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Abstract

We . discuss a general method to
predict phenomena. The method is based
on functions of multi layer neural
networks and recurrent representations of
periodic = functions. The method can
evaluate precisions for the predictions.
The principle is due to the differentials of
the neural networks.

1. Introduction

Many studies of the extrapolation for
time dependent phenomena have been
published. In the studies, there were some
methods that are adopted neural networks
[1,2]. Using neural networks, explicit
descriptions (functions) are not necessary.
Futures of phenomena are predicted from
observed data only. It is very useful and
practical, but the usefulness is a defect at
same time. If explicit functions are
unknown, it is hard to calculate precisions
of extrapolations. We often find examples
of prediction in published papers [3], but
hardly discover examinations using neural
networks. We consider that the neural
network is one of functions. The function is
defined at learning data, and it is discrete
essentially. But we use it as continuous,
and make predictions. It is unreasonable.
If the neural network is a continuous
function, its differential should be defined.
Where we don't consider fractal functions.
The explicit differential representation is
published [3]. Then, function characters
near discrete points of learning data are
evaluated by the differential. The fact
makes a discrete function inte continuous;
at least, an index for predictions is got.

2. Multi layer neural networks
We used a neural network without
feedback loop, whose structure is three

layers. In the layer structure, informed
propagations are following.

{x1,x2,...xn} =X,

yj=X Vjixi, pj=f(yj),
where a vector {x1,x2,...xn} has an
individual information, and its suffix
corresponds to numbered neurons in the
first layer. The neurons don't include bias
ones. [We substitute the bias neurons for
threshold-values of actions of neurons.]
Suffices "i" and "j" are used for 1st and 2nd
layer, respectively. Vij is a matrix of
connection weights between neurons in 1st
and 2nd layer. The "yj" is a variable as
temporary defined. And fO is a function
simulated a neuron, which must be a
differential function. If it is not differential,
following learning equations are not
defined. We name the function as
neuron-function. The "pj" is a vector for
output of neurons in 2nd layer. Thus, we
got following relations for informed
propagations between 2nd and 3rd layers.

{p1,p2,..pm}=p,

zk=%L Wikpj, ok=g(zk),

{01,02,..0k}= 0.
Where Wjk is a matrix of connection
weights, and g0 is a neuron-function.
Suffix "k" is used for 3rd layer, so a vector
{01,02,...0k} is output for neurons in 3rd
layer. In the neural network, an individual
information {x1,x2,..xn} is transformed
into a vector {01,02,...0k}. Where dimension
of the vector is converted into different one,
therefore, we must take care of the
transformations in cases of "n < k" and
large "m"-values,

These relations are realized in one
individual input/output datum, and the
relations also stand up in case of plural
data. Thus, we write as following.

x—{x 1}, p—{pu} o—{ou}
In the multi layer neural network, a



corresponding relation is organized.
{x ure{o u}
The relation 1is not a one-to-one
correspondence. Followings are allowed.
{out={ovi=...={o £}
But, next relations are not done.
{x uy={x v}#{x £}

We arrived at following differential

coefficients between output and input.
For 2-layer-network:

S yj=Wij* S xi

6 0j=£( S yj)=f"(yj)*Wij* & xi/1!
+H (yIHAWij* & xi}**2/21+... ... ..

Then,

S oj/ 6 xi =f’(yj)*Wij
+ 7 (yP*Wij**2* S xi/2 +..

For 3-layer-network:

0 yj=Vij* O xi

0 pj=t( S yp=f'(y)*Vij* d xi/1!

+ (y*(Vij* & xi)**2/2!

& zk=Wjk* & pj

8 ok=g( & zk)=g’(zk)*Wjk* S pj/1!
+g” (zk)*(Wjk* & pj)**2/2!

8 ok=g'(zk)* I jIWjk*{f’ (yj)*Vij
+ (y*Vij**2* 8 xi/2}]* & xi
+(1/2)*g" (zk)

* 3 j[Wik**2* & pj*{ £’ (yj)*Vij
+" (y)*Vij**2*dxi/2}*dxi

Consequently,

0 ok/ 8 xi=g'(zk)* T jIWjk*f’ (yj)*Vij]
+(1/2)*g" (zk)*

ZjIWik**2%f (yj) **2*Vij**2] * 6 xi+...

in ANN [4], absolutely g”0=0, then:

0 ok/ 8 xi= X j[Wjk*g'(q))*Vij*f (yj)]

=0 o/d x[this is a vector representation.]
For 3-layer multi infinitesimals:

8 yj=ZilVij* & xil

6 pj=f( S yp)=t"(yp* ZilVy* & xi
+HE (yii2b{ ZilVij* 6 xil}**2

8 zk=Xj[Wjk* & pjl
Therefore,

S ok=g( & zk)
=g'(zk)* X j[Wijk* & pjl
+Hg” (zk)/2}*{ £ j[Wjk* S pjl}**2

In ANN or 1st. order approximation,
absolutely g”0=0, then:

8 ok=g'(zk)* 2 j[Wjk*f (yj)* Z i[Vij* & xil]
Where f and g' are differentials for f and g
functions.

The neuron-functions f and g are

sigmoid functions generally. But it is
desirable that the functions are replaced
by other ones. We often replace g-function
with linear function. Such neural network
is called ANN, which is excellent to
extrapolate on various phenomena.

3. Recurrent representation for functions

3.1 Takens's embedding theorem
Takens' embedding theorem teaches
us possibility for the short-range
prediction of time series data gotten by
chaotic phenomena. The embedding
theorem shows that the trace described by
multi dimensional variables is calculated
by one kind of variable in them. It is
impressive and extensions of the theory
are broad and general. Principles of the
theory are based on the Jacobian matrix
defined nearby the last point. It is possible
that the principle is extended by using
facilities of neural networks. The neural
networks evaluate status around learning
points from all data, and they are not local
but global. Therefore, we believe a
significance in investigations of the
prediction use of neural networks.

3.2 recurrent representations for
functions

We investigate a recurrent representa-
tion of functions in order to eliminate
periodic conditions for functions. The
representation is gotten from following
facts,

(1) sampling values of function are finite
vector {x1,x2,....,xn}.

(2) a set of partial vector of the vector is
written as {{x1,x2,...xk},{x2,x3,..xk+1},....},
where an index k is less than n. “k-1” is
called a window width. The index k has
not meaning of neurons in third layer here.
The width is determined by following
index E,

Dij={ Z1[(xi+] -xj+D)**2]}*0.5,

E=min{Dij; i>j}.

We used a condition that E is bigger than
0.02. The condition was got empirically.

If the condition is negligible, the back
propagation learning will be very difficult.
If the learning may be completed, the
generating potential plane is steep, and



the steepness connects to the over learning
for the neural networks.

(3)elements of the set can be correspond-
ed to a scalar series {xk+1xk+2..} as
following: {{x1,x2,...xk}<-->xk+1,

{x2,x3,.. xk+1}<-->xk+2,...}
They are set of partial vector and scalar
series, and fragmentations of functions,
which are learning data set for a neural
network simultaneously. A property of
neural networks combines a vector with
another, which includes a scalar. That is
{xi,xi+1,...xi+k-1}-->xi+k, where i=1,2,....
The relation is equivalent to a local
prediction or fragmented forecasting.
If the last partial vector is written as
{xj,xj+1,..xj+k-1}, and the corresponding
scalar is xj+k. In that case, what kind of
character does the vector {xj+1,xj+2,...xj+k}
have ? The {xj+1,xj+2,..xj+k} is a new
undefined vector, but it is also an input
datum for neural network. Therefore, a
new scalar is calculated from the input
datum. Is the scalar written as xj+k+1?
In generally, it cannot be allowed. But if
the sampled function is periodic and the
new vector is included in learning data set,
it will be allowed. In such a situation, the
calculated scalar is xj+k+1, and a new
vector {xj+2 xj+3,...xj+k+1} is also used for
advanced prediction. These iterative
series describe a periodic function
implicitly. We call the iteration as a
recurrent representation for the function.
When the representation is valid, a multi
layer neural network is nearly equal to the
sampled function.

4. Precision for recurrent representation

In neural networks, input data are
multi dimensional. In order to simplify
following discussion, we put the multi
dimensional data on a multi dimensional
space. From now on, input data are points
on the space, so we write learning data as
learning points.

4.1 Fractal dimensions
We found an examination for the
prediction by using neural networks. It is
based on the fractal Brown's function that
is a statistical extension of the fractal
dimensions.

FB(y)

=probability[ | 1/dx | **H - {f(x+dx)-fx)} <y]
The function "FBQ"is a distribution
function, and is determined by observed
data. Where a variable "H" is related with
the fractal dimension, whose details are
listed in [1]. The "H" variable is an index
that determines reliability for the
prediction. It is effective to economic
forecasting. However, the index shows
linear responses between the linear and
random changes. We are sure that the
responses are not appropriate for precision
index. So we consider a new non- linear
index.

4.2 Euclid distance

When sigmoid functions are adopted
in neural networks, output responses of
the neural network near learning points
are roughly equal to that of the points. And
Buclid difference increases monotonously
with distances from the learning points.
The fact suggests implicitly that precision
for the recurrent representation can be
estimated by the distance. But the
distance would not be quantitative index,
because of the monotonous increasing only.
We cannot discover quantitative variance
around the learning points. We are sure
that FEuclid distance is Oth order
approximation for the precision. The
explicit formula "d" for the Oth
approximation is,

d=min{D1,D2,... DN}.
Where each "Di" is,

Di={ Djl(xj-xD)**2+(xj+1-xi+1)**2+....
+(xj+k-1 - xi+k-1)**2]}**0.5,
and {xi,xi+1,..xi+k-1} (=1,2,..N) is the
learning data, and {xjxj+1,....,xj+k-1}
(G=1,2,...,N) is an input point for prediction.

4.3 Differential distance

Revising the defect for the variance
around the Ilearning points, we use
differential coefficients for neural network.
By wusing analogical derivations for
Taylor's expansion, we get following a
scheme,

{5j,..., Sj+k-1}
={(xj-xi), xi+1-xj+1),.., (xj+k-1 - xi+k- 1},

where index "i" means the nearest point



from the input point. Vector representation
is,
§=X"-X,
A=(8 o/d x)+ §/1!
+(0**20/0x 0 x)[6X8)2+ ...,
where symbol " X" means outer (tensor)
products for the vector. The A has not a
character for the distance. So we
transform it into,
A’={ T8 0il 8 xj)*(xj-xi))**2

+(( 8 0i+1/ 8 xj+1D*(xj+1-xi+1))**2
+.....
+(( 0 oi+k-1/ 0 xj+k-1)*(xj+k-1-xi+k-1))**2]
}*%0.5.
The scalar "A” corresponds with Euclid
distance. This scheme is valid on the
learning points, but is invalid on far from
the points. Such situations will be found
during calculations to predict. So we are
sure the index A’is 1st order approxima-
tion.

Or, in a case of ANN, we use first
order approximation,
8 ok=g'(zk)* X j[Wjk*f'(yj)* il Vij* & xill,
A”={Zk[ 8 ok**2]}**0.5.

4.4 Invalid for prediction

We defined the nearest point from an
input point for prediction, whose index was
"i". Similarly, the index of the nearest
point for next prediction is defined, and it
is """ bhere. The location of the index "i"
should be onward from "i", or be equal to
"". We write the condition as "i' >=i". In
learning process of the neural network,
such a sequent is not explicitly. However,
when we consider the recurrent
representation for the function, the
sequent is included in the consideration
implicitly. If the sequent property is
break, it is sure that a new aspect is arisen
in the prediction. The prediction includes
new information that is not found in
learning data. Therefore we should reject
the prediction.

In ANN only, the output is out of
range [0,1] because of linear "g"-function
that is a neuron function in the 3rd layer.
If the case happens, it shows that the
prediction contravenes the definitions for
the npeural network. Then, we should
regard the prediction as invalid.

4.5 Two conceptions for prediction

When we forecast phenomena by
using neural networks, at first we
construct a neural network by learning
equations. The forecasting is evaluated
based on the constructed network; at the
time there are two choices for adopting
prediction data.

One is used last observed data just
before the forecasting. The conception is
called as "one step ahead prediction”" or
"short-range prediction". It is similar to
Takens' embedding theory. But, in the
prediction principle, a basic quantity is not
corresponded with local information such
as the Jacobian. Moreover, the quantity is
not gotten by the last data, but
information from rather past data. Then, it
is somewhat extension for Takens'.

The other is used output data
calculated only by the neural network. The
conception is called as "long range
prediction". It is out-of-range of Takens'
embedding theory, whose efficiency is only
examined by numerical calculations. It is
natural that the forecasting from the
former is higher precision than that of
later.

5. Numerical calculations

5.1 Lorenz’ chaos
A definition of the chaos is,
xi+1=xi*(1-xi)*A,
where A is a constant (3.66667), and x0 is
an initial value (0.5). These values should
be selected reasonably. If not, the iteration
does not generate chaos.

We calculated two sets {x0,x1,...,x39}
and {x40,x41,..., x159}. We used the former
set for learning of a neural network, and
the later for examinations of forecasting.

In learning, the window width is set
as 8, then the number of effective learning
data is 40-8=32. The results were listed in
figure 1. In the figure, the left side of a
dotted vertical line means a learning term.
The right side is forecasting. On the upper
part in the figure, a solid curve means
forecasting, and a dotted curve does true
values of the chaos. On the lower part, a
solid line means the difference between



the forecasting and the true values.

Figure 1. Forecasting and error for Lorenz’ chaos

The difference is negligible in the
learning term, however it is not in the
forecasting. That means the learning has
completed, but the forecasting can’'t be
done. We must pay attention to the
conclusion is got under knowledge of true
values of the chaos. The Euclid and
differential distances are listed on solid
lines in figure 2. These distances show
that the forecasting is uncertain.

Figure 2. Euclid and differential distances

Long-range predictions for chaocs are
very difficult. On the other short-range, we
got high accuracy forecasting, that is in
figure 3.

Figure 3. Forecasting and error for Lorenz’
chaos on short range prediction
It is clear that the forecasting is

accurate and the differentials are
negligible. In the case, the Euclid and
differential distances are listed in figure 4.
These distances show that the
forecasting is accurate considerably.

Figure 4. Euclid and differential distances on
short-range prediction

6. Conclusion

We investigated differential coefficients
for multi neural networks, and derived
indexes to forecast. We discussed recurrent
representations of periodic functions, and
slightly extended them, which were used
in the processing of neural networks. We
tested these processing techniques on the
forecasting for Lorenz's chaos. As the
results, we believe that the indexes and
extensions are useful in order to predict
nearly periodic phenomena.
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