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Abstract Memory sharing processor array (MSPA) architecture has been proposed with advan-

tages of high efficient parallel processing, less data storage requirement, and high cost performance.
MSPA design methodology has been developed with regularity structure and systematic procedure. In
this paper, programmable MSPA is proposed to embed not only MSPA architecture, but design proce-
dure into silicon chip so that various applications can be performed with excellently high speed. MSPA
controller schedules operations corresponding to algorithm size, allocates resources altomaticaly, ma-
nipulates data flow among I/O ports, memory and processing elements (PEs). The introduction of
this controller lead to a possibility to realize programmable and reconfigurable MSPA chip design.

Key words parallel processing, interconnection, memory address generation, array processor
architecture.



1 Introduction

With the development of VLSI, large amount of high
speed ASIC DSP are proposed in recent years. SIMD,
MIMD, massively parallel, multiprocessor, array proces-
sor and so on are commonly adopted methodologies in
order to realize high speed performance. {1] [2] [3} Mem-
ory sharing processor array (MSPA) is proposed as a
new architecture to meet the high speed requirement.
It works with successive executions without instruction
fetch within the whole procedure of a job. [4][5]

In this paper, we extend the feasibility of MSPA to
practical DSP application. The MSPA is used as a spe-
cial work-mode in the developing DSP. Based on the
regular structure and systematic design procedure of
MSPA design methodology, it is possible to realize pro-
grammable and reconfigurable MSPA. A controller is in-
troduced in order to fix a part of design procedure by
hardware. It will be used to adjust operation scheduling,
allocate resource automatically, manipulate data trans-
fer between 1/0 interface and processing elements (PEs),
convert data transfer rate, set reconfiguration parame-
ters and control the reconfiguration of interconnection
between PEs and memory address generation. This con-
troller will lead to a programmable MSPA architecture.

As a co-processor, the programmable MSPA is able to
work at a very high speed with successively operation
cycles until it finishes a job. The proposed controller
is extended to accelerate the operation scheduling corre-
sponding to applications during the procedure of a job
processing, which provides a feasible character to deal
with semi-regular algorithms, such as DCT, DFT, FFT,
etc.

In our DSP IC design, the programmable MSPA re-
sults in a possibility to transfer data in several kinds
of schemes, not only adjacent local transfer such as
systolic array, but also schedule-oriented reconfigurable
path transfer. Therefore, the MSPA architecture gains
another advantage of extending the range of data trans-
fer. The controller leads to a programmable and recon-
figurable MSPA which is more feasible to practical ap-
plication. As an example, IC design result of the pro-
grammable and reconfigurable MSPA will be given to
show its application in DSP IC. (4] [4] 4] [4] [4] [4] [4)

2 MSPA Principle

2.1 MSPA Architecture

Fig.1 describes the MSPA architecture. It consists
of a processor array with direct links and buses associ-
ated with memory units (MU) or data format converter
(DFC) and I/O ports. There is only one I/O port for the
input of each variable. The data of a certain bandwidth
comes in a word-serial scheme or a bit-serial scheme and
is loaded directly to PEs or memory/DFC. The mem-
ory units store and load input data to processor array
according to the control signal generated by the address
generation unit (AGU).

The type of the processor array is restricted to the
loosely coupled linear or 2D processor array, so that the
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Fig. 1. MSPA Architecture

data transfers between processors are accomplished by
local direct communications. Direct bus communications
or bus communications via memory/DFC units are also
available in this MSPA architecture.

For our hardware model, we assume that the proces-
sor cells operate synchronously at discrete time steps,
and each processor cell completes its assigned operation
within 1 step. Furthermore, we assume that it takes one
step for both the data transfer between processor cells
and memory unit/DFC through buses.

Tab.I shows the U x U matrix multiplier results of
different ezu, the number of PEs. It also includes the
result of GPM systolic approach[6] for comparison. In
Tab.I, the execution time T.;., the number of PEs (ezu),
and the cost-performance of PEs (Te. - ezu—the product
of the two items above). are shown. Though the results
of different algorithm size U are optimized by the number
of PEs ezu, any number of PEs can be selected in our
approach.

Tab.Il shows the design results for various applica-
tions. The first three applications perform the word-level
operations{4], while the last two applications perform the
bit-level operations[7]. Only the matrix-matrix multi-
plier belongs to a 3D algorithm, while the others belong
to 2D algorithms. The functions of each processing ele-
ment is also described. For our performance evaluation,
we calculate the number of gates of PEs, memory units
and DFC or control logic circuits as area description.

3 MSPA Design Flow

Firstly, we describe about design flow of ASIC MSPA.
In order to keep the regularity of the algorithm and
increase the resource utilization rate, we deal with the
mapping problem in MSPA design by a modified linear
transformation of the index set with an assumption that
the number of processor elements is less than algorithm
size. Fig.2 shows the ASIC design procedure on MSPA
architecture.



TABLE I PE-TIME COMPARISON WITH GPM

GPM Systolic Array Proposed MSPA
v Teze | ezu | Tezo - ez Teve | €xu | Tezy - exu
4 19 10 190 34 2 68
5 29 13 377 49 3 147
10 109 28 3052 208 5 1040
17 305 49 14925 577 9 5193
53 1717 | 261 448137 8425 | 18 151650
100 | 5644 | 496 2799424 [ 20098 | 50 1004900
201 [ 15001 [ 1401 | 21016401 | 80801 | 101 8160901

TABLE IT DESIGN RESULTS FOR VARIOUS APPLICATIONS

o Condition Area (Gates)
Application ™/ T L e, ezu_ | 2 | PE x exu | Mem. | DFC/Cil
16 bits
Matrix-vector | 18 69 2000 x 6 | 20736 2200
mult-add
16 bits
Matrix-matrix | 16 526 2000 x 8 | 16384 2000
mult-add
8 bits ’
Sorter 16 47 100 x 2 0 830
compare
Bit Serial 1 bit
Multiplier 16 adder 8 1.5ex1 46 48 x8 0 306
Bit serial 1 bit signed
square rooter 14 digit adder 52 326 0 702

3.1 Number of PEs

We set up the appropriate number exu of processor
elements as an initial value. It must be smaller than
the algorithm size U. Among the possible ezu, we find
an optimal one, which achieves the minimum area-time
product for the given algorithm. In other side, the num-
ber of PEs can also be fixed firstly, then, search for opti-
mal scheduling and resource allocation vectors according
to this value and algorithm size.

When U is a multiple of ezu, the scheduling and re-
source vectors/matrices become very simple. So does the
address generation unit. We consider the case that there
is a integer ¢, satisfying

U
2T eru )
If it is not the case, we can generate this situation
by adding dummy operations in the uniform recurrence
equations.

3.2 Scheduling and Resource Allocation

Under the fixed ezu, we try to derive optimal map-
ping matrices for the operation scheduling and resource
allocation respectively. The mapping of an algorithm
onto an architecture is performed by setting up the

time coordinate and the space coordinate in the index
space. These linear transformations are expressed by
both scheduling vector T' = (t;,%5,¢3) and resource al-
location matrix S = (01,0, 03). Each node of an index
vector (iy,172,73)7 is mapped to time ¢ and PE number
PFE as

t = T(i1,i2,i5)7 (2)
PE S(iy,iz,13)7 (3)

The operation scheduling with T must satisfy the valid
operation ordering so as not to violate the data depen-
dence relations. In addition to that, it does not require
more concurrent executing operations than the number
ezu of processor elements. On the other hand. the re-
source mapping with S must satisfy the resource conflict
free condition so that the concurrent executing opera-
tions must not be allocated to the same processing cle-
ment. Besides, it determines the physical distance of the
data communications among the processing elements.
We intend to realize the local communications among the
processor array so as to reduce the area and time required
for the interprocessor communications. Therefore, it is
very difficult to get the optimal T and S theoretically.

Our purpose is to derive the practical solution for the
array processing, even if the solution is not global opti-
mal one. In this sense, we restrict our search area to get
the practical feasible solutions. We have investigated
optimal mapping vectors under the condition that the

il



Application

C Cost Performance Estimatio}

L
( Layout )

Fig. 2. MSPA Architecture Design Procedure

number exu of processor elements are less than the al-
gorithm size U. As a result, we succeed to get a series
of theorems for the optimal mapping vector and matrix.
Since both the scheduling and allocation vector/matrix
are derived in a closed form, the design become so simple
for the fixed ezu. [4]

Let (¢, ;) be the optimal scheduling vector for the 2D
uniform recurrence algorithm. The optimal operation
scheduling vector for the uniform recurrence algorithm
with multiple U iteration loops is given by

v v

T=(1,-—,
ezu’ eru

(4)
The following resource allocation matrix can realize the
conflict free allocation on exu x 1 linear processor matrix.

S=(0,1,U) M=ezu (5)

We can also prove that the resource allocation matrix de-
scribed by eq:(5) satisfies the local communication con-
dition for all the precedence vectors in the first quadrant
of its resource allocation coordinates.

Fig.4 and 5 shows the scheduling and the resource al-
location of our example of matrix-vector multiplication.
This example shows the case of ezu = U for 2D algo-
rithm of the size U = 6. The scheduling vector T' and S
are given as

T (1,2) (6)
S = (0,1) M=3 )
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Fig. 3. Matrix-Vector Multiplication Example
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Fig. 4. Scheduling of Example

3.3 Data Transfer

Both the scheduling and resource allocation vec-
tor/matrix determine the data flow scheme to or from
or among the processor array. In most cases, the data
produced by PEs can be circulated within the processor
array by the local communications. Let Ap be an prece-
dence vector. Then, the result of PE is sent to another
APE farther PE than PE , after At cycles which are
derived by

At = TAp (8)
APE = SAp. (9)
Fig.6 shows the data stream to 3 PEs. The result of

each calculation of PEs for index (i1,%2) are consumed
at index (71,72 + 1). Therefore, the precedence vector is

(0,1)T. Since the above equation become
At = (1,2)(0,1)T =2 (10)
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Fig. 5. Resource Allocation of Example

APE = (0,1)(0,1)T =1, - (1)

each PE transfers the result to next adjacent PE with 2
execution cycle delays.
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Fig. 6. Data Stream

3.4 AGU and MU

AGU can be constructed to manipulate the data trans-
fer from MU(memory units). In case the data corre-
sponding to the index node are stored in MU with index
addresses, generation of address can be realized by gener-
ating invoking index points. The plural invoking indices
p = (t1,142,43)" are derived for the every time step ¢ as

t =Tp =t11; + taio + t3t3. (12)

By solving this equation for the time ¢, we get ezu ac-
tive indecies. However, we can get those p = (4, 4, 13)7
elegantly by simple hardware..

Instead of MU and AGU, data format converter reg-
isters can be employed to convert the input data format
from word-serial to word-parallel. Since their hardware
models are decided, we produce their design parameters
to derive the configuration of memory units with AGU
and/or DFC.

3.5 Data I/O

The input data must be provided to the processor ar-
ray. Since there are plural concurrently executing PEs,
PEs require the multiple data flows from the input I/0.
We try to restrict the number of I/O port so as to solve
the I/O bottleneck problem.

For word-serial input, we classify the input scheme into
two kinds of schemes. One is compile-time input, which
must be stored in memory units before the execution
starts. The stored data in memory units are loaded to the
processor array, driven by the address generation units.
The other is run-time input, which can be loaded in while
the execution performs.

4 Programmable MSPA

4.1 Design Specification

A programmable MSPA architecture used in a devel-
oping dsp application is given as an example. The num-
ber of processing elements (PEs) denoted by ezu is fixed
to 4 in the MSPA. The function of the PEs is multiply-
accumulation. The size of algorithms is denoted as U,
In order to simplify the design, we assume that the U
and ezu keep the relation with integer times [4], and U
is constrainted to be 4, 8, 12, 16. The outline of MSPA
control unit is shown in Fig. 10.
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Fig. 7. Design Outline of Programmable MSPA

There are two data memories, one program memory in
the chip. The MSPA works as a special work mode of the



general-purpose dsp. In MSPA-mode, data will be input
from two data memories in the input-write cycle of as 4
times high as execution cycle. Memory read cycle will be
synchronized by execution cycle. The data memories are
one-write, one-read with free read and write function.

4.2 MSPA Datapath
The data-path in MSPA-mode is shown in Fig.8.
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Fig. 8. Data-path in MSPA-mode

Therefore, there are at least four data registers for
keeping input data from each data memory.

The pipeline schedule is shown in Fig.9. The start
time of the 3 pipelines in Fig.9 will be decided by the
MSPA start and enable instruction. When instruction
“MSPA start” is decoded, the first input-write pipeline
will be driven to start data load procedure. After one
clock, the read pipeline will be driven by the write start
signal. After the instruction “MSPA parameter-set”, the
MSPA finish reconfiguration procedure and fix the hard-
ware mode. The execution stage will begin as soon as
the instruction “MSPA enable” comes. The active time
of output write pipeline will be determined by the Out-
write decode logic which is reconfigurated by the MSPA
parameter-set instruction.

4.3 Interconnection Design

Local communication between PEs can be held corre-
sponding to different algorithm size or operation sched-
ule. Then, the reconfigurable MSPA architecture is real-
ized by this simple programmable way. We designed this
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PE3 Exe-cycle Exe-cycle

Fig. 9. Pipeline Schedule in MSPA-mode

part in schematic level by cadence in order to minimize
the number of gates in this part to minimum.

Interconnection Network
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Fig. 10. Interconnection Network Architecture

5 MSPA Controller Design

5.1 Controller Configuration

The controller in MSPA-mode is a programmable
and configurable logic unit.  Controller consists of
AGU(Address Generation Unit) controller, run-time in-
put controller, interconnection controller and out-write
controller.

The AGU controller control the data fetch to each PE.
It generates of ezu invoking indecies and produces the
actual address of Memory units. At the same time, it
produces the destination PEs for each read data from
Memory units. Then, the data is controled to be trans-
fer to appropriate PEs. The Run-time input controller
start input-write (input from I/O port and write to Mem-
ory unit) pipeline based on MSPA start instruction and
generate input-write timing, read-timing, and execution
timing signals. The Interconnection controller is used
to reconfigurate the local communication path between
PEs. The Out-write controller is used to calculate the



start and interval time of output write pipeline of each
PE.

5.2 AGU Controller

In order to generate the concurrent invoked inde-
cies, we prepare the eru index point registers R, =
(Ru1, Ru2, Rus) for u-th PE (v = 0,1, --exu — 1), each
sub-register of which have a length of U. Each index
point register R, generates only one index point of the
u-th, u+exu-th, - - - rows in the converted 2D index point
space at a time, which are corresponding to the PE allo-
cation. Therefore, each register generates active indecies
for each PE.

The increment of time ¢ usually makes an increment
of i;. In case R, reaches at U, R, is reset and since

t =8, U + tyis + tais = t10 + t2(d2 + emu) + 313 (13)

holds, a carry produced by R,; must increment iy by
exu.

In case Ry and R, reaches at U, R,s and R,; are
reset and since

t=t1U+t2U+t3i3=t10+t20+t3(i3+1) (14)

holds, a carry produced by R,» and R,; must increment
13 by 1.
The operation of the index point register is as follows.

1. R, increments +1 at every time steps and produces
a carry when R,; exceeds U.

2. R, increments +ezu by the carry of R,;. and pro-
duces a carry when R,y exceeds U.

3. Ry; for ¢ = 3,---,n increments +1 by the carry of
Ryi-1).

Run time input controller controller is also realized in
similar fashion to AGU controller.

6 Execution Pipelining

MSPA and the systolic array utilize instruction-level
pipeline processing for the regular structured algorithms.
Their pipeline fashion is that each execution unit repeat-
edly performs a part of processing for the target algo-
rithm one after another.

The further speed-up can be achieved by employing
the pipeline execution units in order to exploit execution-
level pipeline processing. However, the pipeline exe-
cutions requires plural independent operations, among
which there are no precedence relation or data transfers.
Fortunately, MSPA design matches with this extension.
MSPA scheduling and resource allocation based on the
specified PE number exploit the parallelism of the same
number of operations as PE number. It can simply be
modified by design on PEs with pipeline execution units.

Let exu be the number of PEs and stage be the num-
ber of pipeline stages of all execution units in PEs.
We perform the scheduling of MSPA operations with
exu x stage execution units. If the algorithm size U

is still less than exu x stage, MSPA design schedule
the exu x stage operations to be invoked concurrently.
While, the resource allocation is performed in the same
way with exu. Thus, the stage operations are assigned
to each pipeline PEs.

Fig.11 shows exu = 4 and stage = 4 scheduling in
MSPA design. Fig.12 shows its operation scheduling
in each PE. As shown in Fig.11, each PE run stage
times as fast as no pipeline execution units, but requests
stage times as many data supply as no pipeline one.
Thus, MSPA scheduling exploits independent operations
s0 easily that it is easy to be extended to achieve not only
instruction pipeline, but execution pipeline operations.

In practical design, the clock rate of 5[ns] is achieved
both for memory access and 4 stage pipeline operation
of a multiply-add. Therefore, our current design ex-
pects that a chip including such 4 pipeline stage PEs
can achieve 0.8G operations per a second.
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Fig. 11. MSPA with pipeline execution units
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Fig. 12. MSPA with pipeline execution units

7 Conclusion

In this paper, we present the design for programmable
MSPA. The simple design procedure of MSPA under
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the fixed number of PE is excellently embedded into
micro-architecture. Currently, we are developing pro-
grammable MSPA and further studying the further ex-
tension to general purpose array processor including pro-
grammable MSPA function.
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