#F i B B 1t 46-12
(1989 2 21)

5574 ALEBLANVBY VEVAVATLIZOWNT

Doron DRUSINSKY

Vo= (%) LEEEEAS

Statechartsé WS H LWEBBEBOLAHITDPWTHERER T 5,

Thig "4 L RXRLVLOBERBNRFTERSS 71 hLBEBTH S,
FXor—trt<=trtroffisrBESELIDOT, avHL YL —,
Q.= —vay, TAHBERTE, BEILXIASOEBIELXHR
BItEBTEZ3 L0582 ALTWVS,
CToOBBO—RELT, BIFEBLXALTARNERZT EY,
EDIFERD % v b DR FPE2EHADTHEIHRR Y YLV XY AT LITDW

THRET 5,

On the Synthesis of a New Graphical Language.

Doron DRUSINSKY
Semiconductor Group, SONY Corporation

4-14-1, Asahi-cho, Atsugi, Kanagawa, 243 Japan

Abstract

A new high-level graphical language called statecharts is presented. It extends Finite State
machines with flexible concurrency, broadcast communication, hierarchy, visual synchronization
mechanisms, and other features. A synthesis tool for statecharts augmented with a graphical
hierarchical data language is developed. It maps the behavioral onto net-list EDIF description,
and also transforms it to Sonys Astro system for logic-simulation and layout.

1. Introduction.

Automated synthesis systems usually emphasize on data-path synthesis with control treated
as a by-product [Dm]. Such systems typically use simplistic single state machines to model the
control-path. The two major drawbacks of such an approach are its sequentiality and flatness
(finite state machines do not enable concurrency and hierarchy).

Statecharts have been proposed recently [H] as a visual formalism for the behavioral
description of complex systems. They extend classical state-diagrams in several ways, while
retaining their formality and visual appeal. In [DH87, DH89] we argued that statecharts can be
beneficially used as a behavioral hardware description language, and we presented an efficient
synthesis methodology for them. In [DH88] we presented some formal arguments about the
power of various types of statecharts. Their formal definition appears in [HPSS,D].

, In this paper we describe some details of our on-going statecharts synthesis project. First,
in Section 2, we present a brief overview of the language and its power. In Section 3 we summar-
ize the synthesis methodology of [DH89], and finally, in Section 4, we describe SYNTH, our syn-

- thesis project. :

2. Statecharts Via a Traffic-Light Controller.

We shall not present a full description of the statecharts language of [H], but rather illus-
trate it via an example (see also [DH87]).

Fig. 1 describes the behavior of a traffic-light controller whose 1/O interface is described in
Fig. 2. There are two sets of lights: one is positioned over the main road (MAIN) entering the
cross-junction, and the other is over the secondary road (SEC). During day time (D /N=1) the
controller operates according to one of two possible programs: program A (PROG=1) gives two
minutes to the vehicles in MAIN, and half a minute to the vehicles in SEC, alternatingly, and
program B (PROG =0) gives half a minute to the cars in SEC once the SEC_FULL signal goes
high. During the night (D /N=0) the controller gives precedence to the cars in MAIN until one
of the two possibilities occurs: (1) two minutes have passed since MAIN became green and either
a pedestrian wants to cross MAIN (PD_MAIN=1), or a new car appeared in SEC
(NEW_CAR_SEC=1); or (2) three cars have already appeared in SEC. Once one of these condi-
tions occurs, vehicles in SEC are given half a minute. The controller can be operated manually as
well (A/M=0). In this mode, whenever POLICE becomes 1 (a policeman pushing a button) a
transition is triggered from MAIN to SEC or vice-versa. This manual operation, and any transi-
tion from day to night and vice-versa, starts with 5 seconds of flashing yellow lights and then
MAIN receiving the green lights.. A hidden camera can be operated by the controller when it is
in AUTOMATIC mode only. The camera will take a photo of the MAIN entrance to the junc-
tion, by producing the FMAIN signal, when MAIN is in the red state and a car enters the junc-
tion from MAIN (ENTER_M=1), and similarly for the SEC entrance {using the ENTER_S sig-
nal, and producing the FSEC signal). The controller can receive an ambulance signal
(AMB =1), notifying the controller that an ambulance is approaching the junction from MAIN
(DMAIN=1) or from SEC (DMAIN =0). It then synchronizes the lights according to the direc-
tion of the ambulance, and ignores all other events. Once the ambulance enters the junction the
“controller is notified (AMBJ =1), and returns to its previous operation mode, namely DAY or
NIGHT. The controller can receive an error message (ERRIN =1) and then flickers both yellow
lights. Another possibility for an error occurs when the controller operates manually for more
than fifteen minutes without the policeman pushing the POLICE button, in which case the
ERROUT signal is produced. A RESET signal resets the controller to the AUTOMATIC state.

In Fig. 1, we have ezclusive states (e.g. DAY and NIGHT), and orthogonal states (e.g.
AUTOMATIC and CAMERA). We have default entrances (e.g. the entry to WAIT within
MANUAL), and entrances by history (e.g. from AMBULANCE upon the event AMBJ, returning
by history only one level backwards, i.e. to AUTOMATIC or MANUAL, and then by default).

We have time bounds on the duration of being in a state (e.g. precisely 5 seconds in six of the
states in LIGHTS, and at most 15 minutes in two of the states in MANUAL). We use condi-
tional connectors (e.g. the entrance to AUTOMATIC dependant upon D /N), and uparrows and
downarrows to turn condition changes into events (e.g. D /N 71 is the event occurring when D /N
changes from O to 1).

Actions can appear along transitions as in Mealy automata (e.g. 3 is generated when mak-
ing the transition between two states of MANUAL, triggered by the POLICE event). They can
also appear in states as in Moore automata, in which case, by convention, they are carried out
upon entrance to the state (e.g. the red and green lights are cleared upon entering ERROR).

Some of the informal features of the language are: hierarchy, flexible concurrency, timing
constraints specification, and visual synchronization specification. See [DH87,DH89,D] for details.

We have a computerized graphical system for the language of statecharts that enables
drawings and simulations to be done with ease. The system also supports a data-path language
that shows the flow of information within the designed system.

3. The Statechart Synthesis Method.

The following is an overview of the methodology of [DH89]. The methodology extends any
conventional FSM synthesis method in a way which is isomorphic to the way statecharts extend
FSM’s. More specifically, the methodology generates a tree of communicating FSM. The tree
structure implements statecharts’ hierarchy, whereas concurrent FSM’s at any level implement
statecharts’ flexible concurrency. Hence, the basic idea of our synthesis methodology is to trade
the concept of a single machine implementing an FSM for a tree of interconnected machines
implementing a statechart. Every state at every nonatomic level of the statechart hierarchy is
represented by a machine implementing the immediate FSM one level lower. Fig. 3 is the tree of
machines for the traffic-light controller of Fig. 1. The details of timing, inter-machine communica-
tion, and intra-machine structure, that implement hierarchy correctly appears in [DH89]. In
[DH89] we were interested in layout techniques for the resulting tree of machines. In SYNTH
however, we are interested in a netlist level output, hence layout techniques are not relevant.

4. SYNTH: The Statechart Synthesis tool.

SYNTH generates an EDIF netlist level description of the tree of machines of [DH89]. Each
machine is implemented as a PLA with a state register. We use Berkeleys’ state assignment pro-
grams [B] to generate reduced sized PLA’s. The main reason for choosing EDIF was the desire to
use (almost) standard tools. For practical use within Sony we use Sony’s Astro system which
enables logic-simulation and layout. Sony has completed the construction of a set of tools that
convert EDIF descriptions into Astro descriptions and visa-versa.

Currently, our main emphasis is on a powerful control-path synthesis tool. Hence, data-path
implementation is rather straight-forward. We enable the user to specify data cells out of a prede-
fined set of Astro cells.

Most of the code is written in Lisp whereas format conversion programs are written in C
with the aid of Lex. We expect the project to to consume about one year for a single engineer.

5. Future Plans.

We will conduct a precise comparison of the efficiency of our tool with existing tools (such
as FSM implementation tools in [B]). These results will be published separately. We are also

planning the following extensions to the project: .

1. Data-path synthesis. This can be done in house as well as interleaving our tool with an exist-
ing data-path synthesis tool.

2. Multiple-level logic implementation rather than the current two-level logic implemetation.

3. Optimization.

References.

[B] Brayton R. K., et-al, Oct Tools Distribution 2.1, Electronic Research Laboratory, U. C. Berke-
ley, March 1988.

[Dm] De Micheli G. and D. Ku. Sequencing Control Synthesis in the Hercules System. Proc. 1989
IEEE Workshop on VLSL

[D] Drusinsky D., On Synchronized Statecharts, Ph.d. thesis, The Weizmann Institute of Science,
1989.

[DH87)] Drusinsky D. and Harel D., Using Statecharts for Hardware Description, Proc. IEEF conf.
on CAD, Santa-Clara 1987, pp. 162-165. (Also, Weizmann Institute of Science, CS85-06,
December 1985).

[DH88] Drusinsky D. and Harel D., On the Power of Cooperative Concurrency, Proc. Con-
currency ‘88, Lecture Notes in Computer Science 335 pp. 74-103, Springer Verlag, Hamburg,
FRG, 1988. Submitted to JACM. (Also, Weizmann Institute of Science, CS88-10.)

[DH89] Drusinsky D. and Harel D., Using Statecharts for Hardware Description and Synthesis,
IEEE Transactions on CAD/ICAS, To appear. (Also, Weizmann Institute of Science, CS87-11,
July 1987.)

[H] Harel D., Statecharts: A Visual Formalism for Complex Systems, Science of Computer Pro-
gramming 8 (1987), 231-274. '

[HP] Harel D. and Pnueli A., On the Development of Reactive Systems, in Logics and Models of
Concurrent Systems, (K. R. Apt, ed.), Nato ASI Series, Springer-Verlag, Berlin, 1985, pp. 477-
498.

[HPSS] Harel D., A. Pnueli, J.P. Schmidt, and R. Sherman, On the formal Semantics of Sta-
techarts, Proc. 2nd IEEE Symp. on Logic in Computer Science, Ithace, NY, 1987, pp. 54-64.

[P] Pnueli A., Applications of Temporal Logic to the Specification and Verification of Reactive

systems: A survey of Current Trends, in Current Trends in Concurrency (de Bakker et al. eds.),
Lect. Notes in Comput. Sci., Vol. 224, Springer-Verlag, Berlin, 1986, pp. 510-584.

RESET

/ TRAEFIC.LIGNT.CONTROLLER

(LIGHTS

YELLOW |
GREENL:=0 Jiimeoul|

GREEN1:= |

!QML

= Ssee

PEIEE

|DMAIN) [~DMAIN]

AMDULANCE

timeout

YELLOW =0
YELLOWT: 0|
REDI s
GREENI =)

= Sace

YELLOW w1

R

Io/m)

I~D/R}

N

SEC.FULLY [a

JAVARNN

abbreviations:

7= timeout|PD MAIN v NEW _CAR.SEC}
s = vaw carsect

(NIGHT

emetersd{MAIN)

\J
timeout/8

J

entered(MATN)

CAMERA ENTER_S|in(MAIN)|/FSEC
s])
/; ENTER M{in(SEC)|/FMATN
/ AN
\ MANUAL
\

<18min /POLICE/a
POLICE/S,

[

ERROR

{EIIRIN 1 /
- timeout

= lsec = lsec
YELLOW) 1m0 YELLOWY 1w
YELLOWI w4 VELLOWI:= 0

timeout
£RROUT 1= 4
REDI =0
REDIn G

GREEN
GREEN:

N

AMDB

Figure 1. Statechart for the traffic-
Light controller

ERRIN
NEW CARSEC | REDL) MAIv
s YELLOWL | [y
Input IR | —~GREEN
Conditions < PROG
DMAIN —,| TRAFFICLIGHT. RED? SECs
SECFULL __| CONTROLLER YELLOW: | Lights
FOMAIN — —=GREEN
POLICE — = FMAIN
Input AMB —dd —=FsEC
e AMBJ —
Events {
RESET —t
ENTERM —] —= ERROUT
ENTER.S —
Figure 2. The I/0 interface for the traffic-light
ESET
erRIN ——»] TiC
(Traffic-
. Light-
ERROUT wt———o] Controller)
ERROR
AMB —n DMAIN — le— o
—1 CONTROL LIGHTS ﬂ
timeout AMB) t: timeout
count count
L GREEN1
' RED]
L > YELLOW:
AT —xonmalL L > GREEN:
OPERATION L s RED2
L—— > YELLOW2
) Pt L > i MaAIX
L & insSEC
in MAIN ——
timeout —— MANUAL
ot €——
ENTER.S ; N
roLICE — MAK — ‘_;II_MAL PR
AKUALs CAMERA
N] substates ENTERM in SEC AUTOMATIC]
A ———— —> [
a=o0lVa2Vad hs“.'c'm‘?&—’ PROG fe—— timcoutl
f=p1vp2vp3 POMAIN — o NiGuT SECFULL—> DAY fe—— timeout2
fe—— in MAIN — |—— rount
..__‘ —" count?
Note: 1 Y I/u L, N
L -
(1) Each line is a group of count2 L >
. . tount} Twao Minutes NEW_CAR.SEC
control wires. g
o, &
(2) d=2in this example. E
R
(3) The count and timeout signals £

run to external timers.

Figure 3. The machine-tree for the traffic-light controller of Figure 1

