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Neural predictions for chaos represented by multi descriptors

Tomoo AOYAMA and Hanxi ZHU
The Faculty of Engineering, Miyazaki University
Gakuen Kibanadai-nishi 1-1, Miyazaki 889-2192, Japan
E-mail: aoyama@esl.mivazaki-u.ac.jp

Abstract

We discuss long range forecasting
for the chaos that is represented by multi
descriptors. The discussion is based on an
extended embedding theory and multi layer
neural networks. Next, we investigate
forecasting under insufficient observations.
Where the future movements of phenomena
are predicted by a hypothesis for objects.

1. Introduction

We find many studies for forecasting
on use of neural networks. In the studies,
making use of Takens' embedding theory
[1], time-series data for one dimension
descriptor are adopted. The theory is useful
certainly, however it secures correct
predictions under the one step fatures.
Rossler's chaos is described by three
variables, but by using the theory, only one
descriptor makes movements of the chaos. It
is strange, but certain, because of the one
step prediction.

We must study new forecasting that is
not based on the embedding theory for more
practical use. We introduce one extension
method that we published in a previous
paper.

Usually we must forecast future
movements of phenomena under insufficient
sampling data. We face such situations
always. For the fuzzy predictions, we must
study another forecasting method. This way
is extremely difficult and requires elaborate
operations. The way easily branch into
arbitrariness and subjective. We adopted
multi value logic to avoid the problems. The
logic is mathematical and objective.

2. Discussion for multi layer neural network
2.1 Cross terms
We write a three-layer neural network
as following,
{x1,x2,...xn} = X,
yi=ZilViji*xil, pj=tGp,

Where a vector {x1,x2,..xn} has an
individual information, and its suffix
corresponds to numbered neurons in the
first layer. We put one bias neuron in the
layer, and we substitute the bias neuron for
threshold-values of actions of neurons. Even
if the bias is one, since it has many
connections, the substitution is realized.
Suffices "i" and "j" are used for 1st and 2nd
layer, respectively. Vij is a matrix of
connection weights between neurons in 1st
and 2nd layer. The "yj" is a variable as
temporary defined one. And f0 is a function
simulated a neuron, which is a differential
function. We name the function as “neuron-
function.” The "pj" is a vector for output of
neurons in 2nd layer.
We get following relations for informed
propagations between 2nd and 3rd layers.
{p1,p2,....pm} =D,
zk=Yj[Wijk*pjl, ok=g(zk),
{01,02,..0k}= 0.
Where Wik is a matrix of connection weights,
and g0 is a neuron-function. Suffix "k" is
used for 3rd layer, so a vector {01,02,...0k} is
output for neurons in 3rd layer.
If g0 is a linear function, the three-layer
neural network is equivalent to,
ok=Xj[Wik*f( TilVji*xil )], @
= ZjIWik*F(xi)].
That is well known as ANN whose
approximate expansion is similar to the
ortho-normal expansion. In the case, as the
function F is represented by sigmoid
functions and their thresholds, the Fs are
not ortho-normal set exactly. In order to close
the Fs to the set, radial function’s approach
is often tried. It has been believed that
methods similar to the ANN are useful. But
they are not complete. If a phenomenon is
described by multi variables that is {x,y,2},
we will derivate following expressions,
ok=Xj[Wik*F(xi)+Wik*F(x'i)
+ Wik*F(x"zi)].
Where descriptors {xi,x'i,x"i} are correspond



to variables {x,yz. In the expression (1),
cross terms such as xi*x’i are not found. We
are sure that the expression is insufficient.
We are reluctant to put the cross terms in
first layer. That method adds new neurons
that don’t connect to outer region and don’t
reflect observations directly. But cross terms
are necessary, we assume them to be
{x**a)*(y**b)*(z**c), a=0,1,2,..., b=0,1,2,...,
¢=0,1,2,...}. The bias neuron exists in the
assumption, that is a=b=c=0.

2.2 Window width
We must define a window width in

order to part observation data into many
fragments. The window is not for one
dimension, but for the multi descriptors. But,
we need to adopt a definition that includes
one dimension domain. We resulted
following correspondence, which are:

For x-coordinate, {{x1,x2,...xk}<-->xk+1,
{x2,x3,.. xk+1}<-->xk+2,...},

For y-coordinate, {{yl,y2,...yk}<-->yk+1,
{y2,y3,..yk+1}<-->yk+2,...},

For z-coordinate, {{z1,22,...zk}<-->zk+1,
{22,23,.. zk+1}<:->zk+2,... },

For any cross-term, {{r1,r2,...rk}<-->rk+1,
{r2,r3,.. rk+1}<-->rk+2,...},
where the letter “r” is a genetic symbol of
x**a)*(y**b)*(z**c)-term. Sampling for x, y,
and z are at same time. We neglected (xi**a)
(yj**b)*(zk*c) terms. The terms don’t appear
in the original differential equation. Using
above correspondences, the prediction
scheme in the previous paper is expanded
straightly.

3. Numerical calculations
3.1 Rossler’s chaos

A definition of the chaos is,

dx/dt="y-z,

dy/dt=x+a*y,

dz/dt=b*x-c*z+x*z,
where a, b, and ¢ are constant that we set
0.36, 0.4, and 0.5. Initial values x0, y0, and
z0 were 0.5, 0.0, and 0.0, respectively. In
practice, we used a relation:
dt=(xi+1-xi)/160000. Then, we got three

kinds of learning sets that were
{x0,x1,...,x39}, {y0,y1,....,y39}, and
{z0,z1,....,239}. The reference sets were
{x40,... x159}, {y40,...y159}, and
{z40,...2159},

3.2 One dimensional prediction
At first we used forecasting based on
x-coordinate data. The window width is 8.
The calculated results on long range are
listed in figure 1. Those of short range are
done in figure 2.
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Figure 1. Long range forecasting, its error, Euclid
and differential distances for Rossler’s chaos. The
left side of a dotted vertical line means a learning
term. The right side is forecasting. Number of the
learning data is 32, and forecasting points are 120.
In the first graph, the solid curve is results from a
neural network, and the plotted curve is true values
of the chaos. In the second graph, the solid curve is_
differences between forecasting values and true
ones. In the third and fourth graphs, the plotted
lines are square of the differences. The solid curves
are Euclid and differential distances.




Figure 2. Short range forecasting, its error, Euclid
and differential distances for Rossler’s chaos. In
these graphs, drawing methods are same as upper
figure 1.

Figure 1 shows clearly that long
range forecasting for Rossler’s chaos is very
difficult. We notice that the error between
forecasting and true values is increasing.as
time passing. It is a grave problem.

At second we calculated a short range
forecasting under the same conditions.

Figure 2 shows that short range
forecasting is possible certainly. Takens’
embedding theory is enabled. Some
researchers satisfy the results, however, the
Euclid and differential distances show a
tendency. The forecasting is usually failing
against true values of the chaos. If there is
no attraction power, the forecasting is failed
by the tendency. One-step prediction is the
attractor. This is a reason that long range
forecasting is difficult.

3.3 Multi dimensional prediction

Rossler’s chaos is primarily three-
dimensional phenomenon. Then, it should
be expressed by multi descriptors.

We did the method mentioned in the
section 2 as an elementary test. In practice,
we used three kinds of learning data and one
product data: {x0*z0,x1*z1,....,x39*239}.

The product is correspond to the cross terms
in section 2. We must select properly all
products (x**p)*(y**q)*(z**r), where p=q=r=
{0,1,2,...}. But the selection is difficult to
execute because of limitation of computer
resources. As an elementary trial, we used
one x*z term only. We set that window width
was 8 for each descriptors. Therefore, the
neuron number of the first layer was
8*4+1(bias)=33. The number of the third
layer must be equal to number of descriptors,

1.e. 3. The number of the second layer was
set as 30. This value was not optimized.

Figure 3. Long range forecasting for Rossler’s
chaos. Values for x, y, and z coordinates are plotted
in order.
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Figure 4. Differences between forecasting
and Rossler’s chaos.

The figures 3 and 4 showed pulses
of errors during the forecasting. But they
didn’t indicate increasing error as time
passing. It is clearly an improvement for the
grave problem.

4. Introducing hypothesis

Above mentioned the forecasting by
using neural networks is a reasonable
extension based on Takens' embedding
theory. But there is a limitation on the
prediction, because only observed data are
used and is not done an implicit property of
phenomena. Usually introductions of the
property have rejected in the traditional way.
We find that arbitrariness is arisen in the
introductions, and have avoided it. However,
we must convince that we already used the
implicit property without consciousness. We
have wused neural networks. That is
forecasting is limited to functions of neural
networks. ,
When we select a scheme for a solution, the
arbitrariness exists already. This is a
problem we cannot avoid, that is why we will



discuss them mathematically We try to
diminish the problem, which we introduce a
hypothesis under the multi value logic [2].

4.1 One-body operators for multi value

logic

There are many operators to calculate
multi value logic. In them, we consider the
one-body operators at first, which are
not-operator (~) and rotation operator (R).

The not-operator operates the
fragments of input vector, and generates
new fragments as, {xi,xi+1,...,xi+k-1}={
1-xi,1-xi+1,...,1-xi+k-1}. Similarly the scalar
value xi+k is translated into 1-xi+k. The
operations are accepted when observations
are symmetric for the mean value.

The rotation operator operates as,

Rixi,xi+1,... xi+k-1}
={S+xi,S+xi+1,...,S+xi+k-1},
where "S+" means the addition of a constant
"S" to the x-elements. The results seem to be
equal to the wvalue-shift, however the
operation is based on Post's not-operation
whose character is a kind of rotation. The
operations are accepted when similar
phenomena are observed on the different
bias conditions.

4.2 Numerical calculations

In order to examine the one-body
operator “~”, we forecasted a sine function
under discrete data sampled on a quarter
period. Naturally they are not enough for
predictions. But they have partial
information to predict. This is the reason
why we select it. Results we calculated
showed their insufficiency.

Figure S. Long range forecasting for sine function
under insufficient sampling.

The inappropriate forecasting is due to
insufficient sampling. Some increasing

fragments data in the sine are not found in
sampling. They can be easily introduced by
operating not-operator “~”. We operated it to
the learning set, and got following
forecasting.

Figure 6. Long range forecasting for sine function
under insufficient sampling data that are operated
by the not-operator

The not-operator improved explicitly an
insufficiency of the sampling data. Moreover,
no secondary effect was arisen. Then we got
an acceptable forecasting.

However, we should not satisfy with
these results. Since we know the sine
function, we can judge the reasonableness
for the forecasting. It is uncertain whether
the learning data calculated from the sine
represent the original function or not.
Therefore, we need an index that relates
with a precision of forecasting. We believe
the index based on the principle “nothing
can't generate significance”. Euclid and
differential distances satisfy the principle.
We calculated them for case of figure 5 and 6.
These results are following.

Figures 7 and 8 are drawn on same
scale. The figures clearly suggest that the
precision by using not-operator is higher
than the original.

Figure 7. Euclid and differential distances for long
range forecasting under the conditions of figure S.



Figure 8. . Euclid and differential distances for
long range forecasting under the conditions of
figure 6.

But we must consider that the operated
learning data are more than the original. It
is natural consequence that the distances
are shorter. Figure 8 indicates that the
operation ought not to be a negation. It
doesn’t indicate positively that the
introduction is correct. To revise the defects,
we recalculated the distances between
prediction input data and the restricted
learning data that include the operated
data.

Figure 9. . Euclid and differential distances for
long range forecasting under the restricted learning
data set.

The  restricted distances show
uncertain predictions at first. But, the
predictions become more and more certain.
This implies that initial predictions are
executed by the operated terms, and as
passing time, they are done by the original
terms. That is likely that a lack of data was
supplemented by that not-operator. We must
determine that such supplementation is
reasonable or not. It is not determined by
mathematics; therefore we call the method
as “introducing hypothesis”.

If we use the method for short range
forecasting, we will get more accurate result.
So we tried it, and made sure that.

Figure 10. Short range forecasting for sine function
under insufficient sampling data that are operated
by the not-operator

4.3 Two-body operators
We consider the two-body operators
now. They are "or-" (|) and "and-" operators
(&). The "or-" and "and-" operators operate
the fragments as following,

{xi,xi+1,..., xi+k-1} | {xj,xj+1,...,xj+k-1}
=fmax(xi,xj),max(xi+1,xj+1)..., max(xi+k-1,xj
+k-D},

xitk | xj+k=max(xi+k, xj+k),

{xi,xi+1,... xi+k- 1} &{xj,xj+1,..., xj+k-1}
={min(xi,xj),min(xi+1,xj+1)..., min(xi+k-1,
xj+k-1)},

xi+k & xj+k=min(xi+k,xj+k).

These operations are accepted when
turndown or turn-up is not observed yet, but
they are expected.

5. Conclusion.

We investigated followings; A fragment-
ation technique for chaos that was represent-
ed by multi descriptors, Forecasting of the
chaos by using the fragmentation and neural
networks. The technique is a multi-version of
the embedding theory. We examined it for
Rossler’s. But we should test it in case of
much other chaos. We introduced a working
hypothesis in order to supplement a lack of
sampling data, and discussed that the
introduction was acceptable or not by using
multi value logic.
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