed from P.

It can be easily proved from the computation rule
and the immutableness of trace.

In some sense, the above theorem states about the
soundness of a feasible derivation tree. As completeness
of a feasible derivation tree, we obtain the following the-
orem.

Theorem 2 Let P and A be a program and a goal.
For any feasible derivation tree rooted at A constructed
from P, there exsits a computation invoked by A on P,
the trace tree of which is equivalent to the tree.

Proof: It will be demonstrated by giving a sequence
of scheduling which creates the same trace tree as the
given derivation tree. By the term scheduling, we mean
the selection of a goal for resolution from a set of goals.
A sequence of scheduling is a sequence of selection of
goals. Let T be a feasible derivation tree whose root is
A. For T, we give a sequence of scheduling by induction
on the height of T. We omit the trivial nodes such as
(true,¢,¢) and (X = Y,601,00). In other words, true
and unification nodes are counted as 0.

Base case: Height is equal to 1. Suppose that T
consists of a single node A = (R,0r,00) and let R :
—G1,...,Gy|Byy. .., Biy be aclause used at A in‘the fea-
sible derivation tree. Note that {G;} and {B;} are sets
of unifications that satisfy 6; and 60, respectively. In the
computation invoked by the goal R-0;, clearly the sched~
uler selects A and the computation creates the same trace
tree as T when the clause R : —G),...,Gy|By,...,Bm
is invoked.

Induction step: Assume that, for any feasible deriva-
tion tree of height k(< N), given the same goal as the
root of the tree provided with the whole input substitu-
tions, then there exists.a sequence of scheduling which
creates the same trace as the feasible derivation tree.

Consider the feasible derivation tree T of height
N +1. Let A = (H,01,00) be a root of T and
Tgry.-.yTgn,Ti,. .., Trn be immediate substrees. Let Q;
and R; be roots of T'g; and Ty, respectively. Let C be a
clause used at A.

Given a goal H - 0, it is the first goal to be selected
and C can be invoked. From the induction hypothesis,
for each Tg;(¢ = 1,...,n) and T;(j = 1,...,m), there
exists a sequence of scheduling that creates the same

trace tree as it, provided that the goal is invoked with
the whole input substitutions.

From the following proposition and that there is no
loop in the directed graph specified by — relation over
subsets of input and output substitution sets of @; and
Rj, we can interleave the sequences of scheduling in the
way causal ordering over substitutions is preserved in the
interleaved sequence of scheduling.

Therefore the top-level goal followed by the inter-
leaved sequence is the sequence of scheduling of T'. i

Proposition 2 For a goal, sequence of scheduling is
divided into set of subsequences each associated with
causality pair of input and output substitution sets.

5 Meaning of a Program

Since what we are concerned with as a meaning of
a program is only behavior of a program which can be
observable from outside, we abstract our model, namely
a success derivation tree, a suspension derivation tree
and a finite failure derivation tree.

Given two substitution sets §; and 6o at some node,
causality structure between 67 and 8o can be specified
by the — relation over pairs of subsets of 8y and fo.
Instead of considering the whole derivation trees, it is
enough to consider the — relation between input and
output substitutions.

A success set Msuc(P) of a program P is defined to
be a set of triplets (G, 81, 80)’s which have success deriva-
tion trees, together with the — relations over subsets of
91 and 00.

Definition 16
Msuc(P) =
(H,01,00) has a success
(H,81,80,~) | derivation tree with —
relation over 8; and 9o

A suspension set Msus(P) and a finite failure set
MJ(P) of a program P are defined in the same way.

Definition 17
Msus(P) =
(H,01,60) has a suspension
(H,81,90,+) l derivation tree with

relation over 6y and fo

Definition 18
Mf(P) =
(H,81,00) has a finite failure

(H,81,00,+) derivation tree with —

relation over 8r and 8o

Now the meaning of a program P is defined to be a
triplet of these three sets.

Definition 19 -
M(P) = (Msuc(P), Msus(P), Mf(P))

The definition corresponds to a success set and a fi-
nite failure set modelling of semantics of logic programs.
The new definition is augmented by Msus(P), since sus-
pension is an important class of results of computation in
GHC. Furthermore, since, compared with Horn clauses,
concept of commitment and notion of input and out-
put are introduced in GHC, the semantics of GHC is
augmented by notion of input and output and causal-
ity relation among them. It should be also noted that
some elements belong to two or three sets, which reflects
nondeterministic choice mechanism of GHC.

6 Anomaly Revisited

Let us see the anomaly again in order to see how the
problem can be solved in our model. The problem was
that by the total history set model we cannot discrimi-
nate 8; and sz. The definition of s; is shown below.

s;(Ix, Iy, Out) :- true |

dup(Ix, Ox), dup(Iy, Oy).
merge(0x, Oy, 0z), p;(0z, Out).

In the derivation tree of s; ({A]_1,[BI_1,[A,B]):
{Ix/[A1.1} — {0x/[AIM1],M1/[A1M2] M2/ (]} in dup

{ox/TAIN1]} — {0z/[A|M3]} in merge
{0z/[AIN31} — {Out/[AIM4]} inp

{1y/[BI.1} — {0y/[BIN1],N1/[BIN2] ,¥2/[1} in dup

{oy/[BiN1]} — {N3/[BIN3]} in merge
{M3/[BIN3]} — {M4/[BIN4],N4/[]} inp

(Note that the variables, M3 and M4, appearing twice in
causality relation in merge and p;, respectively, reflect
the temporal order between causality relations.) There-
fore at the node {s; (Ix,Iy,0ut),{Ix/[Al_],Iy/[B] .1},
{out/[A,B1}):
{1x/[A1_1} — {Out/[AIM4]}
{1y/[B1.1} — {M4/[BIN4] ,N4/[]}

On the other hand, in the derivation tree of
s ([A1.),[BI-]1, [A,B]):
{1x/[A1.1} — {Ox/[AIN1],M1/[A|M2] M2/ (]} éndup =
{ox/[AIM1]} — {0z/[AIN3]} in merge
{1y/[BI_1} — {Oy/[BIN1] N1/ [BIN2] ,N2/[1} in dup
{oy/[BIN1]} — {M3/[BIN3]} in merge|2]
{0z/[AIM3] ,M3/[BIN3]}
— {Out/[AIM4] M4/ [BIN4] N4/} in pa

Therefore at the node (sz (Ix,Iy,0ut), {Ix/[Al_],
1y/[BI1.1}, {Out/[A,B1}):

{1x/TA1-1} U{Ty/[B1.1} =
{Out/[AIM4] M4/ [BIN4] N4/ 11}

Now it is obvious that sy ([A1_1, [BI.1, [A,BI)
and sy ([Al_1, [Bi_1, [A,B1) have different causality
structures, that is, s; and s, have different meanings.

7 Applications

As important applications of our semantics model
of GHC, we briefly mention about two projects, which
the author is involved in.

The first is an algorithmic debugging of GHC pro-
grams. The author developed an algothmic debugger of
GHC programs [TA86] and its formal framework was re-
fined in [LT86]. In [LT86], it is proved that the debugger
can find a bug, provided that some condition holds. The
paper discusses about some critical cases which the de-
bugger cannot handle when computation results in an
unexpected result.

The reason why this happens is regarded as that
an intended interpretation defined in [TA86] is Tough
compared with our new model. By adopting our new
semantics model as an intended interpretation of GHC
programs, it is expected to be able to prove the stronger
theorem, which guarantees that the debugger can find a
bug when a user happens to know in a natural sense that
computation results in an erroneous result.

The second is the equivalence transformation of
GHC programs. It is obvious that we need some seman-
_tic model to discuss about the equivalence preserving
property of a transformation system, however, currently
we have no such formal model. Our semantic model pro-
vides a basis for discussion about equivalence of two pro-
grams. One of the advantages of our approach is that
each computation is abstracted as a feasible derivation
tree. This is useful for proving that one computation in
one program is possible in the other program in terms
of induction on the computation tree, which is the main
technique used when proving the equivalence preserving
property of fold/unfold transformation system of logic
programs by Tamaki and Sato [TS84]. There are many
things to be done for this application and discussion
about them is out of scope of this paper.

8 Related works

As mentioned earlier in this paper, there are two
preceding works on semantic models of nondeterminstic
parallel languages. In this section we briefly review these
works in relation to our model.

8.1 A Scenario Set Model [BA81]

A scenario model was proposed as a formal model for
a nondeterminate dataflow computation. The definition
of a scenario is: A scenario is a pair consisting of an input
stream tuple and an output stream tuple, together with
a causality order relating each element of the input and
output streams to those elements which played a role in
its creation. The advantage of the scenario model is that
it is static and it can be found in the whole history of
computation.

A scenario model can be extended to a model for
parallel logic programming languages. In fact, our model
is based on this model. In our model, input and out-
put stream tuples are replaced by input and output sub-
stitutions. A meaning of a GHC program is given as
a set of literals with causality order relating each ele-
ment of input and output substitutions to those elements
which played a role in its creation. Causality relation
can be syntactically extracted from a clause by defin-
ing primitive causality which relates input substitutions
contributing to the commitment to the clause to output
substitutions created in the body part of the clause.

8.2 Fixpoint Model [SN85]

The model consists of the partially ordered multi-
set of input-output histories. An input-output history
may be incomplete which corresponds to computation
not yet terminating. To one (possibly incomplete) input-
output history, many states of computation may corre-
spond, since an input-output history is abstract view for
computation. Partial order between two elements in the
multiset is interpreted to mean that the least computa-
tion achieving one history can be extended to the least
computation achieving the other. The disadvantage of
this model is that the model captures dynamic prop-
erty of computation. It may make the demonstration of
equivalence of two programs difficult. For the demon-
stration, it is desired that we could focus on one element
of a set at a time. But in this model, when we discuss
about behavior of a program, we have to always consider
all the possible input-output histories with partial order,
since this partially order structure is the way this model
characterizes nondeterministic computation.

8.3 Relation between two models

Usually nondeterministic computation can be char-
acterized as an AND-OR tree, where nondeterministic
choices are modelled as OR branches. Scenario set model
captures the AND tree component of the tree, in which
choices made are reflected as causality relation among
input and output at a node. Fixpoint model captures
the nondeterminism in the form of OR tree, the nodes of
which correspond to ongoing (AND) computations. In
this approach, choice points are represented explicitly as
nodes in the OR tree. But each node carries no informa-
tion about its history.

9 Conclusion

We have presented a semantic model of GHC pro-
grams. It is based on scenario set model and provides
as a meaning of a program a set of total histories each
associated with causality relation between input and out-
put data. A feasible derivation tree can be syntactically
constructed from a program. In this sense, a feasible
derivation tree is a syntactic object. However, in section

4, we have shown that there is a tight relation between
a feasible derivation tree and a trace tree. Therefore a
feasible derivation tree can be regarded as an abstract
image of computation.

Owing to the fact that a feasible derivation tree
can be constructed syntactically from a program, we can
extract a meaning of a program statically. This will help
the development of theory of parallel logic programming
such as declarative debugging and equivalence preserving
trans'formatio'n. '

We believe that the framework can be also applica-
ble to other parallel logic languages such as PARLOG
|CG84], Oc [HI85] and Concurrent Prolog [SH83]. The
current model is procedurally defined. Declarative re-
construction of the model and its applications to equiv-
alence preserving transformation system and refinement
of declarative debugging are the next research themes.

10 Acknowledgement

We would like to thank Kazunori Ueda and Hirohisa
Seki for informing about two important papers and help-
ful discussion. We would also like to thank Koichi Fu-
rukawa and all the other members of 1st Lab. of ICOT,
both for discussion and for providing a stimulating at-
mosphere in which to work.

References

[AE82] K. R. Apt and M. H. van Emden, Contributions
to the Theory of Logic Programming, J. ACM, vol.
29, no. 3, 1982, pp. 841-862.

[BA81] J. D. Brock and W. B. Ackermann, Scenario: A
Model of Nonderminate Computation, In Formal-
ization of Programming Concepts, J. Diaz and I
Ramos (ed.), Lecture Notes in Computer Science,
vol. 107, Springer-Verlag, 1981, pp. 252-259.

[cG84] K. L. Clark and 8. Gregory, PARLOG: Paral-
lel Programming in Logic, Research Report DOC
84/4, Dept. of Computing, Imperial College of Sci-
ence and Technology, London, 1984.

[EK76] M. H. van Emden and R. Kowalski, The Se-
mantics of Predicate Logic as a Programming Lan-
guage, J. ACM, Vol. 23, No. 4 (1976), pp. 733-742.

[HI85] M. Hirata, Self-Description of Oc and Its Appli-
cations, In Proc. Second National Conf. of Japan
Society of Software Science and Technology, 1985,
pp. 163-156. (in Japanese)

[KA74] G. Kahn, The Semantics of a Simple Language
for Parallel Programming, Proceedings of IFIP
Congress 74, J. L. Rosenfeld, Ed. , 1974, pp. 471-
475.

[LL84] J. W. Lloyd, Foundations of Logic Programming,
Springer-Verlag, 1984.

[LT86] J. W. Lloyd and A. Takeuchi, A Framework of
Debugging GHC, ICOT Tech. Report TR-186, In-

stitute for New Generation Computer Technology,
Tokyo, 1986.

[SH83] E. Y. Shapiro, A Subset of Concurrent Prolog
and Its Interpreter, ICOT Tech. Report TR-003,
Institute for New Generation Computer Technol-
ogy, Tokyo, 1983.

[SN85] J. Staples, V. L. Nguyen, A Fixpoint Semantics
for Nondeterministic Data Flow, J. ACM, Vol. 32,
No. 2 (1985), pp. 411-444.

[TA86] A. Takeuchi, Algorithmic Debugging of GHC
programs, ICOT Tech. Report TR-185, Institute
for New Generation Computer Technology, Tokyo,
1986.

[TS84] H. Tamaki and T. Sato, Unfold/Fold Transforma-
tion of Logic Programs, In Proc: The Second Inter.
Conf. on Logic Programming, Uppsala University,
1984, pp. 127-138.

[UE85] K. Ueda, Guarded Horn Clauses, ICOT Tech. Re-
port TR-103, Institute for New Generation Com-
puter Technology, 1985. Also appearing in Lecture
Notes in Computer Science, Springer-Verlag, 1986.

