A '%%'%ﬁ_ 18— 8
.7, 21)

H

TRrG IV~
(199

W T
i

EEFIEHHIC B 0 5 BHPEIRE B D 72D D
HOXBSESE 72 = 7 MRl SaE

Bk RREET KR
FORRFR AP ER TR AR

F X RLFEAE - v BEFRORICEE S X5 A, RERIAYRT 7Y r— v 3 v 255
HEBR L CRHRICETT 30, HERFEORTREEAY o —XHEETH 5. KR
T, Bx ZHNEREER Y X 7 22 FRCERRT 2 e poEERB (Y 7 v 7 7 14 7)) A
7Yz 7 MEEEEE ABCL/R3 %K T 5, ABCL/R3 TIt, MFILE NI XTF LD A X L=
MO T EER - HEET 7) r—va v bRkEhF ity dc et Xr¥a—0 v
Ve ATV FEHE - BN EE EOREBEESTRKICIEMCE 5, AR TR 2. HFE
B AP1000 LIVER LA T v + 24 7o 27 2% AT, FRNZFEET - o

An Object-Oriented Concurrent Reflective Language
for Dynamic Resource Management
in Highly Parallel Computing

Hidehiko Masuhara* Satoshi Matsuokal Akinori Yonezawa

Department of Information Science, the University of Tokyo

Irregular parallel applications, whose data and communication patterns are determined
only at run-time, often requires good dynamic resource management (DRM) tailored to
the application and/or hardware architecture for efficient execution. To easily provide
such DRM system, this paper proposes an object-oriented concurrent reflective language
ABCL/R3. In ABCL/R3, various DRM systems including scheduling, object allocation,
and load balancing, can be realized by modifying/extending abstracted meta-level of the
language in an encapsulated way. This paper also shows preliminary evaluation of the
language including a basic cost of reflection and a simple DRM system, developed in a
prototype system running on a multicomputer AP1000.

* BAEHHRMAAEFIBIFEE (JSPS Research Fellow)
TR AT T35 (Department of Mathematical Engineering, the University of Tokyo)

1 Introduction

Recently, many concurrent/parallel languages
are designed for highly parallel computers. A
major target of such languages is irregular (or
unstructured) parallel applications, whose data
and communication patterns are usually deter-
mined only at run-time. Because of the irreg-
ularity, policies used in dynamic resource man-
agement (DRM), such as how a data structure is
distributed to processors, greatly affects the per-
formance, and many ‘tailored’ (i.e., application
and/or hardware specific) resource management
policies are investigated. Most concurrent lan-
guages allows to use meta-level descriptions for
DRM. One example is that HPF (High Perfor-
mance Fortran) has directives for mapping array
structures to processors[3]. Another example is
that KL-1[11] has primitive directives to spec-
ify location and scheduling priority of a newly
created process.

Although these fixed or primitive meta-level
descriptions are useful in describing simple DRM
systems, this approach is not portable. Firstly,
with only fixed meta-level descriptions, various
resource management policies could not be sup-
ported. Since different application algorithms
and hardware configurations make different re-
source management policies to be appropriate,
it would be better that the arbitrary resource
management policies can be programmed by the
application programmer. Sometimes a resource
management policy, which can not be directly
realized with the fixed meta-level descriptions,
may be simulated; but it will be awkwardly de-
scribed and may have a certain overhead. For
example, a depth-first order scheduling on a
tree structure, which is easily carried out with a
LIFO (last-in first-out) scheduler, may be simu-
lated on a priority based scheduler by giving pri-
ority values according to the depth in the tree.

Secondly, with primitive meta-level descrip-
tions, basically, it is possible to construct ar-
bitrary resource management policies. In this
approach, however, descriptions for the applica-
tion itself and for the resource management are
intertwisted. As a result, both application and
resource management programs are hardly re-

used. Since suitable resource management pol-
icy may change according to the hardware con-
figuration (e.g., the number of processors or the
network topology), it would be better that they
can be described independently.

This paper proposes an ob ject-oriented con-
current reflective language ABCL/R3 as a plat-
form for describing concurrent applications with
tailored resource management systems on highly
parallel computers. The language is based on
computational reflection[8], which is a general-
ized idea of the computational process that ac-
cesses/alters its own computation. In reflec-
tive languages, the application programmers can
alter the language by accessing/changing ab-
stracted implementation within the language.
Moreover, descriptions for the base-level (i.e.,
application level) computation and for the meta-
level computation can be clearly separated
(called meta-level encapsulation or separation of
concerns), it makes both base- and meta-level
programs highly re-usable and easily to be rea-
soned about.

The reflective architecture of ABCL/R3 is

based on, and extended from the one of ABCL/R2[6,

5]. We concentrate that it can provide good ab-
stractions of the run-time systems with respect

to DRMs, compared to other concurrent/distributed

reflective languages[12, 7, 1], which are mainly
focused on the language extension. In the follow-
ing section, the reflective feature of ABCL/R3 is
described.

2 ABCL/R3: An Object-Orient-
ed Concurrent Reflective
Language

2.1 Overview

Similar to the Hybrid Group Architecture (HGA)
of ABCL/R2[6], the reflective architecture of
ABCL/R3 allows per-object basis reflection
through the metaobjects, and group basis re-
flection through the shared meta-level objects.
It distinguishes itself from the HGA in the no-
tion of nodes (the abstraction of the processor
elements on the distributed memory multicom-
puter) explicitly available at the meta-level. Fig-

ure 1 shows a conceptual sketch of the reflective
architecture. The key features are as follows:

e Notion of nodes is explicitly available at
the meta-level while it is still transparent
to the base-level computations.

o Customizable meta-level objects, includ-
ing node manager, scheduler, and meta-
objects, provide abstractions of the run-
time system relevant to dynamic resource
management.

e The chain of executors, which gives op-
erational interpretation of base-level scripts,
provides dynamic and localized language
facility extension.

o Interfaces to low-level systems are pro-
vided so that information on (not cus-
tomizable) run-time systems—memory us-
age, for example—can be used in DRM
systems, and that facilities such as ob-
ject migration and timer interrupts can be
used.

In the following two subsections, two aspects
of the reflective facilities of ABCL/R3—language
extension, which alters/extends semantics of the
language, and runtime system extensions, which
alters/extends behavior of the run-time system—
are described, respectively.

2.2 Language Facility Extension with
Chains of Executors

Language facility extension is realized by the
Chains of Ezecutors, which provide interpreta-
tions of base-level programs with dynamic and
localized customization. Its characteristics are
as follows:

Operational Definition: An executor in a
chain defines how an interpretation of each base-
level expression goes in an operational way. The
execution of a base-level expression is repre-
sented as a message to executors at meta-level.
The message contains all information to evalu-
ate the expression: the expression itself, an envi-
ronment, a continuation, and so forth. Figure 3

shows a part of the the primary executor’s def-
inition. This definition is almost same to the
ones in ABCL/R[12] and ABCL/R2[6], which
are meta-circular interpreters defined in a con-
tinuation passing style(CPS).

Since interpretations are given in an opera-
tional way, it is possible to define dynamic inter-
pretations; i.e., the interpretation for an expres-
sion can be changed according to a dynamic con-
dition. This ability distinguishes the operational
extensions to the compile-time extensions|2].
Scope of Customization: Usually, extension
to the language is bounded on a certain group
of objects. One example is that an extended
message sending mechanism, which is needed
for a class, should be bounded on objects in
the class. Another example is that the object
creation policies are dynamically modified per-
node basis according to the load-balancing sta-
tus; in this case, the modification to the lan-
guage should be bounded on objects in each
node. To do such grouped customization eas-
ily, executors are defined for each group: object
specific executors, node executors, class execu-
tors, and the primary executor. When the user
want to modify the language on all members in
a group, he re-defines the executor that governs
the group.

By default, executors except for the primary
one define no specific interpretations; they just
delegates requests of interpretation to the next
executor in a chain. Figure 2 shows how a script
execution is delegated through executors. Con-
sider there are base-level ob jects fool and foo2 in
class Foo, and bar in class Bar. Objects fool and
bar reside at node #1, and object foo2 resides at
node #2. In this case, script execution for each
object is taken place along the bold arrows in
Figure 2. For example, a script execution mes-
sage for fool is delegated in the following order:
object executor fool, node executor #1, class Foo
executor, and the primary executor.

Dynamic Replacement: Any executor in a
chain except for the primary one can be dynam-
ically replaced. This is accomplished by sending
a request to a container object, or by customiz-

node
Qanage

wlmetalevel . N

chain of executors

«—message

object-metaobject
relationship

lbaselevel
seleve @ t objec

Oexeculor primary » delegation path
executor,
meta-level knows-about
Dobjects : relationship

e
", node)\
node #2>§ manager2/|

1 execiitor

: Tioo2
szw.h (Tio02)
execytor

|
\—---gi- «node #1.-‘%—’ \-......3— =node #2. ~

Figure 2: Example of Delegation Path

ing a container object to replace its executor dy-
namically. This facilitates that language exten-
sions in which the functionality of an operation
changes dynamically, but not frequently. For ex-
ample, consider a system that counts number of
variable references for specified periods of time.
Such a system can be realized by defining an
executor which increases a counter whenever a
variable is referred. Then the executor is used
instead of the original one only for the specified
periods. In this realization, the interpretation
of variable reference in non-specified periods are
defined by the original executor, and no unnec-
essary overheads are imposed on the variable ref-
erences.

The reader may have a fear that the opera-
tional style extension could not be implemented

efficiently. In fact, several reflective systems

[class primary-executor ()
(script
;; for object creation forms
(=> [:do [:new class args] env id] @ C
;; send 1o a node manager
[node-mgr <= [:new class args] @ C])
;; for past type messages
=> [:do [:send-past target body reply]
env id] @ C
;; send to the metaobject
[target
<= [:message body reply [den id]]]
[C <= nil])
5 for variable references
(=> [:do [:variable name] env id] @ C
;; return a value of name in env.
[C <= (lookup name env)])

)]

Figure 3: Abridged Definition of a Primary Ex-
ecutor

which have the language extensibility defined
in operational style are implemented, and they
prove that they are slow in the order of magni-
tude compared to the corresponding implemen-
tations of non-reflective languages[5]. However,
more efficient implementation could be possible
with sophisticated compilation techniques. Ba-
sic ideas for compiling base-level scripts with ex-
ecutors are discussed in [4].

2.3 Runtime System Extension with
Meta-level Objects
2.3.1 Node Manager

Node manager is a meta-level object that repre-
sents a processor node. Any node manager can

[class node-manager { ...)
(state [scheduler := .
[executor := ...]
[mobj-class := ...])
(script
(=> [:scheduler] !scheduler)

;; replacement of scheduler

=> [:set~scheduler new]
[scheduler <== [:copy-to new]]
(setq scheduler new)g

(=> [:executor] !executor)

;; replacement of node executor

(=> [:set-executor new-executor]
(setq executor new-executor))

(=> [:new class args

tkey mobj-class &rest annon]
t[den [new mobj-class class args annon]])

)]

Figure 4: Definition of a Node Manager

be referred from any object in the system by a
pseudo variable or a function call. The forms
node-manager and (node-manager-of n) give
references to the node manager where executing
object resides and the node manager at node n,
respectively. The definition of the default node
manager is shown in Figure 4.

The major purpose of a node manager is to
hold meta-level objects shared by members in
the same node. By default, it holds two meta-
level objects: scheduler and node-executor. In
addition, arbitrary meta-level objects and infor-
mation can be held by customized node man-
agers.

The other role of a node manager is local ob-
ject creation. By default, execution of an object
creation form ([new ...] form) at the base-level
produces a request message to the node man-
ager. Then the node manager decides where the
new object should reside; if it is local, the node
manager itself creates a metaobject. Otherwise,
it selects a remote node, and forwards the re-
quest to the node manager at the node.

To construct dynamic resource management
systems, user defined node manager is often used
to keep track of load information of nodes, ex-
change load information, decide scheduling/ob-
Jject allocation policies, and so forth.

[class scheduler ()
(state [queue := (make-queue)])
(script
(=> [:req-exec thunk]
(queue~put thunk queue))
(=> [:schedule-next]
(let* ((thunk (queue-get queue))
(context (thunk-context thunk))
(id (thunk-owner thunk))
(executor [id <== [:executor]]))
[executor <= context @ id])))]

Figure 5: Definition of Default Scheduler

2.3.2 Scheduler Object

Applications in which amounts of computation
greatly vary among ob jects, or applications whose
amount of computation changes according to the
order of computation, can be executed more ef-
ficiently with tailored scheduling policies. In
our architecture, a scheduler object, which is
a meta-level object that controls execution or-
der of base-level objects in a node, is the ab- -
straction to define customized scheduling. The
scheduler only controls the execution order and
time quantum of objects, but it is enough for
most dynamic resource management systems.!

A default scheduler, whose definition is pre-
sented in Figure 5, has a state variable that holds
active objects. The variable is an abstraction of
an active object queue in a node.

Basically, a scheduler receives an execution
request by a message [:req-exec thunk], where
thunk is data structure holding enough infor-
mation to execute. The execution is started by
sending a context (e.g., an expression, an envi-
ronment, etc.) to an object specific scheduler.
When the system needs an object to be exe-
cuted, a message [:schedule-next] is sent to
the scheduler. Then the scheduler picks up a
thunk from its scheduling queue, and schedules
it by sending a message to an executor.

! Another possible abstraction Jevel would be that im-
plementation of a message transmission—whether it is
executed as a procedure call like sequential languages[9],
or as a enqueue operation to the target object—is con-
trolled by a scheduler. However, abstraction level is so
low that it makes the architecture implementation spe-
cific, although it would improve performance in some
cases.

[class metaobj (class args
&key (executor some default))

(state [mqueue := (make-queue)]

[class := class]

[state := ...

[executor := [new executor]]

[mode := ’:dormant])
(script

;; arrival of a message
(=> [:message X R S]

(queue-put (make-message M R S) mqueue)

(when (eq mode :dormant)
(accept-message)))

;; end of a script execulion
(=> [:finished]

(if (queue-empty? mqueue)
(setq mode :dormant)
(accept-message)))

;; other meta-level operations are omitled

(routine ;; acceptance of a message
(accept-message ()
(let* ((m (queue-get mqueue))
(¢ (find-script m class state))
(thunk (make-thunk c Me)))
(setq mode . :active)
[scheduler <= [:req-exec thunk]])))]

Figure 6: Definition of Default Metaobject

2.3.3 Metaobject

Metaobject is a meta-level object that represents
structural and object-specific aspects of an asso-
ciated base-level object. It is designed so that
the user can do customizations/introspections
like follows: (1) the message queue can be in-
spected—this facility is useful to obtain the load
value of individual objects; (2) the state vari-
ables can be inspected-—useful to obtain appli-
cation level information from the meta-level; and
(3) behaviors to the events on the base-level ob-
Jject (i.e., behaviors to a message reception, in-
vocation of a script execution, and end of script
execution) can be customized—useful to attach
information into an executable script and to
record information, which is used for DRM sys-
tems.

Based on this observation, the definition of
metaobject is in an event driven style(Figure
6). Basically, this definition is similar to the
one in ABCL/R[12] and ABCL/R2[6]. The ma-
jor difference is that our definition has a refer-
ence to a class object to hold the script data,
while metaobjects directly hold the script data
in ABCL/R and /R2.

2.4 Interface to Run-time Systems

The meta-level objects, such as the scheduler,
are abstractions of the modifiable components
of the run-time system. Not only the modifi-
able, but also interface to non-modifiable com-
Those
include primitive operations for object migra-
tion, information on the run-time system such
as number of remote messages issued, informa-

ponents is defined in our architecture.

tion on the hardware configuration such as net-
work topology. Note that the implementations
of meta-level components that can be accessed
by the above interfaces are not open. Rather
they are closed so that low-level optimizations
can be applied as much as possible.

3 Preliminary Evaluation

A prototype system is constructed on a multi-
computer AP1000, which is a distributed mem-
ory parallel computer consisting of 32-1024 sparc
processors running at 25MHz. The system trans-
lates an ABCL/R3 program to C functions. Its
reflective features are limited from the one dis-
cussed in the previous section: by now, only the
ability to control the object creation node and
the mechanism to use user-defined scheduler is
available. No compiler that collapses customized
meta-level into efficient single-level code is inves-
tigated yet.

Using this prototype system, we carry out
several experiments to measure (1) the cost for
changing the scheduler, and (2) the effect of
user-defined ob ject allocation policy for tree com-
putations. We have also evaluated the reflective
architecture through describing various DRM
systems, such as dynamic load balancing, which
appear in [4].

3.1 Overhead to Change Scheduler

To evaluate the overhead to change schedulers,
elapsed times for a null method invocation and
a context switch are measured with different
schedulers. In this evaluation, the program is ex-
ecuted on a single node. Used schedulers are: (1)
the default scheduler using C function calls for a
node-local message sending (as in StackThreads

implementation[10]), (2) the default scheduler
using an active object queue, (3) the user defined
scheduler using a queue. Note that the user de-
fined scheduler is written in ABCL/R3 itself, and
programmers need not write C functions.

Scheduler time/call
(usec.)
(1) default, function 47.8
(2) default, queue 104.0
(8) user defined 190.0

Table 1: Elapsed Time for Null-Method Invoca-
tion with Different Schedulers

Table 1 shows elapsed time for a method in-
vocation with different schedulers. With (1), it
is as twice faster than as the one with (2). This
is because, messages are passed as C-function
arguments in the former case, while the latter
case pays the cost for message allocation on the
heap memory, and queue manipulations. With
the user defined scheduler, a method invocation
takes additional 90useconds to (2). This is be-
cause, two more method calls to the scheduler
(when an object becomes active and when the
next active object is scheduled) are performed
in addition to (2)’s case.

The benchmark shows that the overhead due
to the user defined scheduler is not small enough.
However, there are plenty of room for optimiza-
tion, because the current implementation is very
slow in the basic operations. A node local (null)
method invocation takes about 50useconds in
our implementation, while a few useconds in
the highly optimized implementations like [10].
Therefore, when we use more efficient implemen-
tation, such overhead could be kept fairly low.

Furthermore, we are convinced that most of
overheads can be eliminated by collapsing the
meta-levels using partial evaluation techniques.
It makes easier to reasoning about the modifi-
cations to the meta-level that the meta-level is
defined in an operational way.

3.2 Locality Control

The locality control is a simple DRM example
for tree style computations. The basic idea is

that for an ob ject at the shallow level in a search
tree, its child objects are created at randomly-
chosen nodes; while for objects at the deep level
in the tree all its child objects are created at the
same node to the creator’s.

The target application program used here
is the N-Queens problem in which a node in
a search tree is implemented as a concurrent
object of ABCL/R3. Since depth in the search
tree is not explicitly available in the base-level
program, it is maintained by metaobjects. A
metaobject is created with a depth parameter
in addition to the other default parameters. The
metaob ject sends the depth parameter whenever
it requests an execution to a scheduler. The pa-
rameter is passed along with an ordinary con-
text of a script execution, such as environment
and metaobject’s ID. On an object creation, the
object executor determines a node where new
object will be created, based on the depth pa-
rameter and a pre-determined threshold.

Table 2 shows the elapsed times for the ex-
ecution with the different level of depths on 64-
nodes AP1000. The first row in each table shows
a result without the locality control; all object
creations are remote. With locality control sys-
tem, we observe about two-fold speed-ups in the
best cases.

4 Conclusion

In this paper, we have proposed an ob ject-ori-
ented concurrent reflective language ABCL/R3.
Unlike its predecessor, notion of nodes, which
corresponds to distributed memory processor el-
ements of multicomputers, and the scheduler,
which governs the execution order in each node,
are explicitly available at the meta-level. These
abstractions make it possible to describe various
DRM systems for irregular concurrent applica-
tions, in an encapsulated and portable way. This
paper also presents preliminary evaluation us-
ing a prototype implementation of the language
running on a multicomputer. The benchmark
results show that the overhead from using a user
defined scheduler is kept as low as two or three
null method calls for each method invocation,
and that a simple locality control system ex-

12-Queens
threshold || elapsed utiliza-
depth time (sec.) | tion(%)
— 13.88 97
8 7.655 95
7 6.595 93
6 6.541 87
5 7.301 77
11-Queens
threshold || elapsed utiliza-
depth time (sec.) | tion(%)
— 2.742 95
7 1.511 92
[1.403 88
5 1.524 81
4 1.917 70

Table 2: Benchmark Results for Different
Threshold Depth Parameters

hibits about two-fold speedup compared to the
simple one.

References

[1] S. Chiba and T. Masuda. Designing an
extensible distributed language with a
meta-level architecture. In Proceedings of
ECOOP, 1993.

[2

—_—

G. Kiczales, J. Lamping, and A. Mend-
hekar. What a metaobject protocol based
compiler can do for Lisp. Draft paper, 1994.

{3] D. B. Loveman. High performance Fortran.
IEEE Parallel & Distributed Technology,
1(1):25-42, Feb. 1993.

[4) H. Masuhara. Study on a reflective ar-
chitecture to provide efficient dynamic
resource management for highly-parallel
object-oriented applications. Master’s the-
sis, Department of Information Science,
Faculty of Science, University of Tokyo,
1994.

[5] H. Masuhara, S. Matsuoka, T. Watanabe,
and A. Yonezawa. Object-oriented con-

(6]

9

(10]

(11]

(12]

(13]

current reflective languages can be imple-
mented efficiently. In Proceedings of OOP-
SLA, pp. 127-145, Oct. 1992.

S. Matsuoka, T. Watanabe, and
A. Yonezawa. Hybrid group reflective ar-
chitecture for object-oriented concurrent
reflective programming. In Proceedings of
ECOOP, 1991.

H. Okamura, Y. Ishikawa, and M. Tokoro.
AL-1/D: Distributed programming sys-
tem with multi-model reflection framework.
In Proceedings of International Workshop
on New Models for Software Architecture
(IMSA): Reflection and Meta-Level Archi-
tecture, pp. 3647, Nov. 1992.

B. C. Smith. Reflection and semantics
in Lisp. In Conference record of POPL,
pp- 23-35, 1984.

K. Taura, S. Matsuoka, and A. Yonezawa.
An efficient implementation scheme of con-
current object-oriented languages on stock
multicomputers. In Proceedings of PPOPP,
May 1993.

K. Taura, S. Matsuoka, and A. Yonezawa.
StackThreads: An abstract machine for
scheduling fine-grain threads on stock
CPUs. In JSPP, pp. 25-32, May 1994.

K. Ueda and T. Chikayama. Design of
the kernel language for the parallel in-
ference machine. The Computer Journal,
33(6):494-500, 1990.

T. Watanabe and A. Yonezawa. Reflection
in an object-oriented concurrent language.
In Proceedings of OOPSLA, pp. 306-315,
Sept. 1988. (revised version in [13]).

A. Yonezawa ed. ABCL: An Object-
Oriented Concurrent System. MIT Press,
1990.

