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A formulation of semantic theories for processes which does not rely on the notion of
observables or convergence, is studied. The new construction is solely based on reduction
relation and equational reasoning, but can induce meaningful theories for processes, both
in strong and weak settings. The resulting theories in many cases coincide with, and
sometimes generalizes, observation-based formulation of behavioural equivalences. The
construction is performed for a small system called v-calculus. We also briefly summarize
the results of its application to CCS, w-calculus and \-calculus.
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1 wv-calculus

Basic definitions for v-calculus are presented. After defining terms and reduction rela-
tion, we formulate two transition relations based on distinct notions of observables, each
of which induce quite different behavioural equivalences.

We assume the infinite set of names, ranged over by a,b,¢,... or z,,2,.... Then the
set of terms, T,, is given by the following grammar. P,Q, R, ... range over the set.

P i=«av | az.P | |z|P | P,Q | laz.P | A

where “laz.P we assume a # z. Among terms, “« av” denotes a message to a target
a carrying a value v, while “az.P” denotes an receptor which receives a message and
instantiates the value in its body. In az.P, z binds free occurrences of z in P (like  in
Az.P). “|z|P” is a scope restriction and z in |z| binds free occurrences of z in P. “P,Q”
is a concurrent composition of P and Q. “laz.P” is a lazy replicator. “A” is a syntactic
convention to denote nothing. Free (resp. bound) namesin P is denoted by FA(P) (resp.
BN (P)). We also assume the usual notion of substitution, [v/z] (or o), and a-conversion.
For technical convenience we hereafter identify a-convertible terms. Some conventions:
we write « ¢ and c.P to mean we do not care the value to be communicated; |zy|P
denotes |z|(|y|(P)); Finally we will freely use parenthesis to be explicit about syntactic
construction.

Reduction relation provides the basic notion of computing in the formalism. To for-
mulate reduction we first stipulate a set of structural rules following Milner [14] (cf. [4]).
We define = to be the smallest equivalence relation over terms generated by:

(1) (PQ).R=P(Q,R) (4) PQ=Q,P
(2) PA=P (5) ‘laz.P = az(P,laz.P)
3) [z|P,Q = [2|(P,Q) (€ FN(Q)) (6) P=Q then P,R=Q,R and |2|P = [2]Q.

Let 0,&, ... range over a sequence of concurrent composition of terms of the forms « av
and az.P, and w be a finite string of names. The main definition follows.

DEFINITION (Reduction relation)

(i) One-step reduction, or simply reduction, denoted —, is the smallest relation over
terms generated by the following rules.

COM:  [@l(d, ~av,az.P,d) — [@](, Plv/a],?)
STRUCT : P[=P,, P~ P,, P,=P,
P — P,
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(i) Multi step reduction — is defined: — &

We give some examples of reductions, along with several important expressions.

(i) Let P Q@ &f lej(& ¢, ¢.P, ¢.Q). Then: P &Q — (Pclc.Q) and
P 3Q — (Q,lc|lc.P). Note |c|c.QQ is a term which never reduces nor interacts.

(i) Let FW(ab) €lay. « by.  Then: FW(ab),— av — FW(ab), — bv.
FW(ab) is called a forwarder.

(iii) Let £Q(ab) € (FW(ab), FW(ba)). Then: £Q(ab),—av — E£Q(ab), —bv —
£Q(ab), —av — .... £Q(ab) is called an equator. Note £Q(ab) = £Q(ba).

(iv) Let Z(a) & FW(aa). Then: I(a),—av - ZI(a),«av — ... I(a)is
called an identity receptor.
(v) Let Q¥ |ol(«=00, Z(0)). Then: © — Q — O — ...

We take ~, and =, from [8], ~, and ~, are corresponding strong bisimilarities.

2 Reduction Theories for v-calculus

2.1. v-theories. A v-theory, or simply a theory, is a formal theory, their formulae of
the form P = @, with at least the following axioms and rules.

(1) P=P 6) P=Q = P, R=Q,R.
(2) P=Q = Q=P () P=Q = R,P=R,Q.
B) P=Q, Q=R = P=R 8) P=Q = |z|P=|z|Q.
4) P=Q = az.P=az.Q. (9) az.P=0by.Q = laz.P =lby.Q.

Some notations:

(i) 8, ¥, ... range over v-theories. The minimum (in the sense of (iv) below)
v-theory is denoted by J=.

(ii) If P = Q is provable in ¥ then we write S P = Q, or sometimes P =g Q.
Specifically we often write P =, @ for S F P = Q.

(iii) Given a set of equations £, £+ S is the result of adding equations as axioms to
$. €+ denotes € + S=. S+ I is a result of adding the set of equations from
two theories to above rules'. We extend this to an arbitrary family of v-theories,

writing Y-{Si}:er, I being an index set.

INote we do not take the union of the rules.
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(iv) The relation induced by a theory & is denoted by |J|. Given a family of v-
theories, the mazimum (resp. minimum) theories are those whose corresponding
relations are the maximum (resp. minimum) in that family. We say a v-theory
S is a subtheory of another theory & if || C |S'|. If the inclusion is strict then
the former is a proper subtheory of the latter.

v) We say a theory is consistent, written S € Con, if it does not equate all possible
y q !
pairs of terms (i.e. not |$] = T, x T,). A theory is inconsistent if it is not
consistent.

2.2. Reduction closure property. The notion of states is essential in concurrency.
A term may change its meaning during its reductions so that “equality” in this setting
means that two equated terms can go to an equated state again. But what is this equation
here, if there is no notion of observables available? The purely equational reduction-based
closure property to follow is one of answers to this question?.

DEFINITION A v-theory & is reduction-closed, if, whenever S+ P = Q, P — P’ im-
plies, for some Q', @ — @' and S+ P =Q'.

We often call reduction-closed v-theories simply reduction theories. The following
property of reduction theories is important.

PROPOSITION Let &y and Sy be two reduction theories. Then Sy + Sy is also a (possibly
inconsistent) reduction theory. This is extended to an arbitrary sum of reduction theories.

Unfortunately the closure property alone may not induce any canonical equational
constructions, except the minimum (which is e.g. ) and the maximum (which is any
inconsistent theory). To amend the situation, we refine our equational scheme by incor-
porating the notion of insensitivity.

2. 3. Insensitivity and sound theories. Let C be a one-hole context and C,, a n-holes
context, with each hole occurring exactly once in the latter. Then we define:

C = Cp ®g 3Jo1,..,0, VPET,.C[P] — C,[Pay]...[Pcy,]

and similarly ¢ — C,. Weread C — C, (resp. C — C,) “the context C generically
one-step (resp. multi-step) reduces to C,,”. We also use the notation C =, C’ which is
defined in a similar fashion.

2Essentially the same construction is referred to at the end of [15], though somewhat negatively.
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DEFINITION Let C[] be an arbitrary context. A term Py is insensitive if Py is in a sel
T’ where for all P € T', C[P] — P’ implies P' =, C.[Q1]...[Q.] where C —= C!, with
@QieT,i=1.n. :

The set of insensitive terms is denoted Ins, . It is easy to see that this set is also closed
in the way depicted in the definition. We call a reduction theory which equate insensitive
terms sound.

Note we immediately get:

PROPOSITION S, & {(P =Q)|P,Q € Ins, }+ is sound and reduction-closed.

2. 4. Intrinsic observables. An essential fact about reduction-closed v-theories is that
sound and consistent theories are, a posteriori, automatically equipped with observables.
Since it is induced from reduction relation relative to the base equations which seem
hardly questionable, the induced observables may be regarded intrinsic in the calculus,
though confined to the weak setting.

Let a pair of terms be incompatible, written P # @, if for any sound &, S + P =
@ = $ ¢ Con. One such pair becomes essential in deriving observability.

LEMMA —c#A, cA# A, and («—c,cA) # A.

We now formulate a notion of “generic observable” intrinsic in sound theories, by a
simple transition system.

— pl Ta 1_ ]
|@](8, —av, &) B |9](9,8") (a ¢ (@) P=P jjgg,%é

THEOREM (Observability) Let & be a sound and consistent reduction theory and & b
P =Q. Then

rp = Q—»—w&—» Q' for some Q' with S+ P' = Q.

Note the transition relation by itself induces a version of bisimilarity which is obviously
non-trivial®. Hence we have:

COROLLARY Let Sy and Sy be consistent and sound. Then Sy + Sy is also consistent
and sound. This extends to arbitrary sum of consistent and sound theories.

3A relation is trivial if it is empty or universal.
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It is clear now that the observability theorem assures us the existence of the maximum
consistent sound theory.

PROPOSITION Let P= Q &g S F P =Q for some consistent and sound 5.

Then we define a theory S as & def {(P=@Q)] P=Q}+. Then I is sound and

*
v v

consistent. Moreover it is mazimum among such theories.

2.5. Strong theories and Bisimilarities. Reduction theories are essentially incepted
in a “weak” semantic framework, since they do not care the number of reduction steps,
less the termination. Notably we have @ = A in any sound theories. The following
construction now tells us that we can easily “derive” strong theories out of them. The
construction may still be regarded natural and consistent, since a “weak” theory firstly
tells us what is the abstract meaning of each term, then we refine the induced equations
by considering exact steps a term needs to reach another semantic point.

3 Discussion

3.1. Reduction theories for other Calculi. This section briefly summarized that
results for applying our construction to not only other process calculi (CCS[11, 13], #-
calculus[12, 14]), but also A-calculus.

CCS. One essential issue in constructing reduction theories for CCS is that the sum-
mation is problematic in weak congruent theories in general. However we restore weak
bisimilarity in our purely equational setting by considering the maximum sound theory
among subset of CCS-contexts where a hole does not occur as a subexpression of a sum-
mand. In CCS the soundness property leads to synchronous bisimilarities, both in the
weak and strong cases. ‘

n-calculus. m-calculus[12, 14] is a superset of v-calculus and is based on synchronous
name passing. There are some versions of the calculus and reduction theories can be
formulated for all of them; we, however, would like to refer to one interesting point
on sound theories for the fragmentary m-calculus{14]. As night be expected, we have a
result of generic synchronous observables for sound theories, i.e. input are also taken
account. What was rather unexpected is the fact that the equators are also functional in
the synchronous regime. This means that the maximum consistent sound theory in the
fragmentary 7-calculus contains an equation of the form:

EQ (vw)lav.P = £Q,(vw)law.P

where in 7-calculus we write £Q.(vw) % lv(z).wz|lw(z).52. The reason of this is
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that equators, by their very existence, transforms synchronous communication into asyn-
chronous one, and then functions as in the asynchronous regime, i.e. equates names. Thus
the maximum consistent sound theory for the fragment becomes strictly more general than
“early” weak bisimilarity?.

A-calculus. Equational theories based on reduction and equation are extensively stud-
ied in terms of A-calculus [3]. Specifically $-equality is subsumed in our reduction-closure
property as noted, not to say many of our formal constructions are inspired by A-theories.
A natural question is; can we get any (interesting) observable if we equate insensitive
terms? The answer is yes, at least in a certain family of sound theories where essential
equations are beside a-equality, the equation of strongly unsolvable terms and the equa-
tion of PO, terms®. We say a reduction theory is w-sound if it is sound and, moreover,
equate all PO, terms. In the family of w-sound theories, we can pick up head-normal
forms as generic observables, though still without B-equality. Let & be an w-sound re-
duction theory over A-terms. Then:

§FM=N = (M has some head normal form = N has some head normal form).

Since termination (cf. Lazy A-calculus[2, 16]) is not regarded as fundamental here, this
notion of generic observable should be regarded as natural. An important corollary of this
is again the existence of the maximum consistent theory in the family of theories, which
coincides with X*. Further investigation in this line is left to future expositions.

3.2. Further Issues. While reduction-based formulation of concurrency semantics has
proved to be significant in varied formalisms, it remains to see how general it in fact is.
Two further directions should be pointed out. Firstly we should ask whether the present
framework can extend to other formalisms and other operators, and also to varied notions
of equivalences (c.f. [1]). Secondly, and possibly more importantly, investigation of the
formal mechanism underlying the present construction, which after all turns out to be
effective in several significant systems, is essential. This should be related with study of
formal models for concurrency, since e.g. our S, clearly reminds us of K* which is a theory
of several basic models of A-calculus. Thus, for example, $% may be used as a hint to
construct mathematical (i.e. syntax-free) models of v-calculus. This line of investigation
may also be helpful in understanding the nature of structural rules.

We hope further investigation of the reduction theories and related formulations, will
contribute to deeper understanding of semantic structure of concurrent computation, and
lead to their applications to significant semantic problems, both theoretical and pragmatic.

“In the strong setting, the theory corresponding to the maximum consistent sound theory coincides
with “early” strong bisimilarity as formulated in [12].

5We say M is a POy, term, if for any natural number n, there is M’ such that M — Azq..z,. .M’
with n’ > n[10, 16].
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