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Abstract Multitude parameters involved in the design process of a reconfigurable accelerator which is exploited in
embedded systems brings about a remarkable complexity and large design space. One effective technique is design space
exploration which is capable to find a right balance between the different design parameters. Quantitative design
approach is an alternative which uses the data collected from applications; however it is time consuming and highly
depends on designer observations and analyses and might not conclude to an optimal design. In this paper, a hybrid
approach is introduced which uses an analytical approach to explore the design space for a reconfigurable accelerator
and determine a wise design point based on the quantitative data collected from the targeted applications. It also provides
flexibility for applying new design constraints as well as new applications characteristics. Furthermore, this approach is a
methodological approach which reduces the design time and results in a design which satisfies the design goals.

Experimental results show the efficacy of the hybrid approach.
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1. Introduction

Tight coupling of a reconfigurable unit to a processor
core in a System-on-Chip is a popular way for
accelerating application execution. This approach is very
domain specific that can boost the performance and adapt
itself to different characteristics of each application. The
design of an extensible processor entails a multitude of
design parameters. Variety of design parameters indicate
the high complexity of reconfigurable processor design
and prove the requirements for a methodological
approach. Aside meeting the tight constraints on cost,
performance and power, the application specific
optimization of embedded systems is inevitable. On the
other hand, the flexibility is also important due to
accommodating rapid changes in consumer domain. A
major challenge in the design procedure is finding the
right balance between the different quality requirements
that a system has to meet.

Regarding involvement of multitude parameters in the
design procedure, the designer needs a means to
efficiently explore the design space. A common approach
in traditional design techniques is to use detailed
simulation for design space exploration. Design space
exploration (DSE) is the process of analyzing several
“functionally equivalent” implementation alternatives to
identify an optimal solution. The design space consists of
many alternative design implementations which vary in
area, performance and power dissipation. Considering
different design specifications too many number of design

alternatives for a task might be generated. Therefore,
exploring the large design space can become too
computationally expensive; then, candidate design points
must be obtained by effective design space pruning
technique.

Extensible processors offer a high flexibility in
identifying custom instructions from the applications and
executing them on a tightly coupled reconfigurable
accelerator. The reconfigurable accelerator is used as a
co-processor to execute the most critical segments or
custom  instructions  generated from  embedded
applications. Execution of the hot portions of applications
brings about enhancement in performance.

Designing an appropriate reconfigurable accelerator
satisfying demanded goals in the aspects of speedup, area
and energy consumption has been known as a challenging
issue. A balanced architecture with smaller area providing
the required performance is the most desirable. In [3] a
method for the application driven design of a hybrid
reconfigurable processors has been presented. In this
method, design decisions are based on quantitative data
gathered from simulation of realistically-sized workloads
on cycle accurate processor models. In [13] several
different design parameters are examined ranging from
the number of data flow graphs, inputs/outputs supported,
the number of addition/subtraction supported to the types
of shifts allowed. Evaluation of these designs was done
with simulation as well as synthesis to fully evaluate the
hardware trade offs in the context of an ARM processor.
Karthikeya et al. in [4] introduce a design space
exploration flow of reconfigurable architecture including
two optimization techniques. Fist one is the reduction in
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hardware cost by sharing critical functional resources that
occupy large areas in the processing elements and the
second one is critical path minimization by pipelining the
critical resources.

Clark et al. [2] propose a design methodology based
on a quantitative approach. A matrix of functional units is
considered as an initial architecture of their accelerator.
They perform a set of experiments to determine the width
and height of the accelerator. The characteristics of
extracted data flow graphs from 29 applications are used
to determine the configuration of the accelerator.
Moreover, different models of the accelerator are
synthesized comprising various height and row
configurations (different types of FUs are attempted).
Consequently, making decision on basic parameters of the
target accelerator is made by analyzing statistics which
are obtained from quantitative analysis of the data flow
graphs. Noori et al. in [11] utilize the similar quantitative
approach for determining the design parameters including
the number of FUs, the number of inputs/outputs, height
and width of their RFU. Decisions are still made based on
their observations and analyses on all data and statistics
collected for a set of applications. This approach is
based on observations and quantitative analysis obtained
from experiments. Therefore, it is not an accurate method
and much design time and effort are devoted to acquire a
design which might not be a best design point.

Our DSE approach is a hybrid of analytical and
quantitative approaches because, in essence, it is based on
an analytical approach which utilizes data gathered
quantitatively from the target applications. This approach
serves two design goals including performance
improvement and area reduction. Since, rescarch shows
that performance is strongly application-dependent; our
approach emphasizes the application aspect. In our
approach like ones in [2][11][13], the characteristic of
DFGs are also used, but these data are just exploited in
computing the analytical expressions presented for
accelerator design. In fact, the proposed approach in this
paper is a hybrid method for accelerator deign which tries
to get benefits of both quantitative and analytical
approach to find a wise design point and curtail the time
cost and efforts of designer toward a systematic design
method. Following are the summary of advantages of our
hybrid approach compared to others:

The approach is suitable where the new applications
are applied to the reconfigurable processor design. A
shorter design procedure can easily apply the effect of the
new applications to the design process.

2. Using DSE for Designing RAC
2.1. Design Methodolegy

A general overview of the stages which are followed
to explore design space for an accelerator has been shown
in Fig. 1. Firstly, custom instructions (ClIs) are pulled out
from hot portions of the applications. For each CI its
corresponding data flow graph (DFG) is generated

(hereafter, in our terminology CI and DFG terms are used
correspondingly). In the next stage, basic information
required for DSE are obtained quantitatively using the
generated Cls. Design space exploration to determine the
main architectural specifications of the accelerator is
performed. DSE concentrates on choosing the best design
analytically aiming the performance enhancement and
area reduction. At the final stage, detailed specifications
of the designed accelerator are determined and various
parameters are tuned for more satisfaction of the design
optimization goals. Parameters tuning procedure is
similar to one introduced in [11] thus, the main
distinction between our approach and one presented in
[11] is on using analytical approach to acquire a initial
design point more accurately in a shorter time. In
addition, it might need a less extra effort to parameter
tuning due to obtaining a wise initial design point in ours.

Appilcation Cl Extractor Chs
Design Spate Rogulred

Exploration ritormation for DS C1 Anatyzer
Spacification of ccolorator Final

Accelorator Tuning Spacification

Fig. 1. Overview of the design flow for an accelerator
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Fig. 2. A picce of RAC architecture [11]

We assume an initial structure for a reconfigurable
accelerator (RAC). Following are our assumptions on the
initial architecture:

RAC includes a matrix of FUs with width equal to w
and height equal to » and basically has the combinational
architecture. A matrix of functional units is a natural way
of arranging a RAC, since it allows for both the
exploration of parallelism and also for the sequential
propagation of data between FUs. DSE determines the
suitable dimensions of RAC including w, % and total
number of FUs in RAC.

FUs in RAC are fully connected except than the lack
of connections from FUs located in lower rows to FUs in
upper rows. All routing resources from each FU in a row
to FUs in Jower rows and also to adjacent FUs at the same
row are available through multiplexers. A piece of
connection scheme has been depicted in Fig. 2.

Data flow graphs corresponding to generated Cls
should be mapped onto the RAC and executed during
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run-time. A simple algorithm is used for mapping the
DFGs on RAC. Moreover, routing resources in initial
structure of RAC have not been confined and the routing
process can be successfully done due to routing resource
availability in initial architecture. RAC [7].

2.2. Definitions and Basic Concepts
In following section, our analytical design exploration:
approach is introduced. First, some definitions:
n=no. of FUs in ith row of RAC
MUX;=jth mux between rows i and i+1
i-1
mj = ) my+(m—1): the number of inputs for MUX}.
t=

‘
s} =[Iog'2"'-|: the number of selectors for MUX|

Total number of muxes in row / is equal to the number
of FUs in (i+1)th row (which is n;.;) multiply by 2 due to
existine two input sources for each FU.

D(FU}'): latency of FU located in row i and column j.

We assume that all FUs in initia]l RAC architecture

implement similar operations and have the same
functionalitv.
D(MUX}): latency of a mux including m;-inpu! bits
and s", selector bits. Delays of FUs and muxes can be
achieved by synthesizing them or wusing the
pre-synthesized library information.

Here, we present our approach for DSE formulation. It
is intended to determine optimal or sub-optimal
dimensionality including the RAC's width, height and the
number of FUs. Overall speedup obtained from executing
Cls on RAC with width of w and height equal to A
( RAC} ) is the ratio of the number of clock cycles
required for executing CI on the base processor to the
number of clock cycles spending for execution of Cls on
RAC (Eq. 1).

Speedup = TotalClockCyclesOnBasePr ocessor
- TotalClockCyclesOnRAC

In embedded systems, one issue RISC processor is a
conventional choice as the base processor. Therefore,
assuming one clock cycle for executing each instruction
of DFG on the base processor, the total number of clock
cycles required for executing all DFGs on the base
processor is easily obtained irrespective of the RAC’s
specification.

)

W H
CC(CPU) = ZZCC}(CPU)x o @
i=1 j=1

CC}(CPU) is the number of clock cycles required for
executing a DFG including width w and height 4 ( DFG})
on a one-issue RISC processor. a", shows the fraction of
DFGs (CIs) in applications which have the width eaual 1o
w and height equal to h. For example, a;=7%
represents that the percentage of application execution
time concerns to all DFGs with width equal to 4 and

height equal to 3 is 7%. ¥ and H are the maximum width
and height for DFGs, respectively. In out terminology,
DFG)} means a DFG including at most w paralle] node
and at most A consequent node (maximum depth or
critical path of DFG). We assume that the nodes of such
DFG can be mapped directly one by one to FUs on RAC,
thus it needs a RAC including at most w and k& FUs in
width and height, respectively.

A key observation is that the number of instructions in
DFG} is not exactly equal towxh. For example, Fig. 3
shows two DFG; s which include 5 and 6 nodes
(instructions), respectively. As our analysis is done based
on two parameters w and #, therefore, we define a factor
y_', which denotes the average ratio of the number of
instructions in DFG to the product of w and & (which
means the area or the total number of FUs occupied by
DFG) for all DFG);. This factor can be attained through
quantitative data eatherine from aoolications.

CCY(CPUY=y)xix j 3

On the other hand, total number of clock cycles
elapsed for execution DFGs on RAC) is calculated
according to following formula. This calculation certainly
depends on RAC’s dimensions.

Fig. 3. Two DI"G;3 s with different number of nodes

W H
CC(RACY) =ZZCC}(RAC,‘,’)xa} @)
i=l j=1

C_Cj(RACl’\ is the number of CCs for executing
DFGjona RACY and it is calculated based on the values
of w, A, i and j. Four different cases may take place as
follows. In cases where one or both dimensions of DFGs
are greater that RAC dimensions, we use temporal
partitioning techniques. Temporal partitioning divides a
DFG into time exclusive smaller DFGs which are
mappable on RAC [4][7].

1Y isw and j<h, in this case, DFG} is mappable on
RAC} and no need for temporal partitioning.

CCl(RACY) = D(RAC}) 5)

D(RACE)is the critical path delay of RAC in terms of
the cock cycles spent far executing a DFG on RAC} .
Delay measured for RAC) is represented based on the
number of equivalent clock cycles of the base processor.
2) i>w and j<h,

cCjRACy) =| Y, k(DwrRACY Y+ )+ 0:0)x DRACY)  (6)
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In Fig. 4(a) width of DFG} is greater than RAC}’s

width. In this case, DFG is partitioned to MJ smaller

DFGs each of them has the width less than or equal to the
RAC’s width. A is reconfiguration overhead time due to
partitioning DFG to a number of smaller DFGs which
should be loaded and executed on RAC subsequently. An
extra partition (second term) should be considered and
coefficient of the second term is 1 if i is divisible by w,
otherwise it would be 0.

3) i<w and j>h,

ccj(mc,‘;‘)=[%Jx(o(mc,‘:)+/1)+(|:me(mc,‘;) @]

Fig. 5(b) shows the case where the height ofDFG} is
greater than RAC} ’s height.
]
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Fig. 4. (a) Width of DFG is greater than RAC’s width
(b) DFG's height is greater than RAC’s height
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Fig. 5. Both DFG’s width and height are greater than
RAC’s width and height

4) i>w and j>h,
CC}(RAC}:’)=|%va|.%Jx(D(RAC},')+ﬂ)

+(l:0)x%vxD(RAC,‘," +l)+(]:0)x%xD(RAC,‘,"+l)
+(1:0)x D(RAC}) ®)

In Fig. 5 both dimensions of DFG are larger than
RAC’s dimensions and a number of smaller partitions are
generated utilizing the temporal partitioning algorithm.

2.3. Calculating the Delay of RAC

Measuring D(RAC)) for different values of w and h is
an important issue in calculating above expressions. One
way for doing that job is synthesizing various sizes of
RAC which is too time consuming and maybe not
reasonable, We introduce another approach which
estimates the latency of critical path for D(RACY) by
analyzing the RAC’s structure and does not necessitate
synthesizing various RACs’ architectures. We use the
delay of two basic components including FUs and muxes
which have been obtained from their synthesis. Moreover,
it should be noted that the RAC realizes a combinational
architecture.

As mentioned before, all FUs have the same
functionality, so, the delay for all FUs is similar. But,
different sizes of muxes are synthesized to achieve their
latencies due to need to various sizes of them between
different rows of RAC. Therefore, critical path delay of
RAC} can be calculated using Eq. 9.

h h-1
DRAC)) = ZD(F‘U," ) +ZD(MUX{‘ ykeol...w} (9

i=l isl

Increasing values of 4 and w can affect the critical
path delay of RAC, due to their influence on the number
of FUs and muxes locating in critical path and also the
size of the muxes. As mentioned before, each mux located
between rows i and i+/ receives its inputs from all FUs in
upper rows and also from adjacent FUs at the same row.
We assume that all muxes including mux(2"to 1) are
available and other mux sizes should be replaced with
nearest greater size mux. For example all muxes
comprising mux(5 to 1), mux(6 to 1) and mux(7 to 1) are
replaced with mux(8 to 1).

D(MUX*) = delay of mux(2 tol)

sf =[Iog'2";-l, mf:(j—-l)xw-&(w-l) (10)

2.4. Optimization problem

The main objective is determining the basic parameters
for RAC’s architecture including its height, width and the
number of FUs. The design space exploration problem
here is the finding values of w and s which gives the
maximum value of speedup and minimum area for RAC.

S(RAC}Y) is defined as speedup gained bv executing all

DFGs extracted from applications on the RAC) (Eq. 11).
Therefore, all speedup (and area) values are calculated for
we{0,),...W}and he{0,,.,H}.

S(RAC:)= CC(CPU) - i=l j=| (ll)

‘II_
~.
LR
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The object function is as follows:
Objective: Maximize ( S(RACY)) (12)

After finding suitable values for w and 4, the number
of FUs is calculated using those values and p (the ratio

of the number of nodes/instructions in DFG to the
product of w and 4).
The number of RAC's FUs= y " xwxh (13)

The number of FUs in RAC can also be used for
determining the shape of RAC. The initial architecture is
a rectangle shape, but according the inherent
characteristics of DFGs which are mapped on RAC and
have the tri-angular shapes, it can conclude to a
non-rectangular shape.

3. Case Study: Designing RAC for an Extensible

Processor

In this section, we use the proposed approach to
design a RAC for AMBER which is an extensible
processor targeted for embedded systems. First, a brief
explanation of AMBER and what was going on in [11] to
design a RAC for AMBER is presented.

AMBER has been developed by integrating a base
processor with two other main components. The base
processor is a general RISC processor and the other two
components are: sequencer and a coarse grain
reconfigurable functional unit (RFU). The base processor
is a l-issue in-order RISC processor supporting MIPS
instruction set. The sequencer mainly determines the
microcode execution sequence by selecting between the
RFU and the processor functional unit. RFU is a RAC
including a matrix of functional units (FUs) plus a
configuration memory.

3.1. Quantitative Approach

A quantitative approach was used for designing RFU
(hereafter the RAC presented in AMBER is referred as
RFU), using 22 applications of Mibench [9] and
Simplescalar {12] as the simulator tool. RFU was
developed in two phases. In the first phase, some primary
constraints were considered. DFGs were generated and
mapped on RFU considering these constraints. Using the
feedbacks of mappings, a proper architecture for RFU was
presented. After finalizing the RFU architecture, new
constraints of RFU were added to CI generator and
mapping tool constraints [11].

First, mapping rate for different number of inputs and
outputs was obtained and according to the results, eight
and six were chosen as the number of inputs and outputs,
respectively. Mapping rate has been defined as the
percentage of extracted ClIs from 22 applications of
Mibench [9] that are successfully mappable and
executable on RFU. The mapping rate was similarly
measured for various numbers of FUs and the number of
FUs was chosen to be 16. Similar procedure is done to

specify the width and depth of RFU and also the
appropriate number of FUs in each row. Design process
finally led to a triangular shape RFU, Experiment results
indicate that 6 and 5 are appropriate numbers for width
and depth, respectively and 6, 4, 3, 2, 1 FUs for rows 1 to
5, respectively.

3.2. Hybrid Approach

The proposed hybrid approach was also used to design
a RFU for AMBER. First, required data including y
and @ (Section 3.2) were obtained. Then the analytical
approach was followed to determine the design
specifications of the RFU. Like the quantitative approach,
22 applications of Mibench were attempted to acquire
required information. In our experiments, the base
processor is a l-issue RISC processor and the
reconfiguration penalty (A1) is assumed to be one clock
cycle which is reasonable in a tightly coupled coarse
grain hardware due to small size of the configuration
bit-stream and possibility for parallel loading of the RFU
configuration.

First the optimal RAC’s dimensions for different
frequencies ranging from 100MHz to 500MHz are
obtained. Table 1 shows the results achieved. According
to this table, similar result (width= 6 and height= 5) to
quantitative approach is obtained in frequency of
166MHz. This experiment indicates the capability of
analytical approach for applying the frequency while this
factor could not be considered during the quantitative
design procedure. According to experimeats, increasing
frequency of the base processor reduces RFU dimensions
and decreasing its clock frequency has the inverse affect.
Because, the number of clock cycles needed for executing
DFGs on RFU increases due to reduction in processor
clock period and furthermore, enlarging RFU dimensions
is less promising in accelerating DFGs execution.

Table |. RAC’s dimensions considering various

frequencies and targeting speedup

Frequency(MHz) | 500 | 333 {250 | 200 | 166 | 100
Width 5 51 5 5 6 7
Row 2 313 4 5 5

Object function (Eq. 12) is computed for different
dimensions of RFU in the frequency of 166MHz. Fig. 6
shows how the object function affected by various RFU’s
width and heights. The peak of graph is where width= 5
and height=4. In this point, maximum speedup and
smallest area are gained. For the resulted dimensions
using analytical approach, the number of FUs is also
calculated according to Eq. 13 which is equal to 15, This
indicates that the RFU’s shape should be triangular.

As another feature of the analytical approach, the
effect of reconfiguration penalty (overhead time) was
examined.  For large DFGs which have to be partitioned
and mapped subsequently on the RFU, reconfiguration
penalty should be taken into account. Reconfiguration
overhead time may affect the performance of DFG
execution on RFU because, loading subsequent DFGs
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takes one or more clock cycles. Since RFU is coarse grain
hardware with tight integration to the base processor and
reconfiguration memory (which is used for storing DFGs’
configuration bit-streams) therefore, its reconfiguration
overhead time may take one or more clock cycles
depending on the bit-stream size and topology of
connection between RFU and configuration memory.
Table 2 shows the effect of reconfiguration penalty on
RFU’s dimensions in frequency of 166MHz. By
increasing reconfiguration overhead time the size and
height of RFU is increased to cover larger DFGs and
reduce the number of partitions hence, preventing the
speedup amortization.

Fig. 6. Object function is maximized in w=5 and h= 4

Table 2. RAC’s dimensions considering various
reconfiguration penalties

Reconfiguration 1 2-6 7-9 10-15
Penalty (clock cycles)

Width 5 5 6 7
Row 2 4 [ 8

4, Conclusion

Several parameters involving in the design process of
a reconfigurable accelerator integrating to a processor in
an extensible processor result in a large design space.
Design space exploration using analytical method in
combination with a quantitative analysis is one way to
find a right balance between the various design
parameters. This hybrid approach unlike the quantitative
approach targets the design goals directly and gives a
wise starting design point based on quantitative data
collected from applications. This approach is susceptible
for applying new design parameters as well as new
applications and therefore, it substantially reduces the
design time and effort. This approach was used for
obtaining dimensions of an accelerator which is exploited
in an extensible processor called AMBER. Various
frequencies were examined and a number of constraints
and parameters like area and reconfiguration penalty were
applied to DSE procedure. Experiment results show that
the analytical approach can be used to obtain a similar

design point to the quantitative approach in a noticeably
shorter time and less design effort.
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