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Abstract The aliasing probability is analyzed for MISRs when the error probability
of symbols in a test response is different. The complete weight distributions of linear
codes over a Galois field and its dual codes are applied. The expression obtained is
exactly the same to that derived by Damiani using the different technique.
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INTRODUCTION

Built-In Self-Test (BIST) is one of the key techniques to
overcome VLSI test difficulties [1]. For example, BIST has
been applied to commercial VLSI processors [2]-[4].

One of drawbacks of the BIST is an aliasing error.
Many works have been done to analyze the aliasing
probability of single-input linear feedback shift registers. In
addition, the aliasing probability of multiple input signature
registers (MISRs) has been analyzed for various error
models such as the 2™-ary symmetric channel [51,[6], the
binary symmetric channel [7]-[9], and the time dependent
error model [10],[11].

One of the works is to analyze the aliasing probability
of MISRs when each error symbol has different error
probability [12]-[14]. The error probability is assumed to
be time independent. In this manuscript, we derive exactly
the same expression in [12],[13] by applying the complete
weight distributions of linear codes.

DEFINITIONS

Notations in [15] are used in this manuscript. Some
notations are from [16],[17]. Let the elements of GF(q) be
denoted by o =0, 04, O, ... , Oq.1, Where ¢ = p™ and p is
a prime. Let t; be the number of o; (0<i<q-1)ina
vector v over V® (=GF(q)").

Consider a linear (n, n - k) code C over GF(q). Let
A(ty, i, ... , tg.1) be the number of code words that consists
of ty 0g, 1 01y weee 5 Igg Qg (0 < < 0). The complete
weight enumerator, W¢(zo, zy, .., Zg.1), 18 defined as
follows:
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Consider a complex number & as
& = cos(2n/p) + V-1sin(2n/p).
The following equation holds.
=1

For GF(2™), thatisp=2,&=-1.
Let a base of GF(q) be denoted by By, B1, - Pm-1- Any

element a € GF(q) can be expressed as a linear combination
of the basis as shown below.

a=agBo + a;B; + ... +agBq.1-
Define an operator x(a), Va € GF(q) as

x(a) = %,

The following expression is said to be an Hadamard
translation. Foru e Vo,

I?(u) =Y x(u-vT)Fy).
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MacWilliams identity for the complete weight distribution
can be expressed as follows [15],[16].

Wc(zo, Zi,--- Zq-1)

=q*Weiz'o, 21, -+, Z'q1)s
where
q-1
2w = Y x(omoy)z.
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Since zg = 0, x(0p0y) =x(0)=1(0<j<q- 1) Therefore,
Zo=20+ 21 +--- + Zg1.

Substituting Pr(z;) into z; (0 <i< q - 1) the following
equation is obtained.

Zo=Pr{z0) + Pr{z) + - + Prze1)
=1.

Consider a BIST system depicted in Fig. 1. Let p; be
the probability that the i-th input is erroneous, where 0 < i
< m - 1. Under this model, the probabilities for each
symbol are as follows.

Pr(000 - -0) = (1 - po)(1 - p1)(1 - p2) - (1 - Pm1),
Pr(100 --0) = po(1 - p1)(1 - p2} - (1 - Pm-1),

Pr(111-.-1) = pop1p2 - -Pm-1.

Po >
P1 .
"] compression
cut . circuit
pm-1 ¢
___—>

Fig. 1. A BIST system. The error probability for each
input is different and time independent.

Let the binary representation for zg, z;, ...
follows.

, Zm.1 b€ as

z1=(1,0,...,0,0),
22=(0,1,---,0,0),

Zm1 =(0,0,---,0, 1),




For q = 2™ the following equation holds. This could be
proved by the similar induction technique used in [12],[13].

z1=1-2Pz;),
z'2=1 -.ZPI'(Zz),

Z'm1 = 1 - 2Pr(zm-1).

The binary symmetric channel is a special case, where py =
P1=P2=..=Pm.1 =D-

SINGLE MISRS
Consider a linear compression circuit depicted in Fig. 2.
The state transition matrix can be expressed by a binary
mxm matrix T. Then the signature S is expressed as

S=ao+ T+ +202T" 2 + 2., T,

where ag, aj, ...

, @, is a series of test response and n is
the test length, -

linear (EOR) circuit

test response

Fig. 2. A linear compression circuit.

If the matrix T is non-singular, there exists a companion
matrix whose bottom row is as follows [18]:

1818 . 8na

If the two MISR have the similar state transition matrix,
that is the characteristic polynomials are exactly the same,
the aliasing probability is exactly the same.

The aliasing error occurs if and only if the errors
contained in the test response, ey, ey, ... , €,.1, is a code
word in the (n, n - 1) linear code C whose parity check
matrix is

H=[1T" (0 ... (1)1,

where n is the test length.

The aliasing probability can be expressed by using the
complete weight distribution of the linear code or the dual
code of the linear code. That is,

Pal(n) = W(Pr(z0), Pr(z1), - - , Pr(zzm.1)) - Pr(zo)"

= ICLWCL(Pr(z'o), Pr(z4), - , Pr(z'm.1)) - Pr(zo)"

=27 2 Pl'(z’o)mpl'(zll)ll e Pr(z'znl)‘z"“ - P[(Zo)n

ve CL

The dual code C* contains one all-zero code word, that is
expressed as z'y". Since z'g = 1, the above expression is as
follows.

Paln)=2"+2" ¥ 2°... 2m "™ - Pr(z)".

veCL-0

Each symbol z'; is expressed by a linear combination of the
following basis .

Zw1=(0,0,.--,0,1).

If the error probability of each input is different and time
independent, z'y = 1 - 2Pr(p;), z', = 1 - Pr(py), o , 2’y = 1
- 2Pr(z,,.1). Therefore, the expression in [12],[13], that is
shown below, is exactly the same to that shown in the
above.

2®.1 (m )
X (H - 2p)"i¢ “’) - po”,
&\

AEPm)=-L 4+ L
2m 1 j=1

1
2m
where wi(i, n) is the number of ones appeared at the j-th
stage starting from the state i.

Single MISR characterized by primitive polynomials
Consider a single MISR shown in Fig. 3, where the
MISR is characterized by a primitive polynomial g(x):

gx)=1+gix+ g2x2 RS gm_lxm'l +x™,

test response

Fig. 3. A single MISR.

If the g(x) is primitive, the aliasing error occurs if and only
if the error in the test response is a code word in the (n, n -
1) Reed-Solomon (RS) code generated by (x - o), where o
is a primitive element of GF(2™). The parity check matrix
of the code is expressed as follows.

H=[1ao?... anl],



The dual code is generated by the above matrix. Therefore,
cade words of the dual code can be listed as following.

000...0,
laa?...o™,

2.3 n
oao?al...am
ollo...a™2

The binary representation for each code word can be obtained
by substituting the binary representation into each symbol.
For n = 2™ - 1, that is the code is not shortened, the weight
distribution of the dual code can be expressed as follows.

Wedz'o, 2'1, -, 22m1) = 20" + 27 - 2ozt - -+ 221,

The aliasing probability for the MISR characterized by
(x - o) can be expressed as follows for the test length n =
2m .1,

Pal(n) = 2" WeiPr(z'0), Pr(z'1), -- - , Pr(z'2m.1))
- Pr(zo)"

=24 2™ 1)((1- 2p1)(1 - 2p2) - -+ (1 - 2pm)P"
(@ -p)(@-p2) - (1 - pmt))

For the bianry represntation of the code words in the dual
code the number of ones is 2™ - 1 for each bit position.

Example 1
Fig. 4 shows the aliasing probabilities for MISRs
characterized by the following primitive polynomials.

g1(X) = 1+ x2 4+ x3 4 x4 +x8,

X)) =1+x+x2+ x>+ x5+ x7 + x5
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Fig. 3. The aliasing probability of MISRs.
(a) characterized by gy(x) = 1 + x2 + x3 + x4 +x8,
(b) characterized by go(x) = 1 + x + x2 + x5 + x8 + x7 + x8,

Single MISRs characterized by non-primitive polynomials

IF g(x) is a non-primitive polynomial, the aliasing error
occurs if and only if the error in the test response is a code
word in the linear (n, n - 1) code whose parity check matrix
is follows. )

H=[1T7(t3 ... (T1)1].

The complete weight distribution can be calculated as
following. For each element in GF(2™), multiply the
binary representation of the element with the above parity
check matrix. Collecting the multiplications for 2m
elements, the complete weight distribution can be obtained.

Example 2
Consider single MISRs characterized by the following
primitive polynomial

ga(x)=1+x+x3,
and the following non-primitive polynomials.

(X)) =1+ x+x2+x3,
gs(x) =1+ x3.

The state transition matrix for gs(x), g4(x) and gs(x) is as

follows.
010 010 010
Ta=|001}, T4={001), Ts ={0 0 1]
110 100 111

Since the periods of ga(x), g4(x), and gs(x) are 7, 4, and 3,
the test lengths n3, n4, and ns are assumed to be the
multiple of the periods, respectively. Let the code generated
by ga(x), g4(x) and gs(x) be C;, C4, and Cs, respectively.
The parity check matrixes for Cs, C4, and Cs are as follows
for n; =7, ny = 4, and ns = 3, respectively.

Let the binary representation of zy, zy, ... , Z7 (Z'o, Z'1, ... »
z'7) be as follows. They are characterized by ga(x).

zo=0=(0,0,0),
)= 1= (1, 0, 0),
z =0 =(0,1,0),
z3=02= (0,0, 1),
Z4= o= (1, 1, 0),
zs=04=(0,1, 1),
zg=03=(1,1, 1),
z7=a8=(1,0,1).

The symbols in the MacWilliams identity z'y, z';, ... , 7
can be expressed using zo, zi, ... , Z; as shown in the
previous section. The expression "oy,0y" is considered as
the inner product of the binary representation of oy and oy
This is because the parity check matrix for the MISR
characterized by a non-primitive polynomial is expressed by




a binary matrix instead of a matrix over GF(2™). As a
binary code, the inner product shows the duality.

Zo=Zg+ 2y + Zp+ Z3 + 2y + Zs + Zg + 73,
Z'l=Zo~Zl+22+Z3-Z4+25-26-Z7,
Z'2=Z0+Zl-Z2+23-Z4-25-ZG+Z7,
2'3=20+ 2 +2p- 23 + 24 - Zs - Zg - Z7,
Z4=Zg-2 -2y + 23+ 24 - 75 + Zg - 27,
Zs=Zg+ 2 -Zy-Z3- 24+ Zs + Zg - 77,
2'6=20-Z - %y - 23 + Zg + Z5 - Zg + Z7,
29=20-Z + 2y - 23 - 24 - 25 + Zg + 7;.

The complete weight distributions of the codes generated by
Hs, Hy, and H; are as follows.

7
ng 1= 27 n3

4 ' ' 2 . 2Ya 4
Wt = 7o 4 L 4'(2“,:.32'4z 5)!’!4 + 2(2'2 7'y )n + 2% n4’

+ 7(z'1z'zz'gz'4z'5z'6z'7)“3,

West = 20™ + 3212223 + Hzaz'szrf'* + 2.
For example, assume that only the error pattern z; = (1, 0,
1) occurs. That is

Pr(zo) = 1 - Pr(zy),
Pr(2)) = Pr(z2) = Pr(z3) = Pr(zy) = Pr(z5) = Pr(zg) = 0,
PI'(Z7) #0.

By substituting each probability into a previous equation,

Zy=1,
zy = 1-2Pr(z9),
Z‘z = 1,
z3=1-2Pr(zy),
24 =1-2Pr(zy),
z's =1-2Pr(zy),
Z'G = 1,
Z'7 =1.
By substituting the above equations into the complete
weight enumerators of the dual codes, the following
expressions can be obtained.

West =1+ 7(1 - 2Pr(zy) ™,
Weet=1+4(1- 2Pr(Z7))4'14 +2+1,
West = 1+ 3(1 - 2Pr(za) ™ + 31 - 2Pr(zn)f™ + 1.

The aliasing probability for the condition is expressed as
follows.

Pal(n)g = 1/8(1 + 7(1 - 2Pr(z7)}'™),
Pal(n)g, = 1/8(4 + 4(1 - 2Pr(z7)"™),
Pal(n)gs = 1/8(2 + 6{1 - 2Pr(zz) ™).

Since -1 < (1 - 2Pr(z7)) < 0, (1 - 2Pr(z;))" converges to zero .

for a large n. From the above equations, the aliasing
probability of the MISRs characterized by g, g, and g;
converges to 1/8, 1/2, and 1/4 for a long test length,
respectively. This can be confirmed by a state transition

diagram. The state transition diagrams are shown in Fig. 5
for each MISR.

Fig. 5. The state transition diagrams for MISRs when only
the error z; = (1, 0, 1) occurs. (a) characterized by 1+ x +
x3. (b) characterized by 1 + x + x2 + x3,

(c) characterized by 1 + x5,

MULTIPLE MISRS

Consider a multiple MISR depicted in Fig. 6, where
the signature circuit consists of d MISRs. The aliasing
error occurs if and only if the error in the test response is a
code word in the RS code generated by (x - ab)(X - ab*1) see
(x - ab+d+1)'

M—— (x - o®) MISR
*—| (x - ™"} MISR
test |
response N
——  (x-o™*") MISR

Fig. 6. Multiple MISR.

The parity check matrix for the RS code is as follows.

0'(n-l)b
o -Do+1)

I Q,b a2b

I ob*! 20+
H = vew .
I ab+d+l a2(b+d+l) . a(n-l)(b+d+1)



Aliasing probability for this multiple MISR can be
expressed by using the similar technique for the single
MISR. That is as follows.

Pal(n) = W(Pr(z0), Pr(z1), - -+ , Pr(zm.1)) - Pr(zo)"
= 2“"“ch(Pr(z'o), Pr(z'1), - , Pr(z'm.1)) - Pr(zo)”
= 2-dm + 2—dm 2

veCl-0

Pr(z'o)lo . P]'(Z'zm.l)tzm'1 - Pl'(Zo)n.

The complete weight distribution can be calculated as
following. For each vector in GF(2m)d, multiply the vector
with the parity check matrix H, resulting in the code word
in the dual code, C, of the RS code generated by (x - ab)(x
- (lb"']) oee (X - ab+d+l).

Fig. 7 shows examples of the aliasing probability for
double MISRs
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Fig. 7. The aliasing probability of double MISRs. (a) (x -
DE-a), gx) =1+ x3+x*+ x5+ x8, (b) (x - a)(x - 02),
gX)=1+x3+x4+x5+x8, ) (x-D(x-a), gx)=1+
x+x2+ x5+ x8+ X7+ x5, () x-o)x-02), gx)=1+
X+ x2+ x5 +x8+x7 +x8,

The binary weight enumerator is shown for RS code for
d=1, 2,3, and 4 [19]. And the complete weight
enumerator is shown for RS code ford = 1, 2, 3, and 4 [20].

CONCLUSIONS

The aliasing probability was analyzed for MISRs when
the error probability for each symbol is different. The
complete weight distributions of linear codes over a Galois
field and its dual codes were applied. The expression
obtained is exactly the same to that derived by Damiani
using the different technique.

Test Length n
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