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0. Introduction

The second order polymorphic lambda calculus (we say hereafter simply
_polymorphism) is an extension of the simple typed lambda calculus. We
can use type variables in deduction of terms, handling them through type
abstraction At.M and its elimination M[o]. A term of the form At.M can be
considered as a type-indexed families of terms, which are defined for all
types.

Here is a philosophical standpoint. As stated in [6], Strachey
distinguished parametric polymorphism from ad hoc polymorphism. A
parametric function must have a uniform definition for each type, while
an ad hoc function may be only a bundle of functions, which has various
definitions according to their types. In polymorphism, we aim at taking
up only parametric functions.

In semantics, what should we do to keep ad hoc functions out? Pursuing
a set-theoretical model, Reynolds provided a presumption in [6]. In
his model, the meaning of a function type [7} o2 r]7is the set of all
functions from [Tt o317 to [PFz] 7 , and the meaning of a universal
type I7+%,c17 is a set of type-indexed families of functions. If it
is, however, the whole collection of families, it may be too large too
be a set. Therefore we must restrict it'to smaller one, and he thought
that if collecting only parametric functions we may evade cardinality
explosion. Unfortunately his attempt failed, as proved by himself in
(7], and it stimulates the development of various notions of models for
polymorphism [2], [5], [7]. In this paper we adopt the so-called Bruce-
Meyer models, and develop Reynolds’ semantical notion of parametricity in
them. Qur main assertion is that it is not only mere philosophy, but has .
some concrete applications.

In this paper, we concentrate on the problem of recursive type defi-
nitions. It is well known that many useful types can be defined as initial
fixed points of domain equations, like natural numbers, lists, and trees,
and they are especially explored well in the category of complete partial
orders [4]. For instance, in a category with a terminal object and coprod-
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ucts, the type of natural numbers is an initial fixed point of the equation
X ~1+X.

After some preliminaries, in Theorem 3.4., we prove that a category
constructed from a model has initial fixed points if and only if a certain
kind of parametric condition holds in the model.

1. Syntax, semantics, and parametricity.

1.1. Syntax.
The second order order polymorphic lambda calculus (or polymorphism)
is defined by the following data.
A type has the form 77+ o, where [7is a finite set of type variables.
The set of all types is the least closure of the following rules,
(Ty-1) T+t (tep)
(Ty-2) Tto Ttz
Troe><T

(Ty-3) I, thte
TFVLo

Sometimes ‘ 77} * will be omitted.
Syntactical type assignments to ordinary variables have the form

X; T’}—o'], AR 51 ko,
where all two x; and x; are disjoint. Note that all 77} is common, and
although it is written as a sequence, it is taken for a set.
A term has the form

OFM T ro

where @ is syntactical type assignments in which all ordinary variables
are typed to those which begin with ‘7t’. The set of all terms is the least
closure of the following rules,

(Te-1) @Fx: Proe (x: T+oé@)
(Te-2) @, x: "+to FM: Tkt
®FAXTM :FrowT
(Te-3) @LM:.rroT @FN:.TtC
@FMN: 7T
(Te-4) O M:T e ko
® FAt . M: VL. o

where for syntactical type assignments &= x: 77+ (we use an underline to
denote a finite set), in which 7 does not include t, @+t= x:77,tFo

(Te-5) OFM: 7Y, @
@ FMIz]: Tro[t:=7]
where 77tz is a type, and ¢ [t:=7] is one in which we substituted ¢ for t in o,
. We will make use of some abbreviations of ®F M: 7} o into , e.g. in the
shortest case, M.




’ /
We can equate two terms @ ¢ M: o and @ +N: 7'k o only if @ =@ and 7} o
=T’ Equality between two terms are the least congruence relation in-
cluding the next four conversions,

()  (Ax.MN = NM[x:=N]
(7) ax.Mx=M

where x does not occur freely in M.
(Type p)  (At.M)[2] = M[t:=2]
(Type 7) At.M[t] =M

where t does not occur freely in M.

1.2. Semantics.

T is a quadruple <J, [T=>3] , =>, V> where Jis a non-empty set,
[J=>J] is a set of functions on StoJ, =>:F=>7, andV: [T=>F1->F. For
F e [T=>7], we write VX.F(X) for V(F).

For each A€ J, a possibly empty set D4 is provided.

For each A,B ¢ 7,

>

2]
7y _ ‘Qa > .
Dios == =0, @7 wiq,
A,B

where [D}1 =>DB] is a subset of functions from D, to Dg. For each F ¢ [T=>7],
&r
> oy T DYy e s
DVX‘F(x)é—V— [Trx' DF(‘)] ’ Q Y - ldt
et
wher'e ET(X?DF(X)] is a subset of T[X.?Dm).
We call a triple & = <T, D, <,¥ >> a second order functional domain.
If in addition Yo &= id, we say that the domain is extensional. From now
on, all considered domain is extensional. n'
Atypet;, ... ,t,}F0is interpreted in JT-->7, as :
(Ty-1) [7F+tI(F:=A) = A, )
(Ty-2) [T Fo=>2]7= [FFedl=>[f}z]7,
(Ty-3) ITHYE.007 =VX.[7,t+5]7(t:=X).
Here we use 7 for a type environment.
Aterm @ [ M: 7t rwhere = t,, ... 1ty and @=x: Thop, ... ,x,
:7°F0,, is interpreted in

X7 X APES (T =X) ~-> [PFTI(F:=X))

where [Tt Ji( F=X) = [TFORT (T:=X) * ... * I+ I(7:=X) , as :
(Te-1) [® Fx: "toe]7(x:=a) = a,
(Te~2) [@FAxT M:THo=>2]7p= w7 aa ™7 IM] 7p(y:=d)),
(Te-3) L@ FmN: 7+ z]7p= &7(IMD7p) (IND 7)),




(Te-a) L@ FAt.M: TEVe. oD Tp = QX7 THD 7(t:=X) ),
(Te-5) [@FM[z]:tolt:=210 7p = @ (KD 7p) (I2D7).
Here we use £ for a term environment.
If the interpretation above is possible, the extensional domain is

called a second order model or simply a model. The reader can refer to [1],
[2] for the detail.

1.3. Parametricity.

For A, B € J, arelation X between A and B is a subset of Dy*Dg and
denoted by A_X_B. For ae D, and b € Dy, we write a-X b for (a,b)e X .

Let { be the collection of all relations, andf?oa subset of 2. We as-
sume that F ¢ [T=>J] can be extended to a function on Rotof?, such that

A X BeRr, = F(A) _FX_r(B).

Definition 1.1.

Sets7,%,, and F as above.
i) Dvy pe) is parametric w.r.t. %, if and only if for all a € D vy Fpyand
AX Bes,
$%(a)(n) FX_3"a)(8).
ii) A model ¢ is parametric w.r.t. %, if and only if for all F € [J=>J], F
can be extended to a function of £ --> % , and Dvy ri) is parametric w.r.t. %,

This definition is similar to that of Reynolds, [6].

2. Categorical establishment. .

2.1. Categorification.

From a model ¢ , we construct a small category Cg . The idea is simple.
Obj (Cg) =3 and Homcg(A,B) =Dg5p - An identity arrow 1,:A --> A is defined
as .

1, =[ax™x]7p (1)
and a compositiongef : A-->Cforf: A-——>Bandg: B-->Cis
gof = ﬂxx.t“x’(xfx)j] 7p 2

These definitions show the main technique of proofs in this papex. In
(1) one prepares a new type variable t, and deduces a term
FaxBx : toht,=>t,.
And its interpretation under the environment 7= (t4:=4) and p = &, is de-

fined to be 1,. In (2) three type variables ty, tg, and t., and two ordinary
variables X;, Xg, are prepared, and a term

X1 TR =Yy, Xt THt=>t b AxMx (xx) 1 FHE,=>t,
where T'=t,, tg, t¢, is interpreted under the environment 7= (t,:=4)(tz
:=B) (t.:=c) and p= (xj:=f)(x}:=g). Then it is to be the composition gof.



Henceforth we will not mention to the content of each environment,
anticipating the reader could recover the ambiguity from the suffixes, and
even may use the same 7 or p for different environments.

Using this technique, e.g. inDefinition 1.1., one may write

[x,[t 107 —FX [x,[t,1D 7
for &¥(a) () —FX)_ $¥(a)(B).

Proposition 2.1.

Cz is a small category.

2.2. Representable functors

Take a type [,t }o. In a type environment, fixing the assignments for 77
and not determining one for t, we obtain a function F € [J=>7], as

F=[7,ttoD7(t:=-) or simply [ 7,¢t bol?

where 7 is a fixed environment for 7. We will extend it to an endofunctor
on Cg.

Definition 2.2.

Let Fbe [7,t F o¢ 7. If t appears only positively (negatively) in 0}2, F can
be extended to a covariant endofunctor on C (or contravasr ant resp ),

We must extend F to be an arrow function. First for any termM : 77tp
=>p’, inductively define a term

/.
oplt:=M] : VFUF[t:=p] => O}_—[t:=P]
(in the covariant case). And for an arrow f : A --> B, put
F(f) = ﬂo;;[t:=xf]ﬂ 7(.
i) o= (se1),
o Lt:=M] = ax?® x
ii) o= t,
a.[t:=M] =M
iii) op = %, =>0), where G'Qis contravariant and o is covariant,
0 [t:=M] = 3x® ay ¥ o, [: =MD (x(, [6: =M (1)),

where 7= O'F[t:=f>], and z’= O [t:=p].
iv)O)’;= Vu.o,,

oplt:=M] =ax’ Au. (0 [t:=K](x[ul)),
where ¢ = 0‘;_-[t:=p].

Similar for the contravariant case.

We call such F a representable (covariant or contravariant) functor.

2.3. Representable relation functions.



Take a type 7,t | ¢ again, in which case t may occur both positively and
negatively in o .. This time we extend it to a function from 2 toR. We will
call such F a representable relation function.

Definition 2.3.

F= J7,tFoz]7can be extended to a function of ¢ -->#, such that for any
AX Ber, F(A) FX) F(B).

The definition is by the induction on the structure of o,
i) ch='s (seT),
F(X) = [sD7(t:=2) = 1
ii) ¢ =%,
F(X) = [t37(t:=2) =
iii) =g =>q,
F(X) = 6(X)=>H(X)
Fhere for f ¢ F(A) and g € F(B), £ Mg iff for anya—"— a@) p,
.tb(f) (a) ~X0 HO & (g) (b) or equivalently l[x X, 17%7p H&) ﬂx{}x 17p-
iv) o= Vu. o,
for any £ € F(A) and g ¢ F(B) £ _FX giff foranyCe T,
2" () %X $"g) ()

where G (X) = [7,u,t F §I{(u:=C)(t:=2), or equivalently [x [t 1] 7p 2= GeX) Ix,
[t ]1179

(identity relation).

07

We are especially interested in a set of relations called J7y, .

Ifl

Definition 2.4. %4, consists of all relations of the form A
f: A-->Bis an arrow 1nC§ and for a € Aand b ¢ B,

a Yl biff 7€) (a) = b (or Ixx,D7p = Ix,D7¢).

B where

Proposition 2.5.

Let F be a representable covariant functor (hence a representable relation
function). Then for any |f] ¢ 524, ,

FC(I£]) = [F(£) ]

Another useful tool for relating a functor to a relation function is :
for G and H representable covariant functors,

g GCF) P HOFD 4 owhere o fl B
if and only if



3. Initial fixed point .
3.1. Fixed point.

Definition 3.1.

Let C be a category and F an endofunctor on C.

i) An object M of C is called a pre-fixed point of F, if there exists an ar-
rowu : F(M) --> M. :

ii) Mis called a fixed point of F, if in addition there exists an arrow u/:
M -->F(M), and uéu = id r,, and weu’= id

We are interested in the case that F is representable, and in a special
fixed point called initial fixed point. To explain it we need the category
F-Alg defined below.

Definition 3.2.

Let F be an endofunctor on a category C. The category of F-algebras F-Alg
is given by the following data :

i) an object is (A, £) such that £ : F(A) --> A in C.

ii) an arrow g : (4, £f) -—-> (47, f’) is an arrow g : A -—> A"in € such that

F(A) ——————- > F(A")
Fp
f £
PR S
commutes.

Proposition 3.3.

If F~Alg has an initial object (M, u), Mis a fixed point of F.

For the proof of Proposition 3.3. the reader can refer to [4], [8] R
[10]. We call that fixed point an initial fixed point of F. The importance
of initial fixed points is studied in [4]. If (M, u) is just only a pre-
initial fixed point of F-Alg, which is defined by weakening ‘unique’
to ‘at least one’ in the universal condition of initiality, we say M a
bre-initial (pre-)fixed point.




3.2. Initial fixed point in parametric polymorphism

Here is our main theorem.

Theorem 3.4.

Let F be a representable endofunctor on Cg'
i) M = VX, ((F(X)=>X)=>X) is a pre-initial fixed point of F.

ii) M is an initial fixed point of F, if and only if M is parametric w.r.t.
Rar.

(Proof)
i) Let F be represented by /°,t | ¢ 7, and put = V. ((0;=>t)=>t). For each f
: F(A) ==> A, we define an arrow p M-->A as

P{= H.AX?_”x[tAJX;H 7?:
and define u : F(M) -->M as

= DT My Ty (e e (x)) (3
where Mp{ = axMx[tly.

Then by direct calculation,

commutes for any f : F(A) ——> A. Therefore M is a pre-initial fixed point
of F.

ii) (=>)
Take any n ¢ D We must show that
Ix [t]]]’]p CFAafD 215D 2 1f ] Ix,[t1] 7p (2)

for any A 1! __ Ifi__p.
Take any g FAEH > M| p, Using the remark just below Proposi-
tion2.5., the inner, right trapezoid in the following diagram commutes.

Fcpg) FB)

F) —— s F() ~ PP
F(Pg)

u ¢ A

M—._>A

="

Then, since M is supposed to be initial in F-Alg, all displayed diagrams in
this figure commute. In particular, the lower triangle shows that for any
n € DM,

qﬁ(pg) (n)

3% p) (),



that is,
Ix,[t,]x D 70 Ifl [x,[e)x, D 7p.
thus (4) is proved.
(<=)
First prove that B, M-->Mis id, Take any g : F(A) --> A, and
u_Fdpsb > [ps] .
Since M is parametric w.r.t. Ry , for any n € DM,
Ix, [0 m, D 7p _1Pel Ix,ltyIx, I 7p
where M is the lambda term defining u in (3). Thus
[[(Xn[‘J;{]Mu) Lo dxg I 7p = [Ixn[tA] X 17
Since A, g, and n are arbitrary, taking ),xj, At , and,lxnin this order,
P~ idM. (5)
Next prove that for any h : (M, u) --> (4, g) in F-Alg, p = hopu. From
the definition of h 4
w _FUAD S KT

Then similar to the above, for any n € DM,
0%l 00, D7p AL Tx [t x, 1 7p,
that is, '
[%,(x, o] Mu)ﬂ p = [Ixn[tA]xgj] 7p.
Taking ax ,
hop = Pg- (6)

From (5) and (6), we obtain h = pg, which shows that M is an initial
fixed point.

Example 3.5.

Let ¢ be a model parametric w.r.t. X4 . Then C,has a terminal object 1 and
coproducts (it will be showed in the forthcoming paper). So

F(X) = 1+X
is a representable functor, and from Theorem 3.5. , N = VX (((14X) =>X) =>X)

is an initial fixed point of F. N is a natural numbers object in the sense
of [3], and equivalent to the usual encoding vx. ((X=>X)=>X=>X).
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