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Abstract, In this paper, we introduce Linear Logic with a nondeterministic
facility, which has a self-dual additive connective. In the system proof net
technology is available in a natural way. The important point is that non-
determinism in the system is expressed by the process of normalization, not
by proof search. Moreover we can incorporate the system into Light Linear
Logic and Elementary Linear Logic developed by J.-Y.Girard recently: Non-
deterministic Light Linear Logic and Nondeterministic Elementary Linear
Logic are defined in a very natural way.

1 Introduction

So far (untyped or typed) lambda calculi with the facility of nondeterminism have
been studied: recently e.g., in [Aba94, DCLP93]. For example, in [DCLP93] nonde-
terminism is represented by using union type, while parallelism by using intersection
type: this means that nondeterminism corresponds to the logical connective “or”
and parallelism to “and”. Further this means that nondeterminism and parallelism
are dual notions each other. Basically other researchers similarly classify nonde-
terminism and parallelism. In this paper, we advocate that nondeterminism and
parallelism are not dual notions. For this we use the framework of Linear Logic
[Gir87]. In Linear Logic, usual logical connectives are classified into two: multiplica-
tive and additive connectives. Qur advocacy is as follows:

o Nondeterminism == Additive.
e Parallelism == Multiplicative.

Already it has been pointed out that the multiplicative connectives are deeply re-
lated to parallelism since the appearance of [Gir87]. Here we point out that the
additive connectives are deeply related to nondeterminism. We incorporate nonde-
terminism facility into the framework of Linear Logic by introducing new additive
connective A (nondeterministic with), which is self-dual. In the framework, nonde-
terminism is represented by reduction of cut between two A: by the reduction of A
from one proof net two proof nets are obtained. By using A we can define Nonde-
terministic Light Linear Logic and Nondeterministic Elementary Linear Logic in a
very natural way. Our advocacy has not been advocated before as far as we know.
Also I believe that such a classification contributes to studies w.r.t. relationship
between Linear Logic and Process Calculus.

2 The System

The system NDMALL is usual MALL (the multiplicative additive fragment of Lin-
ear Logic) with A (nondeterministic with). The connective has arity 2 (hence in
NDMALL AAB is accepted as a formula if A and B are NDMALL formulas). The
negation of AAB is defined as follows:

(AAB)! =4 ATABL



The inference rules for NDMALL are the same as MALL except for the following

rule:
+FIMA FI,B

FI,AAB

The notion of proofs (in sequent calculus) of NDMALL is defined in usual manner.
Obviously the connective A belongs to additives. In practice, the connective does
not occur in conclusions of NDMALL proofs: if it occurs in them, then it behaves
like & in completely the same manner. Hence we can assume that A does not occur
in cut free NDMALL proofs. We omit cut elimination procedure for A in NDMALL
sequent calculus. But we will introduce it in NDMALL proof nets in the following
section.

(NDWITH)

3 NDMALL proof nets

First we shall define NDMALL proof structures, which are basically the same as
them in [Gir95b] except for connective A. Simply by formulas we mean NDMALL
formulas. Note that to each A-link L an eigenweight py is assigned.
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The type of a link is either ID, Cut, generalized axiom, ®, p, &, @1, 6}32, or A.
To each type, n, a number of its premises and m, a number of its conclusions
are assigned(m,n > 0, m + n # 0). The links with ID, Cut, generalized axiom,
®, p, &, D1, D2, and A as types have the following forms:

Definition 1. A link L is an n 4 m-tuple of formulas with a type:
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Definition 2. To any &-link or A-link L with A&B or AAB as its conclusion, we
associate an eigenweight pr, which is a boolean variable. The intuitive meaning of
pr is the choice {I/r} between the premises A and B: +pj, stands for the selection
“left”, i.e., A and —p, stands for the selection “right”, i.e., B. We use €.py, to speak
of +pg or —pyg.

Definition 3. A triple © = (V, E,w) is a proof structure if

o (V, E) is a pair such that V is a multiset of formulas and F is a multiset of links
between formulas occurring in V.

e w is a function such that
(i) For each formula A in V, a weight w(4), i.e., a non-zero element of the
boolean algebra generated by the eigenweights p,,...,p, of the &-links or A-
links of ©;
(ii) For each link L in F, a weight w(L), i.e., a non-zero element of the boolean
algebra generated by the eigenweights p1,...,p, of the &-links or A-links of ©.

Moreover, the following conditions must be satisfied:

(a) Each formula in V is the premise of at most one link and the conclusion of at
least one link. The formulas which are not premises of some link are called the
conclusions of ©;



(b) w(4) = > w(L);
L has A as the conclusion

(c) If A is a conclusion of O, then w(A) = 1;
(d) If w is any weight occurring in ©, then u is a monomial €;.py, - - €,.pz, of
eigenweights and negations of eigenweights;
() If u is a weight occurring in © and containing e.py, then u < w(L);
(f) If L is any non ID-link, with premises 4 and/or B then
e if L is any of ®, p and Cut, then w(L) = w(A) = w(B);
o if L is a @;-link, then w(L) = w(A);
o if L is a @,-link, then w(L) = w(B);
e if L is a &-link, then w(4) = w(L)-pr and w(B) = w(L) - —p; (hence
w(L) = w(4) + w(B))
o if L is a A-link, then w(A) = w(L)-py and w(B) = w(L) - -p; (hence
w(L) = w(A) + w(B)).
(g) For any A € V, if the links whose conclusion is A are L,,..., L,, then for each
1<4,j < m, whenever i # j, then w(L;) # w(L;).

Definition 4. Let ¢ be. a valuation for a proof structure & = (V,E,w), ie. a
function from the set of eigenweights of © to {0, 1}, which is extended to a function
(still denoted ¢) from the weights of © to {0,1}. A pair ¢(@) = (Vj, Eo) is the slice
by ¢ if V, is the restriction to the formulas A in V such that ¢(w(A)) = 1 and E,
is the restriction of E by Vo where the definition of &-links and A-links is changed
such that they have exactly one premise and one conclusion.

The definition of the dependencies of the weights and the formulas in proof
structures on an eigenweight is the same as that of [Gir95b].

Definition 8. Let ¢ be a valuation of O, let py, be an eigenweight; we say that the
weight w (in ©) depends on py, (in ¢(0)) iff p(w) # ¢1(w), where the valuation ¢,
is defined by:

e ¢.(pr) =~(¢(pr));
® ¢r(pr)=o(pr)if L’ # L.

A formula A of O is said to depend on pj, (in ¢(6)), if A is the conclusion of a link
L' such that ¢(w(L')) =1 and ¢r(w(L')) = 0.

Definition 8. A switching § = (¢s, select,, selectg, selecta) of a proof structure
© consists in:

o A choice of a valuation ¢s for 6;

¢ A function select,, from the set of all p-links L of ¢5(0) to {I,7} whose element
represents a choice for premises of a gp-link.

o A selection selecty for each &-link L of ¢5(6) a formula selectg, (L), the jump
of L, depending on py, in ¢s(6). There is always a normal choice of jump for
L, namely the premise A of L such that ¢s(w(4)) = 1.

e A selection select for each A-link L of ¢5(©) a formula select (L), the jump
of L, depending on p; in ¢s(0). There is always a normal choice of jump for
L, namely the premise A of L such that ¢g(w(A)) = 1.

Definition 7. Let S be a switching of a proof structure ©;
the graph O©g = (Vs, Es) corresponding to S consists in:

o the vertices Vs is V; of ¢5(0) = (Vo, By);
o the edges Es are consists of:
1. the edge between the conclusions for any ID-link of ¢5(©);
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the edge between the premises for any Cut-link of ¢5(6);

the edge between the conclusion and the premise for any @-links of ¢5(0);

4. the edges between the left premise and the conclusion, and between the
right premise and the conclusion for any ®-link of ¢s(0);

5. the edge between the the premise (left or right) selected by select, (L) and
the conclusion of any p-links L of ¢5(@);

6. the edge between the jump selectg (L) of L and the conclusion for any &-link
L.

7. the edge between the jump select o (L) of L and the conclusion for any A-link

L.

@

Definition 8. A proof structure © is said to be a proof net when for all switching
S, the graph Ogs is connected and acyclic.

The removal of a link of a proof structure @ in NDMALL is defined in the same
manner as [Gir93b] except for A-links. Here the definition of the removal for A-links
is only added.

Definition 8. o If L is a A-link with premises 4 and B such that w(L)=1 and

L is a conclusion of ©, and I', AAB is the set of conclusions of 8. The removal

of L consists in first removing the conclusion AAB and the link L (to get 6')
and then forming two proof structures @4 and Op:

% In ©' make the substitution p; = 1, and keep only those links L' whose

weight is still non-zero, together with the premises and conclusions of such

links: the result is by definition © 4, a proof structure with conclusions I, A.

« In © make the substitution p;, = 0, and keep only those links L’ whose

weight is still non-zero, together with the premises and conclusions of such

links: the result is by definition © g, a proof structure with conclusions I', B.

Definition 10. A proof structure © is sequentializable when it can be reduced, by
iterated removal of terminal links, to identity links.

The proof of the following theorem is completely the same as that of [Gir95b]
which uses empire for each valuation and each formula, since in fixed proof nets
A-links behave in the same manner as &-links. However the behavior of A-link in
cut elimination is different from that of & which is defined in the next section.

4 Lazy Cut Elimination in NDMALL

Definition 1. A cut-link L is ready if

o w(L) =1 and;
e If the premises of L are A and A~ then both A and A are the conclusion of
exactly one link.

Definition 2 (lazy cut elimination). Let Ly be a ready cut in a proof net 6,
whose premises BAC and B-AC* are the respective conclusions of links L and
L'. Then we define the contractums &' and ©" of redex © when reducing Lo in €.

e If Lis a A-link (with premises B and C) and L’ is a A-link (with premises B+
and C-), then @’ and @” are obtained in three steps (the reduction is called
A-reduction):
how to get ©' (resp. O"'):

First we remove in @ the formulas BAC and B-AC* as well as Ly, L and L';
then we replace the eigenweights py, and p; by 1 (resp. 0) and keep only those



formulas and links that still have a nonzero weight: therefore B{resp. C) and
B (resp. C*) remain with weight 1 whereas C (resp. B) and C* (resp. BY)
disappears; finally we add a cut between B (resp. C) and Bt (resp C), and
then get ©’ (resp. 8").

Proposition 3. If @ is obtained from a proof net © by lazy cut elimination, then
©' is a proof net and has the same conclusions as O.

Proof. Similar as [Gir95b].

Proposition 4. By lazy cut elimination, any MALL proof net is reduced to o unique
normal form (which contains ready cuts) in linear time of its size.

5 Nondeterministic Light Linear Logic

In [Gir95c¢], it is shown that (1) any p-time Deterministic Turing Machine are rep-
resentable in Light Linear Logic (for short LLL) and (2) under the condition of
bounded depth any LLL proof net is reduced to a normal form in p-time of its
size. In this section we show that it is shown that (1’) any p-time Nondeterministic
Turing Machine are representable in Nondeterministic Light Linear Logic (for short
NDLLL) and (2°’) under the condition of bounded depth any NDLLL proof net is
reduced to a normal form by lazy cut elimination in p-time of its size. The system
NDLLL is obtained from LLL by adding the inference rule (NDWITH) in Section 2.
It is not difficult to show (2) if we follow Girard’s proof for LLL, since any ND-
MALL proof net is reduced a normal form by lazy cut elimination in linear time
of its size (Proposition 4) and A connective does not cooperate with exponential
reduction.

In order to prove (1’), we only show any move (transition) relation of Nonde-
terministic Turing Machine is representable in NDMALL. Let a Nondeterminis-
tic Turing Machine be M. Let X be the set of the symbols used in M and Q
be the set of the states used in M. Let p be the number of the symbols used
in M, i.e, the cardinal of ~' and ¢ be the number of the states used in M,
i.e., the cardinal of Q. The move relation R of M is represented as a subset of
(Z x Q) x (¥x @ x {«~,—}). Then it is sufficient to represent the move func-
tion by a NDLLL proof net with bool?*? —obool?*?*? as the conclusion, where

k

bool* = VX .§(X& - - &X —o X). Since it is obvious that the set (X x Q) is repre-
sented by bool’*? and (¥ x @ x {—,—}) by bool?*?*? and moreover, it is not
difficult to construct proof nets with bool” ® bool? —obool”*? as the conclusion
and with bool?*9*? _obool” @ bool? @ bool® as the conclusion by using a general
version of D in Section 11.3 in [GLT89]. Let m be max{|{(y,t,d) : (z,s, (y,t,d)) €
R}| : @ € X, s € Q}. The following NDLL proof corresponds to the intended proof



net:
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v)

'From what precedes the following theorem is proved.

Theorem 1. Any p-time Nondeterministic Turing Machine are representable in
Nondeterministic Light Linear Logic.

It is obvious that in the context of Elementary Linear Logic, the same theorem is
proved.
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