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Irregular Numerics
in Concurrent Object-Oriented Language ABCL/f—
A Case Study in FEM and Nbody

Kenjiro Taura* Akinori Yonezawa

Department of Information Science, University of Tokyo

This paper reports our experiences on programming in concurrent object-based language ABCL/f
by Barnes-Hut Nbody algorithm (BH algorithm) and Finite Element Method with Conjugate Gra-
dient solver. We demonstrate that ABCL/f or, in general languages which encourage dynamic
fine-grain object allocation has advantage for irregular numeric applications. We evaluate the lan-
guage design of ABCL/f through these applications and give performance results obtained from
Nbody on AP1000 parallel computer. In Nbody kernel, the performance of the current ABCL/f
implementation is approximately 1/3 of sequential C and would improve by a factor of two by trivial
optimizations. ‘ .
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1 Introduction

The programming environment most common to-
day on large scale parallel computers, the majority of
which are distributed memory machines, is a sequen-
tial language such as C and Fortran + message pass-
ing library. Automatic parallelization and automatic
data decomposition techniques [1, 17] achieved suc-
cess on regular operations on arrays, but the state-
of-the-art of automatic parallelization mainly focuses
on simple DO loops with affine array indices. There
are every reasons why removing these assumptions
make static analysis substantially difficult. Many
applications adopt irregular data structures and re-
quire explicit and application-specific locality and
load-balancing control [4, 16]. Automatic paralleliza-
tion or automatic data distribution for such irregular
problems are beyond the ability of the current com-
pilation technologies.

An alternative for such irregular applications is
programming in languages which support primitives
for parallel programming such as dynamic thread
creation, dynamic data allocation, and location-
transparent data access. Languages based on concur-
rent objects and/or asynchronous method/procedure
invocations [5, 9] are one of the most promising and
practical approaches in this direction.

This paper reports our experiences on program-
ming in concurrent object-based language ABCL/f
by Barnes-Hut Nbody algorithm (BH algorithm) and
Finite Element Method with Conjugate Gradient
solver. We evaluate the language design of ABCL/f
through these applications and give performance re-
sults obtained from Nbody on AP1000 parallel com-
puter [13]. The performance evaluation of FEM is
currently ongoing and too premature to be presented
here. Due to the space restriction, descriptions are
very brief and may not be detailed enough for those
who are not familiar with the algorithms. We are
publishing a more detailed technical report in the
near future.

2 ABCL/f—An Overview

ABCL/f is a simple parallel language based on
future and concurrent objects. Future is the mean
to express parallelism of various granularities and a
concurrent object is the unit of encapsulation, data
distribution, and mutual exclusion.

2.1 Future

Future was first proposed by Halstead [9] and has
been adopted in many languages with some modifica-
tions or extensions. The basic idea is to provide asyn-
chronous invocation or, a way for decoupling func-
tion (or method) invocation and obtaining results.
Future serves as a building block for other mono-
lithic parallel operations like DOALL loops or parallel
function calls.

In ABCL/f, any user-defined procedure or
method can be called both synchronously and asyn-
chronously. The programmer does not have to decide

whether a method is running in parallel with other
computation in the early stage of a program devel-
opment.

ABCL/f gives the programmer the control of
the location of an invocation. On each invocation,
whether sequential or parallel, the processor element
(PE) number on which the computation takes place
can optionally be specified. An invocation is other-
wise processed locally.

2.2 Concurrent Objects

A concurrent object in ABCL/f (and other
concurrent object-oriented languages) encapsulates
stateful data and serves as a building block of com-
plex data structures.

Methods are the mean by which a process
sees/modifies the internal state of an object atom-
ically. In addition, if the object on which a method
invocation is to operate (receiver object) happens to
be located on a remote PE, the method invocation
are automatically migrated to the owner PE.

Current ABCL/f guarantees the atomicity of a
method invocation by serializing all method invoca-
tions on a single object. This “single threaded prop-
erty” of an object usually helps the programmer in
that he/she does not have to keep in mind which
transaction on an object may take place in paral-
lel with other computation and hence must be pro-
tected. On the other hand, it is often argued that
this rule causes unintended serialization/deadlock
and precludes natural description of parallel pro-
cesses which share data structure constructed from
concurrent objects. We observed this in FEM code,
which uses a graph structure for representing a sparse
matrix. The current ABCL/f does not provide an
adequate solution to this problem and supports an
ad hoc escape from the rule—(possibly unsafe) meth-
ods which do not perform the automatic lock/unlock.
We are working on a better object model which re-
laxes mutual exclusion requirement and still allows
safe sharing among concurrent processes.

An object is created by invoking a constructor
function, which allocates an object on the local PE.
Hence object creations can be done in parallel (by
future call) and object locations are specifiable by
the programmer (by designating the location where
the constructor is invoked).

3 The Applications

3.1 Barnes-Hut Nbody
3.1.1 Algorithm

We use the terminologies used in astrophysical
simulations (e.g., mass or the center of gravity).
Since the naive particle-particle method has O(N?)
time complexity for N particles, improvements have
been developed [8, 10]. Barnes-Hut algorithm (BH
algorithm) [2] is a simple yet efficient algorithm
which has O(Nlog N) time complexity on average.
The central idea is to approximate the total of 1-to-
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Figure 1: Load Distribution on Particles

Figure 2: Example Distribution of Particles

many Newtonian forces with 1-to-1 force by regard-
ing the “many” ones as a single particle located at
the center of gravity of the particles. This approx-
imation takes place if the distance between the two
entities are far enough compared to the spatial size
of the aggregate.

Before the force calculation, BH algorithm con-
structs a tree structure (BH tree) for the entire space
which contains all the particles to be simulated. A
space is divided into 2¢ subspaces (where d is the
dimension) if it contains more than two particles
and this partition continues recursively until all leaf
spaces have at most one particle. Force calculation
for a particle traverses the tree until leafs or nodes
far from the particle.

The irregularity of BH algorithm comes from the
possibly very unbalanced tree structure, which is
the consequence of irregular distribution of particles.
Since the depth of the tree heavily varies depend-
ing on particle density, required amount of memory
for nodes cannot be computed in advance, favoring
dynamic allocation of concurrent objects. Moreover,
particles in a “dense portion” perform deeper recur-
sive calls and hence require larger amount of compu-
tation time, we cannot just simply assign an equal
number of particles for each PE. Figure 1 gives the
distribution of the load on each particle, the load
measured by the number of Newtonian force calcu-
lations required for the particle in an example distri-
bution of particles shown in Figure 2.

calc-force method for node objects
;i; Call by:

v (calc-force node pp)

;i; PP is the position of the particle

(defmethod node calc-force (pp)
(if contain-no-particle zero
(if contain-one-particle
Newtonian force between
the particle and this node
(if far-enough-from-the-particle
Newtonian force between
the particle and the center
of gravity of this node
(else
call calc-force for direct children
and sums up the results)))))

Figure 3: The Sequential Method to Compute a Force

3.1.2 Description in ABCL/f

Each particle as well as each node of a BH tree
is represented by a concurrent object. Each parti-
cle object has data fields (instance variables) such
as mass, acceleration, velocity, and location. Every
node object keeps the rectangle it covers, the total
mass of particles under the rectangle, the center of
gravity of the particles. In addition, non-leaf nodes
have a list of direct child nodes, whereas leaf nodes
which has a particle the reference to the particle.

Here we only give description of force calculation
which is the most computationally intensive phase.
Other phases (tree construction, particle decompo-
sition etc.) involve more complex, hence interesting
computation than the simple kernel but cannot be
given here due to the space restriction.

A typical program development begins with
working on a sequential uniprocessor version and
then parallelizes it. In ABCL/f, since program-
mers already use concurrent objects for represent-
ing mutable data (tree nodes and particles in Nbody
case), they are usually ready to be distributed and
shared by concurrent processes with small modifica-
tions. The pseudo code for the original sequential
program is given in Figure 3.1

The most important change from the sequential
version is that each PE replicates a part of the BH
tree on a node-by-node basis. A node is copied when
it is first accessed, in order to reduce communication
traffic and, more importantly, bottleneck on nodes
near the root of the BH tree. This is done by creat-
ing a “cache” object on each PE, which keeps track
of association between original nodes and their lo-
cal copies. The modification to the force calculation
method is listed in Figure 4.

LA very brief explanation on the syntax:

(defmethod (class) (method) (x y ...) (body))

defines a method for the class (class), which are called by
({(method) receiver x y ...).

__21__



;55 lookup cache to obtain local copy and then call
;75 the original calc-force method

(defun calc-force-w/-cache (node pp cache) -
(let ((local-copy (lookup cache node)))
(calc-force local-copy pp cache)))

;i Minor change in calc-force

(defmethod node calc-force (pp cache)

(if ... ; first three cases are

(if ... ; same as before

(if ...

;7 call calc-force~w/-cache instead
(else

call calc-force-w/-cache for direct
children and sums up the results)))))

Figure 4: The “Parallel-Ready” calc-force
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Figure 5: The SCG Method
3.2 Finite Element Method

3.2.1 Algorithm

Finite Element Method (FEM) is a numerical
method for solving partial differential equations. We
first divide the domain of the given equation into
(typically triangular or rectangular) mesh. We then
construct a sparse linear equation system Az = b,
where the dimension of 4 is the number of the nodes
in the mesh?. A is a sparse matrix in that A;j is zero
unless node ¢ and node j are identical or adjacent
in the mesh. For example, in the regular rectangular
mesh, there are at most five non-zero elements within
each row.

We use the Scaled Conjugate Gradient (SCG)
method for the linear solver. The algorithm in math-
ematical notation is given in Figure 5. In the figure,
D represents the diagonal part of A.

The irregularity of FEM comes from the sparsity
and the irregularity of non-zero elements of A. The
sparsity of A precludes the dense matrix represen-
tation of A which stores all elements of A in a two
dimensional array whose most elements are actually
zero. Since A;; is non-zero only if node i and j are
adjacent or identical in the mesh, an irregular mesh
yields accordingly irregular distribution of non-zero
elements in A, which in turn results in irregular com-
munication pattern in the matrix-vector product in
the computation of Ap (in line three of Figure 5).

2More precisely, the dimension of A is the number of nodes
minus the number of nodes on edges where Dirichlet condition
holds.

;;; compute-Ap method called
555 for all nodes in the mesh
5i; FEach node computes an element
ii; of Ap
(defmethod node compute-Ap ()
(let ((s 0.0))
foreach T in neighbors-list
(setq s (+ s (* (get-p (node 1z))
(coeff 1z))))
(setq Ap s)))

Figure 6: The Method which Computes Ap
3.2.2 Description in ABCL/f

We define a node object which corresponds to a
row in the equation. For each vector which appears
in the solver (i.e., b,z,r, and p), a node object has
a corresponding instance variable which stores the
current value of the element in the row. A node
object also has a list of adjacent nodes in the mesh
and the corresponding possibly non-zero elements in
A, and information such as the location of the node,
which are not relevant to the solver but necessary for
displaying purpose etc.

The solver has two communication patterns: (1)
in the computation of Ap, a node requires communi-
cation with adjacent nodes to get the value of p, (2)
in the computation of « or 3, a global summation is
performed for the inner products.

Figure 6 shows a method used in the solver which
compute Ap in the third line of Figure 5). It is much
like a sparse matrix vector product using index array.

The mesh we used as an example is a triangular
mesh, which is somewhat more irregular than the
rectangular mesh, but still far simpler than those
which appear in real engineering code. This is for
the simplicity of our mesh generation code and data
decomposition. Our solver by no means relies on any
property of the particular mesh we selected here.

Our FEM program is still in very early stage of
development and it has already turned out that some
sort of scheme must be used for reducing communica-
tion overhead and latency. We are investigating how
optimizations such as message vectorization or pre-
fetching are expressed without destroying the struc-
ture of the original loop. Replication technique used
in Nbody will be effective here too.

4 Performance Evaluation

4.1 Evaluation Strategy

Evaluation of a language implementation is not
a trivial task. The difficulty lies in the fact that
while we are interested in the cost of fundamental
operations such as method invocation or the over-
head of sequential computation, simple synthesized
benchmarks do not give us really interesting informa-
tion. We would like to somehow isolate the cost of
primitives within a reasonably complex application.

In the force-calculation of BH algorithm, each PE
performs a tree traversal, replicating remote nodes



/* m: mass, P, Q: location */
vect_t newton_acceleration (m, P, Q)

float dx = P->x - Q->x;
float dy = P->y - Q->y;
float rr = dx * dx + dy * dy;

float r = sqrt (rr);
float ¢ = mass / (r * rr);
return make_vect (¢ * dx, c * dy);

Figure 7: The Sequential Kernel Written in C
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Figure 8: The Performance of the Nbody Kernel

when they are first accessed by the PE. For the sim-
plicity, each PE does not issue multiple replication
requests in parallel. These facts enable us to iso-
late the cost of two fundamental operations, which
are (1) remote replication and (2) Newtonian force

calculation (i.e., G m—a—i" )2 The former is deter-

mined by artificially traversing the BH tree twice;
since nodes required by each PE has already been
replicated in the first traversal, the second traversal
requires no communication. Hence the difference be-
tween these two phases tells us how much time are
spent on communication.* Similarly, the later can be
computed by replacing Newtonian force calculations
at leaves by a trivial operation and comparing with
the original running time.

A subtly arises because many PEs are running in
parallel with possibly imbalanced loads. When we
say “running time,” it effectively refers to the run-
ning time of the most heavily loaded PE. Therefore,
we first perform a profiling run to determine the most
heavily loaded PE and then examine the difference on
that PE. The profiling also tells us the number of op-
erations performed, hereby we can determine the cost
per operation. Throughout the evaluation, we ex-
clude the cost of garbage collection, which currently
incurs a disruptive pause time. We will be evalu-
ating them in the future with a concurrent garbage
collector [11].

Figure 8 shows the cost (in useconds) of a Newto-
nian force calculation in ABCL/f and a synthesized

3In the actual program, we set G as 1.0 and do not multiply
m since it is canceled after all.
4Here we ignore the variation of cache lookup time.
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Figure 9: The Performance of Communication

sequential C program. The C version repeatedly calls
a C function shown in Figure 7. Both programs
run on AP1000, a node CPU of which is a 25MHz
Sparc. We used single floating point numbers for sav-
ing space and compiled with GNU C compiler version
2.6.3 which emits single float instructions. From the
figure, we observe that the implementation is slower
than C by a factor of three. A thorough look at
the generated code reveals that significant improve-
ment will be possible by inlining calls to sqrt and
make_vect. In ABCL/f, sqrt is a function that may
be called by future, which then calls the standard
sqrt @ la 1ibc. Our current implementation takes
about ten instructions to perform an unknown call
and perform a polling for each unknown call. Unfold-
ing these two calls and eliminating pollings, which is
by no means a difficult optimization, immediately
gets 50% speedup, as indicated in the center line in
Figure 8.

Figure 9 compares communication performance
of ABCL/f in Nbody and a synthesized C bench-
mark, which repeatedly makes round trips of one
word messages. AP1000 communication library
supports two ways for message passing and we
tried both options.> A replication involves a pair
of request/reply messages and runtime data pars-
ing which flattens/unflattens the data to be sent
into/from a contiguous memory block. The current
implementation does not put efforts on communi-
cation performance tuning, favoring the easiness of
porting to other platforms. It first flattens the mes-
sage using runtime tag into a message buffer and
then call a standard bulk transfer library. The re-
ceiver side interprets runtime tags in the message
and expand the data structure into the heap. The
performance result shown in Figure 9 indicates that
a significant time is spent on the runtime data struc-
ture parsing.

5 Related Work

Nbody and FEM have been drawing so great
scientific/engineering interest that many researchers

SLSEND is a faster communication library at the risk of mes-
sage buffer overflow. :



have implemented efficient code on commercial dis-
tributed memory MPPs [3, 7, 14, 15]. As far as we
know, the programming environment they used on
distributed memory machines has been C or Fortran
+ message library. In such programming environ-
ment, significant programming efforts have been put
on managing communication and contexts blocked
until the result of a communication arrives.

A controversial language design decision in
ABCL/f is that, unlike many other concur-
rent object-oriented or Lisp-based languages [5,
9], ABCL/f lets the programmer specify the
data/computation location.  Although specifying
data/computation location is troublesome task,
there must be some way by which programmer con-
trols them, given that communication on scalable
parallel processors is an expensive thing. Design de-
cision made in ABCL/f is of course unexciting, but
useful for intensive parallel applications and serves
as the base language on top of which more location-
transparent layers can be defined.

A good alternative is to support shared name
space, while giving the programmer the control over
coherence semantics and consistency management
protocols. There have been previous works [6, 12],
but they are mainly targeting LAN environment
where the significant messaging overhead favors con-
stant software consistency management overhead. It
has not been proved that this gives the programmer
higher level of location transparency, without sacri-
ficing local computation on MPPs context.

6 Conclusion

Descriptions of two representative irregular scien-
tific applications in concurrent object-oriented lan-
guage ABCL/f, experimental result of Nbody, and
the evaluation of the current language implementa-
tion were given.

Our future research direction includes more de-
tailed analysis of Nbody and other applications and
improving the implementation. We are also devel-
oping better object-model which allow more shar-
ing, migration, and replication with small overhead.
Establishing simple, machine-independent (working
whether the machine is DM or DSM machine), per-
formance transparent, and efficiently implementable
(again both on DM and DSM) object model will be
the valuable work to pursuit.
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