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Abstract A method to halve the number of partial product bits in multiplication is proposed. An integrated
partial product (IPP) is introduced. The method separates the IPP into four cases. Each case is represented in
half the number of the original partial product bits by utilizing the sum of the operands. The value of the IPP is
obtained by selecting a value from the four cases. The proposed method is applicable to both unsigned and signed
multiplication. Multipliers using the proposed method are smaller than array multipliers and Wallace multipliers
by approximately 30%, and smaller than multipliers with radix-4 Booth’s method by approximately 10%.
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. ally each partial product is a product of a multiplicand and
1. Introduction o
a multiplier bit.

Multiplication is an important operation and appears in
various applications. A parallel multiplier consumes a large
area in VLSI. Therefore, reduced area parallel multipliers
are desired. Reducing circuit area gives us great advantages
in downsizing of products, manufacturing cost, power con-
sumption and so on. Recent years, increasing leakage power
in VLSI is regarded as a major problem. The leakage power
is always consumed while the power is supplied even if tran-
sistors are not activated. Reducing the number of circuit
elements is an effective countermeasure to reduce the leak-
age power.

Parallel multiplication consists of partial product genera-

tion, partial product compression and final addition. Usu-

In this report, we propose a method to halve the number
of partial product bits. We introduce an integrated partial
product (IPP). The proposed method separates the IPP into
four cases. Each case is represented in half the number of
the original partial product bits by utilizing the sum of the
operands. The value of the IPP is obtained by selecting a
value from the four cases. The proposed method is appli-
cable to both unsigned and signed multiplication. We have
evaluated multipliers with the proposed method. They are
smaller than array multipliers and Wallace multipliers [1] by
approximately 30%, and smaller than multipliers with radix-
4 Booth’s method [1] by approximately 10%. Additionally,
we discuss acceleration of the proposed method, where we
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divide the addition of the operands into multiple sections to
generate IPPs quickly.

The remainder of this report is organized as follows: Sec-
tion 2 proposes a method to halve the number of partial
product bits. Section 3 shows multipliers with the proposed
method. Section 4 discusses acceleration of the proposed
method. Section 5 evaluates the multipliers with the pro-
posed method. Section 6 concludes this report.

2. A Method to Halve the Number of
Partial Product Bits

First, we describe the proposing method for n-bit un-
signed multiplication. . We express multiplicand X as
[Tn-1%n—2 - - Z120] and multiplier Y as [yn-1¥n-2 - ¥1%0].
The values of X and Y are Y 7' 2'z; and 37 2y, re-
spectively. We define X; as [z;zi_1---21%0] and Y; as

[ysyi—1---y190). We can transform X x Y as follows:

n-1 n-1
XxY = (Z 2"z,-) x (Z 2"y.~)
i=0 i=0
= -Xn—2 X Yn—2

+2" 1 (2" ' Zn1Yno1 + Tno1Yao2 + Yn-1Xn_2)

By transforming iteratively, X x Y is calculated as follows:
n—1
X xY = zoyo + Z 2 (2'ziys + 2:Yio1 + yiXio1)
i=1
This equation is used for serial-serial multiplication in [4]~
[6]. We call 2'z;y; + x;Yi—1 + 3:Xi—1 the i-th integrated
partial product (IPP) P;. We can obtain an IPP efficiently
utilizing the sum of the multiplicand and the multiplier. We
separate an IPP into four cases by (z:,:) as follows:

0 if (zi,9:) = (0,0)
Xi_1 if (Ii,yi) = (0, 1)
Yi1 if (zi,%:) = (1,0)
2+ X+ Yir if (m,w) = (1,1)

We have to calculate X;_; + Y;—; in the case of (z:,y:) =
(1,1). We define S as X + Y, and express S as
[SnS8n-18n—2--8180). We define S; as [3isi—1---8180]. We
can express P; in an (¢ + 2)-bit unsigned binary representa-
tion as follows:
[0000 - - - 00]
[00z;—1Zi—2 - - - T170]

[00y:i-1Yi—2 - - y170]
[3i878:-18i-2- - 8130]

if (zs,9:) = (0,0)
if (zi, i) = (0,1)
if (zi,3:) = (1,0)
if (zi,yf) = (1, 1)

Note that when (zi,4:) = (1,1), Xi—1 + Yi-1 = Si. Since
we can use S to calculate all IPPs, we calculate S only once.
Bit diagrams of the IPPs and the ordinary partial products
are shown in Fig. 1. In Fig. 1(a) the positions of the bits of
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(b) A bit diagram of the partial products in ordinary multi-
plication

1 Bit diagrams of the IPPs and the partial products

P; are shown, and in Fig. 1(b) the positions of the ordinary
partial product bits corresponding to P; are shown. The
proposed method generates only 1n?+ $n — 1 bits, while an
ordinary n-bit multiplier generates n? partial product bits.
The proposed method achieves to halve the number of partial
product bits.

We can apply the proposed method to signed multipli-
cation by slight modification. X and Y are expressed in
two’s complement representation as [Zn_1Zn_2 - - - £1Zo] and
[yn—1Yn—2 - - - 1190], respectively. The values of X and Y are
—2" g 1+ :';02 2iz; and —2" " ly,_y + Z:‘____: 2y, re-

spectively. Signed multiplication is shown as:

n—-2 n—2
(—2"_1-'%—1 + Z2i2i> X (—2"_1yn—1 + Zziyi

=0 i=0

XxY

Xn—2 X Yﬂ—2
+2"7 (2" Bnc1Yno1 — Tno1Vao2 — Yn-1Xn—2)

The IPPs for i = 0 to n — 2 are the same as those of the
unsigned multiplication. Namely, X,,—2 X Y,_2 can be cal-
culated in the same way as unsigned multiplication. We sep-
arate Pi_; = 2" 'zn_19n—1 — Tn-1Yn_2 — Yn—1Xn-2 into

four cases by (Tn—1;Yn-1).
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0 if (a:n_l,y,._l) = (0,0)
—Xn-2 if (zn-lyyn—l) =(0,1)
—~Yn-2 if (Tn-1,¥n-1) = (1,0)
™! X 2 —Yu2 if (Tn-1,%n-1) =(1,1)

>
P, =

We define the (n —1)-th IPP P,_; as Py_; — 1. Then, Pn_1
is expressed in a (n + 1)-bit two’s complement binary repre-

sentation as follows:

[1111..-113 if (Za-1,yn-1) = (0,0)
(11277 T3 - - &1 %) if (@n-1,9s-1) = (0,1)
1Fn=2 Tn3 - T1 Yol if (Zn-1,¥n-1) = (1,0)

[8n-18n-13n—2 Sn—3-"-31 80  if (Tn-1,¥n-1) =(1,1)

Note that when (Zn—1,yn-1) = (1,1), Xn_2+Yn_2 = Sn-1,
and that —Sp_1 = —2™ +Sn-1+ 1 where Sy, is the bitwise
inversion of Sp—1. Finally, signed multiplication is performed
as

n—2

X xY =zoyo + (Z 2iPi) + 2" P 427

i=1

The number of IPP bits of signed multiplication is %n2 + %n
3. Reduced Area Multipliers

A block diagram of a multiplier using the proposed method
is shown in Fig. 2. The multiplier consists of an operand
adder, an operand recoder, an IPP generator, an IPP com-
pressor and a final adder. The operand adder is a carry
propagate adder to calculate the sum of the operands. The
operand recoder generates z; A ¥i, T; Ay and z; AT, It
consists of 3n 2-input AND gates and 2n inverters. The IPP
generator consists of $n% + $n — 1 decoder cells. Each de-
coder cell generates an IPP bit from (z;,y;,8;) and (z: A
¥i, Ti AYi, i AT;). The IPP compressor compresses the IPPs
into two numbers by carry save additions. The final adder is
a carry propagate adder and sums up the two numbers.

‘We define p;,; as the j-th bit of P;. The decoder cell
calculates p;; where 0 £ j £ i — 1, p;,; and pi it+1 where
1<i<n-1 as follows:

pij = (@TAY)AZ) V(@ AT) Ays) V(i Ayi) A ss)
Pii = (Ti Api) ASD
Piit1 = (T AY) A si

For signed multiplication, P,_; is calculated as follows,
where 0L j<n—2:

Pa-1,5 = (@a-1Atn-1) AT;)
N(@n—1 ATn1) Ay3)
N(@n—-1 Ayn-1) A 85)

Pn-1,n-1 = 8n-1 Vm

Pn-1,n = Pn-1,n-1

XV X XaW Y XaWi §

3 The decoder cell of the proposed method

The decoder cell of the proposed method is shown in Fig.
3. It requires three 2-input OR gates and two 2-input AND

gates.
4. Acceleration of the Proposed Method

In the proposed method, IPP bits with higher weight de-
pend on higher bits of S. Therefore, they can be generated
after the addition of the operands having proceeded.

We can accelerate the method by dividing the addition of
the operands into multiple sections. As an example, we ex-
plain the case of dividing the addition into two sections. We
define X1, Xu,Yr,Yn, St and Sy as follows:

XL = [z%ﬂ_lm%n_.‘,---zlzo]
Xo = [Zn-18n-2" TLn41T10]
Yo = [Ygn-1Y}n-2" " 41%0]
Yy = [yn—lyn—Z'”y%n.'_ly%n]
SL=XL+YL

Sy = Xu+Yn

Note that S +2% 8y = S.

We generate the IPP bits with higher weight using the bits
of Sy instead of the higher bits of S. Then, for i 2 %, two
shorter IPPs, Pr; and Py, corresponding to P; are gener-
ated. Pr; depends on S1, and consists of in + 1 bits. P
depends on Sy and consists of i + 2 — % bits. Note that
P + 2% Py; = Pi. A bit diagram of IPPs in this case is
shown in Fig. 4. The bits above the dashed line belong to
Pr;’s and those below the dashed line belong to Py;’s. Thus,
Py; and Pr; are generated in parallel.

The number of IPP bits increases by dividing the addition
of the operands. Both S and Sy consist of %n + 1 bits,
while S consists of n + 1 bits, because of the carry-out of
the additions. Therefore, there are %n additional IPP bits
corresponding to the most significant bit of Sy.The IPP bits
on the 5th row in Fig. 4 are corresponding to the most sig-
nificant bit of S;. The more the number of sections is, the
faster the calculation is and the more the additional IPP bits
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CMOS technology. Both libraries are provided by VLSI De-
sign and Education Center (VDEC), the University of Tokyo.
We synthesized the multipliers with Synopsys Design Com-
piler. We used Cadence SOC Encounter and Synopsys Astro
for the physical design with the 0.18 pm cell library and the
90 nm cell library, respectively. All cells and wires of the
multipliers are placed and routed with over 95% core utiliza-
tion.

We have optimized the multipliers in two ways. In one
optimization, we have optimized the multipliers to mini-
mize the circuit area. Ripple carry adders are used as the
operand adder and the final adder. The circuit area and
the delay of the multipliers are shown in Table 1. Pro-
posed(1) is approximately 30% smaller than array and
Wallace. Proposed(1) is approximately 10% smaller than
array+Booth.

In the other optimization, we have optimized the multipli-
ers to minimize the delay. We use an adder from DesignWare
IP Library, Synopsys, Inc. as the operand adder and the the
final adder. The circuit area and the delay of the multipli-
ers are shown in Table 2. Although proposed(2) is larger
than proposed(1), proposed(2) is much faster than pro-
posed(1). The delay of proposed(2) is almost the same as
array+Booth. The circuit area of proposed(2) is smaller
than that of array+Booth. When the 90 nm cell library is
used, proposed(3) is faster and smaller than Wallace.

6. Conclusion

We have proposed a method to halve the number of par-
tial product bits. We have introduced the integrated partial
product (IPP). The IPPs are calculated efficiently utilizing
the sum of the operands. The IPPs have half the number
of the original partial product bits. Additionally, we have
accelerated the proposed method, where we divide the addi-
tion of the operands into multiple sections to generate IPPs
quickly.

We have shown that multipliers using the proposed method
are smaller than existing multipliers. The proposed method
is useful for systems that need to be compact, and re-
quire little cost and power. Although we have evaluated
only three constructions of multipliers using the proposed
method, there are many other constructions of the multi-
pliers using the proposed method. It may be possible to
improve the multipliers by changing the number of sections
and the point of division.

References

1] C.S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE
Transactions on Electronic Computers, Vol. EC-13, pp.14-
17, 1964.

[2] A.D. Booth, “A Signed Binary Multiplication Technique,”
Quart. J. Mech. Appl. Math., vol.4, part 2, pp.236-240,

-29.-

&)

“

(8]

(6]

1951.

C. R. Baugh and B. A. Wooley, “A Two’s Complement Par-
allel Array Multiplication Algorithm,” IEEE Trans. Com-
put., vol.C-22, no.12, pp.1045-1047, Dec. 1973.

1. N. Chen and R. Willoner, “An O(n) Parallel Multiplier
with Bit Sequential Input and Output,” IEEE Trans. Com-
put., vol.C-28, no.10, pp.721-727, Oct. 1979.

N. R. Strader and V. T. Rhyne, “A Canonical Bit-Sequential
Multiplier,” IEEE Trans. Comput., vol.C-31, no.8, pp.791-
795, Aug. 1982.

R. Gnanasekaran, “On a Bit-Serial Input and Bit-Serial
Output Multiplier,” IEEE Trans. Comput., vol.C-32, no.9,
pp.878-880, Sep. 1983.



#£ 1 Area(pm?) and delay(ns) of multipliers of the smallest construction

unsigned signed
0.18 um 90 nm 0.18 pm 90 nm
area delay area delay area delay area delay
16bit array 24946.8 11.47 5790.6 6.70 24753.1 11.61 5748.2 6.73
array+Booth  22902.3 13.37 4522.5 5.98 21618.5 13.08 4251.6 5.59
Wallace 25085.9 10.18 5823.8 4.69 24892.2 10.30 5780.0 4.68
proposed(1) 19459.4 11.35 4443.9 5.52 19615.9 11.40 4479.6 5.71
proposed(2) 20470.9 11.42 4667.5 5.34 21652.1 11.42 4939.4 5.40
proposed(3) 19650.0 11.44 44914 5.06 19765.6 11.40 45153 5.13
32bit array 103775.1 23.67 24127.1 14.09 103362.3 23.83 24037.2 14.21
array+Booth  84552.3 22.37 17362.1 10.84 81821.4 23.36 16651.1 10.77
Wallace 103911.6 20.73 24160.9 9.27 103502.0 20.62 24069.5 9.37
proposed(1) 72165.1 22.20 16471.4 11.01 72483.0 22.39 16542.5 11.13
proposed(2) 74397.7 22.58 16967.9 10.35 76746.4 22.24 17513.5 10.35
proposed(3) 72357.5 22.66 16518.7 10.35 72632.6 22.82 16577.8 10.15
64bit array 423104.6 48.00 98448.4 28.95 422256.8 48.18 98264.0 28.90
array+Booth 322622.9 41.93 66727.6 20.84 317325.6 41.25 65437.1 20.25
Wallace 423241.2 42.59 98482.8 18.85 422398.8 42.28 98295.3 18.79
proposed(1)  279052.3 43.07 63473.9 22.42 279697.0 43.20 63616.1 23.00
proposed(2) 283645.9 43.41 64508.2 21.01 288414.8 43.61 65600.0 21.10
proposed(3) 279246.2 44.34 63521.6 20.23 279849.0 44.70 63652.7 20.19
#£ 2 Area(pm?) and delay(ns) of multipliers of the fastest construction
unsigned signed
0.18 ym 90 nm 0.18 pm 90 nm
area delay area delay area delay area delay
16bit array 274789 8.15 6038.6 5.28 27262.8 8.29 5979.2 5.26
array+Booth  35103.0 5.72  5578.9 3.14 35041.5 6.42 6090.7 3.10
Wallace 294174 4.43  6040.1 223 29214.1 4.44  5979.2 2.20
proposed (1) 24423.4 7.42  4755.0 4.81 24865.6 7.14  4675.0 5.07
proposed(2) 271225 5.88  5003.8 3.27 272144 6.37 5374.7 3.46
proposed (3) 29893.8 4.96 68459 1.69 31506.8 4.72 6829.0 1.76
32bit array 108445.4 15.73 24676.5 10.65 108288.2 15.88 24614.8 10.71
array+Booth 105590.0 9.80 17550.2 5.93 107904.9 10.73 18226.3 6.03
Wallace 114321.6 5.68 24687.5 3.16 112352.5 5.78 24564.8 3.10
proposed(1) 83170.4 13.49 17400.1 10.23 86848.3 13.13 17304.5 10.43
proposed(2) 89573.8 10.30 17975.8 6.17 91805.6 10.48 19137.6 6.42
proposed(3) 98790.6 7.04 23685.2 2.60 1014889 6.81 242739 2.71
64bit array 432733.4 31.22 99582.5 21.33 432169.9 30.53 99352.6 21.50
array+Booth 383888.0 18.14 67846.4 11.72 384976.5 19.35 65672.5 11.97
Wallace 442830.3 8.55 100274.0 4.38 442896.9 7.96 100299.2 4.33
proposed(1) 301362.8 26.54 64956.0 21.68 309527.1 26.01 65262.7 21.03
proposed(2) 319258.6 18.80 67028.3 12.36 320856.1 19.91 68686.1 12.31
proposed(3) 345247.5 10.32 89151.5 4.03 341909.2 9.72 88482.4 4.12
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