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Abstract: Product-type iterative methods, e.g., GPBi-CG, GPBiCG_AR methods utilize three-term recurrences
in the algorithm. Moreover, coefficients (n, nn included in the accelerated polynomials Hn(\), Gn(\) are computed
for every iteration step by means of local minimization of 2-norm of residual 7,1 and associate residual a_rp41.
In this article, we evaluate heuristic variants of GPBiCG_AR method without and with preconditioning by means
of improvement of determination of coefficients (rn, Nn.

1 Introduction

Generalized Product Bi-Conjugate Gradient (ab-
breviated as GPBi-CG) method [8] is an attrac-
tive iterative method for the solution of a lin-
ear system of equations with nonsymmetric coef-
ficient matrix. However, the popularity of GPBi-
CG method has diminished over time except for
the context of limited field of analysis because of
instability of convergence rate. Therefore some
versions of GPBi-CG method which have stability
of convergence compared with the original GPBi-
CG method have been proposed.

We proposed a safety variant (abbreviated as
BiCGSafe) of Generalized Product type Bi-CG
method from the viewpoint of reconstruction of
the residual polynomial and determination of two
acceleration parameters {, and 7, [2]. It embod-
ied that a particular strategy for remedying the
instability of convergence, acceleration parame-
ters are decided from minimization of the asso-
ciate residual of 2-norm [6]. However, we could
not reveal the origin of instability of GPBi-CG
method because of reconstruction of the algo-
rithm. Though both convergence rate and sta-
bility of BiCGSafe method were improved, insta-
bility itself of GPBi-CG method could not corre-
sponds directly to its algorithm.

As a result, we proposed the original GP-
BiCG-AR (GPBiCG with Associate Residual)
method [3] in 2007, and could verify robustness
of GPBiCG_AR method. Moreover, we proposed
simple variant of GPBiCG_AR2 method to im-
prove convergence rate. That is, in simple variant
of GPBiCG_AR2 method, three-term recurrences
are adopted for odd iteration steps and two-term
recurrences are adopted for even iteration steps,
one after the other. This remedy makes enhance-
ment of convergence rate of GPBiCG_AR method
at fairly satisfied degree. However, sometimes
this remedy has a limitation of enhancement to a
certain extent.

This paper is organized as follows. In section

2 we briefly review GP-BiCG and GPBiCG_AR
methods. In section 3 we consider on coeff-
cients of GPBi-CG like methods. In particular,
we propose simple and heuristic variants of GP-
BiCG_AR method by means of improvement of
determination of coefficients (,, 7,. In section
4 we verify effectiveness of heuristic variant of
GPBiCG_AR method without and with precon-
ditioning through numerical experiments. In sec-
tion 5 we draw some conclusions and remarks.

2 GPBiIiCG_AR methods

We consider iterative methods for solving a linear
system of equations

Az =b (1)

where A € RV*N is a given nonsymmetric ma-
trix, and @, b is a solution vector and right-hand
side vector, respectively. When A is a large,
sparse matrix which arises from realistic prob-
lems, the efficient solution of (1) is substantially
very difficult. This difficulty has led to the devel-
opment of a rich variety of generalized CG type
methods having varying degrees of success (see,
e.g., [7]).

The biconjugate gradient (BiCG) method
based of the Lanczos algorithm is a crucial exam-
ple of a generalized CG method. In many cases,
the Lanczos algorithm give some of the fastest so-
lution times and stability of convergence among
all generalized CG methods. The Lanczos algo-
rithm, however, is known to break down in some
cases. In practice, the occurrence of breakdown
can cause failure to irregularly converge to the
solution of (1). The fact that the Lanczos al-
gorithms perform well in some cases but fail in
others heightens the need for further insight and
development of the Lanczos type iterative meth-
ods. We note that the basic recurrence relations
between Lanczos polynomials R,(\) and P,()\)
hold as follows:

)



RO(’\) = 1, PO()‘) =1, (2)
Rnt1(A) = Ra(A\) — anAPa(}), (3)
Pot1i(A) = Rnat1(A) + BnPa(X), n=1,2,..(4)

Then we can introduce the three-term recurrence
relations for Lanczos polynomials R,()) only by
eliminating P,()) from (2) and (4) as follows:

Ro(d) = 1, Bi(\)=(1-aNRo(})  (5)
Roni(N) = (14 %an —anRa(A)  (6)
Br-1

anBn_1(N), n=1,2,..(7)
Qn—1

GPBi-CG method[8] was discovered that an
often excellent convergence property can be
gained by choosing for acceleration polynomials
H,()) that are built up in the three-term recur-
rence form as polynomial R, (\) in (5) and (7) by
adding suitable undetermined parameters ¢, and
7 as follows:

Ho(N) = 1, Hi(A) = (1= ¢A)Ho(}), ®)
Hnpi(A) = (L+0m = GA)Hn(A) — 1 Hn-1(A)9)
n=12,....

The polynomials H,()\) satisfy H,(0) = 1 and
the relation as Hp+1(0) — Hn(0) = 0 for all
n. Here we introduce an auxiliary polynomials

Gn()) as

Ca(h) = ———*H"(A)Zj"“w. (10)

By reconstruction of (7) using the acceleration
polynomials H,(\) and G,()), we have the fol-
lowing coupled two-term recursion of the form as

Hy(N) 1, Go(A) = ¢o, (11)
Ho(\) = Hoi(\)—AGno1(Y), (12)

Gn(N) = GHp(A) +7nGn1()), (13)
n=12....

Using these acceleration polynomials H,(\) and
Gn(X), his discover led to the generalized
product-type methods based on Bi-CG method
for solving the linear system with nonsymmet-
ric coefficient matrix. He refered as GPBi-CG
method [8]. However, the original Lanczos algo-
rithm is also known to break down or nearly break
down in some cases. In practice, the occurrence
of a break down cause failure to converge to the
solution of linear equations, and the increase of

the iterations introduce numerical error into the
approximate solution. Therefore, convergence of
the generalized product-type methods is affected.
Comparatively little is known about the theo-
retical properties of the generalized product-type
methods. The fact that the generalized product-
type methods perform very well in some cases
but fail in others motivates the need for further
insight into the construction of polynomials for
the product-type residual Hp41(A)Rp41(N).

In a usual approach, acceleration param-
eters are decided from local minimization
of the residual vector of 2-norm ||r,41(:=
Hp 1(A)Rp+1(N))||2, where Rp4+1()) denotes the
residual polynomial of Lanczos algorithm and
H,11(\) denotes the acceleration polynomial for
convergence. Instead, it embodies that a particu-
lar strategy for remedying the instability of con-
vergence. That is, the algorithm of GPBiCG_AR
method based on local minimization of associate
residual ar,(:= Hpy1(A\)R,(N\)) with two pa-
rameters (, and 7, is written as follows:

ary,="7Typ— nnAzn—l - CnArn‘ (14)

Here 7, is the residual vector of the algorithm.
Matrix-vector multiplication of Au, and Ar,4+;
are directly computed according to definition of
multiplication of matrix A and vector. On the
other hand, Ap, and Az, are computed us-
ing its recurrence. In the algorithm of GP-
BiCG_AR method, modification parts which dif-
fer from the conventional GPBi-CG method are
indicated with underlines. The description as
compute Au, means that multiplication of ma-
trix A and vector u,, as Au, is done according
to multiplication’s definition. The algorithm of
the original GPBiCG_AR method are written as
follows:

o is an initial guess, ro = b— Axy,
choose ry such that (rg, 7o) #0,
set f—1 = 0, compute Arg,
forn=0,1,--- until ||rp41]| < e ||ro]| do:
begin

Pp =Tn+ ﬁn—l(?n_1 - ’U'n-l),

App, = Arp + Bn-1(APp_; — Aun-1),
_ (73, 7n)
T (75, Apy)’
an =Ty, by = Azp_1, cp = Arp,
(bn,bn)(cn; an) = (bn, an)(cn, bn)

Qn

= (s n) By br) = (b, o) (0n, bm)
i = (&n2€n)(Bn, an) = (bn, en)(en, an)
"7 (ensca)(bn,bn) = (bn,cn)(cn, bn)’
(if n =0, then ¢ = (Cn, @) in = 0)
(en, cn)



Un = (nAp, + Mn(tn—1 — Tn + Bn—1Un—-1),
compute Aun,

tn = rn — anAp,,

2Zn = (nTn +MnZn—1 — AnlUn,

Azp = (nArn + MAzZn_1 — anAun,

Tp+1 = Tn + anP, + Zn,

Ppt1 = tn — Azn,

compute Arpy1,

on (15, Tnt1)

o (rgra)

Bn =

end

3 Coefficients determination

3.1 GPBi-CG

Coefficients (,, 1, are computed for every it-
eration step by means of local minimization of
2-norm of residual rp4+1 := Hpt1(A)Rpt1(A).

an =tn, b =y, Crn = Aty, (15)
(b, bn)(cn,an) — (bn,an)(cn, bn)

= (emen)(brb) = By en)(en,br) 1)

- (en;s €n)(bn; an) = (bn, Cn)(Cn, an)
(¢n,en)(bn,bn) — (bn,cn)(Cn,bn

Mn (17)
However, residual vector 7,; and solution vec-
tor x,4+1 are derived from reccurences with dif-
ferent root, respectively.

t, =Tn — anAp,, (18)
Tnt1 = tn — GuAtn — MY,

(# o — Azy) (19)
Tpt1 = Tp + QnP, + 2n: (20)

Because coefficients (,, n, are designed so as
to be included in the recurrence of residual vec-
tor 7p4+1. Accordingly solution vector x,+1 may
differ from residual vector r,4; during iteration
steps.

3.2 GPBiCG_AR

Coefficients (n, 1, are computed for every it-
eration step by means of local minimization of
2-norm of associate residual a-rpi1(= 7n —
nnAzn—l - gnArn)'

Qn =Tp, by =Azp_1, ¢y = Ary, (21)
(n = eqn.(16), n, = eqn.(17) (22)

On the contrary, in GPBICG_AR, both residual
vector r,+1 and solution vector @, are derived

from recurrence with the same root as below.

t, =1y — anAp,, (23)
Tnt1 = Tp + QnPp + 2Zn, (24)
Tnt+l = tn - Azn. (25)

However, coefficients (,, 7, are not included
in the recurrence of residual vector 7, itself.
Therefore, we adopt an associate residual vec-
tor arni1 == Hpy1(A)Rn(A) for determination
of Cn, Nn.

3.3 Variants of GPBiIiCG_AR2

Coefficients (,, 7, of simple variant of GP-
BiCG-AR2 are decided as below.

if step is even number, then
Cn = eqn.(16), 7, = eqn.(17)
else (i.e., step is odd number)
G = {Em2Gn)
(ensen)’
end if

nn=07

Coefficients (n, 7, of heuristic variant of GP-
BiCG_AR2 are decided as below. & is given as
0 < £ < 1.0 for heuristicly taking account of ef-
fect of term of n, Az,_1.

_ lanca)l
llaxll llenll’
if p < Kk, then
(n = eqn.(16), 1, = eqn.(17)
else
(cn;an)
n= 7\ n = 07
¢ (cnycn) K
end if
3 : [(@nCn)|  _  |(Tn,ATH)|
Criterion as g e = fitar,y < &

based on Ref.[5], is introduced in place of odd
or even number of iteration steps. Parameter s
is a scalar value included in [0,1]. This variant
of GPBiCG-AR2 method with alternative recur-
rences is refered to as a heuristic variant of
GPBiCG_AR2 method with parameter . The
algorithm of heuristic variant of GPBiCG_AR2
method is listed as follows:

o is an initial guess, g = b — Az,
choose 5 such that (v, 7o) # 0,
set 31 =0, kisgivenas 0 < Kk < 1,
compute Arg,



forn =0,1,--- until ||7Pp41]] < e ||ro]| do:
begin

Pp =T+ Pr-1(Pp_1 — uUn-1),

Ap,, = Arn + Pn-1(Ap,_1 — Aun_1),

(”'617'11)
On = ———,
" (rh, APy
an =Tn, bp = Azp—1, cn = Arp,
p = 1(@n;cn)l
llan|| llenl|
if p < Kk, then
Cn — (bm b'ﬂ)(on’ a"n) - (bnv aﬂ)(cmbn)

B (cﬂ,cﬂ)(b"’ bﬂ) - (bnvc’n)(c"wbﬂ) ’
o = (&2 €n)(bn, an) = (br, en)(en, an)

" (cn?cn)(bn7bn)_(b‘mcn)(%wbn) ’
Un = (AP, + Mn(tn—1 — Tn + Bn-1Un—1),
compute Aun,

th = Tn — anAp,,
2Zn = (nTn +NMn2Zn—1 — Qnln,
Azp = CnA”'n +77nAzn—1 — anAun,

else
Cn = (On,an), 1 =0,
(en,cn)
Un = (nAPp,,

compute Aun,
th =Tn —an Apn>

zn = (ntn,
Az, = CnA"'n - anAun,
end if

Tp+1 = Tn + anP, + 2n,
Tn+1 = tn — Aznp,
compute Arn41,

an (78, Tni1)
Bn=— 7,
(n (rgsmn)
end

4 Numerical experiments

In this section numerical experiments will be pre-
sented. All computations were done in dou-
ble precision floating point arithmetics, and per-
formed on HP workstation xw4200 with CPU of
Intel(R) Pentium (R) 4, clock of 3.9GHz, main
memory of 3GB, OS of Suse Linux version 9.2.
Compile option with “-O0” is used for cases of
non-preconditionings. On the other hand, com-
pile option with “-O3” is used for cases of precon-
ditionings. The right-hand side b was imposed
from the physical load conditions. The stopping
criterion for successful convergence of the iter-
ative methods is less than 10~7 of the relative
residual 2-norm ||7p+1]l2/||70ll2- The maximum
number of iterations is fixed as 10%. The initial
shadow residual 7§ is set as ro. Parameter s
varies from 0.0 to 1.0 at the interval of 0.05.

4.1 Preconditioning

In Table 1 we present iterations, computation
times in seconds and ratios of heuristic vari-
ant of GPBiCG_AR2 with & to the original GP-
BiCG_AR method. The bold figures means the
least time for each matrix. The ratio shown in the
most right column implies computation time of
heuristic variant of GPBiCG_AR2 method with
£ to the original GPBiCG_AR method. The val-
ues of heuristic variant of GPBICG_AR2 method
represents those of the least computation time.
From Table 1, we can see that heuristic variant of
GPBiCG_-AR2 method with s outperforms well.
Test matrices are derived from Florida sparse ma-
trix collection[1].

Table 1: Iterations, computation times and
ratios of heuristice variant of GPBiCG_AR2
method with & to the original GPBIiCG_AR and
GPBi-CG methods without preconditioning.

matrix GP AR heuristic AR2
itr. time| itr. time| itr. time k| ratio to
ls) s [ |AR (GP)
wang4 398 2.82| 395 2.61| 360 2.09 .00|.80 (.74)
sme3Db (4612 203.2|4738 211.1/3893 170.7 .55/ .81 (.84)
memplus| 624 3.10| 601 2.87| 514 2.40 .40|.84 (.77)
comsol 261 0.53| 255 0.51} 215 0.44 .30|.86 (.83)
wang3 187 1.32f 181 1.20| 166 1.05 .20/ .88 (.80)
poi-3db | 161 12.10| 162 13.13] 154 11.59 .60| .88 (.96)
bjtcai  |4058 49.65|3818 45.13|3431 40.11 .10/ .89 (.81)
sme3Da (5410 97.44|4028 72.03/3636 64.92 .25|.90 (.67)
epbl 347 1.31| 351 1.26] 330 1.15 .35|.91 (.83)
af23560 |1942 24.57|2058 25.35/1882 23.16 .60| .91 (.94)
epb3 2866 61.46(2647 53.30{2443 49.00 .60] .92 (.80)
xenonl | 488 14.86| 521 15.44| 481 14.22 .75(.92 (.96)
ex19 2237 15.15|2218 14.74|2098 13.91 .15 .94 (.92)

epb2 230 '1.59| 239 1.57| 230 1.45 .60{.94 (.92)
ns3Da 739 25.51| 767 26.41| 700 24.79 .50{.94 (.97)
3D.3D |max —|6344 173.9{6071 165.6 .90| .95 (-)

OKo01 1839 154.7(1866 155.4|1786 148.0 .25| .95 (.96)
0.0.200 | 207 1.99| 204 1.83| 197 1.76 .90|.96 (.88)
exl1l 981 22.67| 917 21.00| 901 20.67 .95|.98 (.91)

Fig.1 presents computation time in seconds of
heuristic variant of GPBiCG_AR2 without pre-
conditioning when & varies from 0 to 1 at the in-
terval of 0.05 for matrices sme3Da and memplus.
From Fig.1, it can be seen that GPBiCG_AR2
method works well exception small values of pa-
rameter k.

matrix: sme3Da

Heuristic AR2(KX) ==w—=

AR ==

Time (s)

(a)sme3Da



matrix: memplus

Heuristic AR2(X)

Time [s)

(b)memplus
Figure 1: Computation time of heuristic variant
of AR2 without preconditioning when k varies
from 0 to 1 at the interval of 0.05.

4.2 Non-preconditioning

In Table 2 we present iterations and computa-
tion times in seconds of some iterative methods
with and without preconditioning. “NaN” means
halt of computation because of overflow opera-
tions during iteration process. Parameter “y” of
heuristic AR2 method means the least computa-
tion time among various ;.

Table 2: Iterations and computation times of
iterative methods with and without

preconditioning.

matrix| pre-| heuristic AR2 GP AR AR2
cond.| vy itr. time k| itr. time| itr. time| itr. time
big nonf . 2235 3.47 1.0{2528 4.17|2235 3.41(3318 4.90
pre.[1.03 610 1.92 .10|NaN _ 641 2.06| 693 2.20
epbl non| - 346 0.51 .05 347 0.62] 351 0.58 353 0.56
pre.[1.00 68 0.21 .60|NaN _ 67 0.22| 67 0.23
epb2 non| . 231 0.73.70] 230 0.79] 239 0.77| 238 0.73
pre.[1.02 20 0.13 .50|NaN _ 19 0.13f 19 0.13
sme- non| _ 3469 27.7 .95[5410 43.5[4028 32.0{3925 31.0
3da pre.|1.05 487 8.09 .00] 590 9.80| 520 8.68| 497 8.28

Fig.2 depicts computation times for precondi-
tioned heuristic AR2 and other methods with var-
ious v for matrices sme3da and big. From Fig.2,
heuristic AR-2 method outperforms for various
accelerated parameter s of ILU decomposition
in view of CPU times. Fig.3 shows history of rel-
ative residual 2-norm of heuristic AR2 and other
iterative methods for sme3da, big and epb2.

matrix: sme3Da

Heuristic-AR2 (x]
AR

Time (s]

matrix: big

2.

2.

2.

2.

2.

2.

Time [8]

1.

1.

1.7

Y
(b)big
Figure 2: Computation times for preconditioned
heuristic AR2 and other methods with various

Vs

matrix: sme3da( optimum x = 0.75, y = 1.02 )

Heuristic-AR2(K) =

AR 2 -
AR
Gp

Relative Residual

Iterations
(a)sme3da

matrix: big( optimum x = 0.3, y = 1.0 )

Heuristic-AR2 () —

AR 2
AR
Gp

Relative Residual

(b)big

matrix: epb2( optimum X = 0.8, Y = 1.05 )

Heuristic-AR2 (x)
BR_2
AR

Relative Residual

-7 L " :
o s 10 15 20 25
Iterations

(c)epb2
Figure 3: History of relative residual 2-norm of
heuristic AR2 and other iterative methods.




Table 3 tabulates iterations and computa-
tion times of some iterative methods for matrix
sme3da when accelerated parameter v of ILU de-
composition for diagonal entries varies. “Kqps.”
means the least computation time among various
Ks. In Table 3 bold figures means the least time
for each matrix. Heuristic AR2 method work well
among test iterative methods. Moreover, it is
noted that, when v = 1.06, iteration counts of
GP method needs suddenly 1150 iterations com-
pared with other parameter vs. When v = 1.0,
the same tendency appears as for iteration counts
(= 1456 itr.) of GP method. On the other hand,
iteration counts of heuristic AR2 method keep al-
most constant iterations for various parameter ;.

Table 4 exhibits iterations and computation
times of some iterative methods for matrix big.
GP method did not converge because of overflow
operations during iteration process. AR2 and
heuristic AR2 methods are competitive.

Table 3: Iterations and computation times of
some iterative methods for matrix sme3da
when accelerated  of ILU decomposition varies.

5 | heuristic AR2 GP AR AR2
itr. time kKopt.| itr. time|itr. time|itr. time

1.00{586 9.63 0.60|1456 23.38|641 10.53|732 11.94

1.01(529 8.76 0.75| 978 15.83|582 9.62|666 10.92
1.02{487 8.13 0.75| 631 10.44|612 10.09|613 10.06
1.031497 8.30 1.00| 792 12.93|496 8.32{629 10.33
1.041498 8.29 1.00| 583 9.71|497 8.31|570 9.40
1.05|487 8.09 0.00f 590 9.80|520 8.68|497 8.28

1.06{513 8.49 0.20|1150 18.56|559 9.27|549 9.09
1.07|566 9.34 0.65| 604 10.02|673 11.06|622 10.22
1.08535 8.88 0.55| 637 10.55|570 9.43/864 13.95
1.09({508 8.44 0.60| 662 10.92|564 9.32{585 9.68
1.10(527 8.73 0.90| 737 12.12|627 10.34|/601 9.91

1.15|495 8.30 0.40| 580 9.66|562 9.33|536 8.92
1.20(532 8.82 0.60| 594 9.86|564 9.31/603 9.95

1.25(552 9.14 0.25| 804 13.14|637 10.50|641 10.53
1.30{599 9.85 0.65| 700 11.55|656 10.76|763 12.39

Table 4: Iterations and computation times of
some iterative methods for matrix big.

v | heuristic AR2 GP AR AR2

itr. time Kopt.| itr. time|itr. time|itr. time
1.00/629 2.01 0.30|NaN - [737 2.35|{732 2.29
1.01/652 2.09 0.80|NaN - |762 2.42|604 1.88
1.02|627 2.01 0.40{NaN - |664 2.10(678 2.13
1.03|610 1.92 0.10{NaN - |641 2.06(693 2.20
1.04|666 2.11 0.20|NaN - (721 2.30(720 2.26
1.05{630 2.01 0.50|NaN - |744 2.37|681 2.15
1.06/631 2.01 0.25|NaN - 756 2.45|627 1.97
1.07|711 2.26 0.35|NaN - (804 2.57|778 2.45
1.08|673 2.14 0.95|NaN - [684 2.18|708 2.24
1.09(668 2.14 0.55|NaN - |766 2.46|678 2.14
1.10{635 2.02 0.40|{NaN - |704 2.24|678 2.14
1.15|647 2.07 0.40|NaN - [720 2.31{649 2.06
1.20{671 2.14 0.60|NaN - |776 2.48|717 2.24
1.25(655 2.10 0.50[NaN - [775 2.49(648 2.05
1.30{675 2.17 0.70{NaN - |782 2.48|748 2.38

5 Concluding remarks

The heuristic variant of GPBiCG_AR2 method
outperforms well compared with the conventional
GPBIi-CG, GPBIiCG_AR and simple variant of
GPBiCG_AR2 methods.

A future work is to choose an optimum &
for each matrix. Moreover, it is crucial to
examine the relationship between k wused in
BiCGStab method [5] and that used in GP-
BiCG-AR method.
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