FRV=F 4 VI VAT A 56—10
(1992. 8. 19

BBV F IOy S BT 2ERBAS VoY Y IHR

JoeUemura & K&
SEBR () HRETHIRE

email: {uemura kan}@isl.melco.co.jp

B E

FEROMKE TV F 7O by HTH. BIUTT LOEFTETICLY VAT AREDANV= Ty v %
MECE2b00, TORETTHETUY 7 AOHFIMBEL L TR VEOREHELRET 5 =
EVHBETHo o COMBERET H0, EEOLE, ARV—F A VI VRATFALI—FETa—)V
D2BBYOLEDIRFVa— Y IHEREREL, 94 LY 27 VY VBETIBVWTEL—F7ay
TADHFIMBERIEL, POVATFAAN—Ty "ADEB LY BEXLIENTELT LT T, A
XTiE. COERFR L BFILBERBIZOWTERD L3, EBRORIHE < VT 70Xy b~ 0@iEes
FrEET 5,

A Two-level Processor Séheduling Scheme for
Shared-memory Multiprocessors

Joe Uemura and Takashi Kan

Mitsubishi Electric Corporation
Computer & Information Systems Laboratory
5-1-1 Ofuna, Kamakura, Kanagawa 247, Japan
email: {uemura,kan} @isl.melco.co.jp

Abstract

Traditional scheduling techniques used in timesharing operating systems usually perform
inefficiently when applied to parallel programs. In this paper, we propose a two level scheduling
scheme for shared-memory multiprocessors where scheduling decisions are made by an user
module and the operating system. The scheme provides for guaranteed performance of parallel
codes while accommodating the execution of timesharing applications at the same time. This paper
proposes both an implementation and a parallel execution model. Our preliminary results show that,

using this scheme, sustained performance of parallel applications can be obtained regardless of
other cdncurrently executing applications.

1. Introduction

A large number of shared-memory
multiprocessor systems are being offered
commercially. These systems are often utilized
for general purpose uses; the multiple
processors produce higher throughput by
running several sequential applications
simultaneously. The availability of multiple
processors, however, offer the additional benefit
of speeding up a single application by using
parallel processing. In parallel processing,
different components of an application execute
on several threads. Each of these threads of
execution can be assigned to a different
processor, leading to shorter application
execution times.

In this paper, we are mostly concerned with
microprocessor based shared-memory
multiprocessor systems. Most of these systems
run some varation of UNIX' adapted to
support multiple processors. The schedulers
used in these systems are often modified
versions of the UNIX timesharing scheduler.
The timesharing scheduling policies in these
schedulers frequently fail to satisfy the needs of
parallel applications, leading to severe
performance degradation of parallel codes.
Particularly, when the number of rmnning
threads exceed the number of available physical
processors in the system, the timesharing
policies introduce system behavior inappropriate
to the needs of parallel applications. This
behavior is characterized by the schedulers
interfering with how resources are allocated to
applications. As threads contend for processor
resources, the system will multiplex the physical
processors over the threads according to their
own notion of the importance, ie. priority, of
threads. This is accomplished by preempting
running threads and scheduling waiting ones.
Some of the reasons why these policies are
inappropriate when applied to parallel
applications are:

« lack of control over resource allocation

peveloped and Licensed by UNIX System Laboratories, Inc.

In order to enjoy the benefits of higher
application performance offered by parallel
processing, applications have to be parallelized
to exploit the multiprocessors. Parallelizing an
application is usually a difficult task; without
guaranted performance benefits, few would
spend the extra effort. Providing a predictable
environment where guaranteed performance can
be obtained is highly desirable when running
parallel applications. If the operating system
relies on its own criteria to allocate processor
resources, a parallel application might not
receive the necessary resources, leading to
unacceptable performance degradation.

» parallel applications synchronization patterns

Multiple threads in parallel applications often
have to synchronize during execution. Common
synchronization schemes use a busy-wait
strategy. If a thread is preempted while holding
a busy-wait synchronization lock, the thread(s)
waiting on the lock will loop until the thread
holding the lock is rescheduled and releases the
lock. Another common synchronization
mechanism is the barrier construct. A barrier
synchronizes a predetermined number of threads
ensuring that those threads have completed a
certain portion of code before proceeding to the
next. For efficient barrier execution, the threads
synchronizing at the barrier should execute at
similar rates. Preemption of threads might cause
an uneven pattem of execution making the
synchronization at the barrier very inefficient.

« undesired overhead due to context switches

Preemption of threads during execution causes
undesired overhead to be added to execution
time, due to the costs of context switching. Also,
as threads migrate between the different
processors during context switches, cache
corruption can occur. This also adds to
execution times, especially with shared-memory
single-bus machines where the increased
number of accesses to memory due to cache
misses leads to higher bus contention.

Currently, when parallel applications run on

these types of multiprocessors, they usually run
on dedicated machines. The operating system is
brought up in single-user mode, and the entire
system is dedicated to execute parallel
applications one at a time in batch mode. This
offers the desired predictable performance
environment at the expense of having to
dedicate the entire system to run parallel
applications. This approach avoids the problem
of other loads interfering with the execution of
parallel codes by simply stopping all
timesharing activities.

As a possible solution to these problems, we
propose a two-level scheme which allows the
system to provide the necessary resources to
parallel applications, while accommodating
timesharing applications at the same time. Our
approach allows applications to participate
together with the operating system when
scheduling decisions are made. The scheme
proposes both an implementation and a parallel
execution model for fine-grained parallel
programming. We have implemented an

- experimental version of this scheme on top of
the MACH operating system running on a
shared memory multiprocessor.

The rest of this paper is organized as follows.
Section 2 introduces our proposed two-level
scheduling scheme, its structure and
implementation. Section 3 describes 4 parallel
execution model which can be used by parallel
applications that want to use our scheme for
obtaining sustained performance regardless of
the system load. Section 4 presents preliminary
results gathered from the implementation, while
section 5 discusses related work. Finally,
section 6 offers our conclusions.

2. A two-level scheduling scheme
2.1. Processor Partition

Our approach employs a processor partition
mechanism [Gupta91]. This mechanism permits
the system to be divided into any number of
partitions. A partition is a set of processors
which have been combined together. Each

partition is essentially a separate computing
resource which can be adapted to meet specific
application requirements. An application which
wants to control its processor resources creates a
partition where its tasks and threads will run.
The application also requests that a number of
processors be allocated to the partition. These
processors are then scheduled only within the
partition, making a controlled environment
suitable to the specific needs of the application.
Figure ‘1 illustrates the relationship between
partitions, tasks, threads, and processors.

Pprocessor partition

AN

tagk

physical processors

Figure 1.

Relationship between processor partition,
physical processors, tasks, and threads.

When the system is initialized, a default
partition containing all processors is created. All
tasks and threads, including system daemons,
and timesharing applications run in this default
partition. This default partition is guaranteed to
have at least one processor assigned to it at all
times. This assures that applications which do
not explicitty control their processor
requirements will not suffer processor starvation
due to lack of processor resources.

We choose MACH as the base operating system
to implement our processor partition strategy.
MACH is a distributed multiprocessor operating

system . developed at Camegie Mellon
- University. The. MACH kemel itself only
implements basic services, processor scheduling
being one of them. The MACH processor
scheduler has provisions for both timesharing
scheduling and extensions to support processor
allocation. These -extensions are the basic
mechanisms to implement processor partitions.
In MACH terminology, the kemel supports
processor sets and processor objects. Processor
partitions are implemented using these objects.
For a more detailed explanation of the MACH
scheduler, and its processor allocation
extensions, refer to [Black90a].

2.2. Structure and Implementation

Our scheme implements a two-level scheduler.
In this class of schedulers [Gupta91], the high
level component implements the policies which
determine how processors are partitioned, or
divided, -among different applications.
Scheduling of threads within a partition is done
by the low level scheduling component in the
operating system. :

Figure 2 illustrates the components of the
scheme. The MACH kemel provides the basic
mechanisms for processor allocation. At the
high level, a central server implements the
policies conceming how processors are
allocated to competing partitions. This -server
manages a pool of available processors, and
implements the allocation policies by satisfying
requests from applications which want to
control their processor ~ requirements.
Applications interface with the server via a
runtime library. '

Our approach implements a semi-dynamic
allocation scheme. Traditionally, processor
allocation schemes are static or dynamic
[Zahbrjan90]. In static allocators, the number of
brocessors allocated to an application remains
constant during the entire application execution.
By contrast, in dynamic schemes, the number of
processors may actively vary during the
application execution. Thus, dynamic allocators

can better adjust to the changes in the sysiem
loads, although the cost incurred in reallocating
processors can nullify its advantages over static
schemes. To avoid this cost, our implementation
is basically static; however, an application using
our scheme can cooperate by letting the
processor allocator in the server know that the
application cannot make full use of its allocated
resources. At those times, and-only at those
times, the system might choose to reallocate
processors if the system conditions so demand.
This application participation is an important
aspect of our implementation. Unlike fully
dynamic schemes where the system alone makes
the decisions, we chose to have the application
participate because only the . application
understands its processor resource requirements
as they vary over time, and can evaluate the
performance tradeoffs.

partition

paraliel spplication

allocated processars

available processors

Figure 2. -

Components of our scheme
The central server implements the high level scheduling ‘pélicy by
allocating processors to applications while the kemel provides the
low levél scheduling.)

We .now describe the interactions between the

components of our scheme. Applications. which
want to control their processor resources invoke
functions in the runtime library. The runtime
library usually -makes requests for processors at
the beginning of execution. Once applications
no longer need the processor resources, they
again call the runtime library which invokes the
server to release the processors. The server will
then either place these processors-back to a pool
of available processors, or use them to satisfy
pending requests. ‘

An application may choose to tell the server that
it can not make full use of its allocated
processors. This gives a hint to the server that
this would be an appropriate time to take
processors away from this partition. The server
then may choose to assign the processors to a
different partition. It is important to note that
this is simply a hint; if there is no pending
request for processors by another partition, the
server will not take processors away, saving the
cost of reallocating processors.

3. Parallel Execution Model

In this section, we describe our parallel
execution model. This execution model can be
used by fine grained numerical ' parallel
applications that want to control their processor
resources. Our work focuses on providing a
construct which allows efficient loop
parallelization. We chose to concentrate on
efficient loop execution because numerical
programs spend most of their time executing
loops.

Our execution model is based on microthreads,
also commonly known as microtasks [Cray]
[Sequent]. Our implementation of microthreads
works as follows: :

1) the initial thread in the program creates a
number of helper threads, or microthreads.
These threads remain spinning, waiting for
the main thread to tell them to start
executing. The main thread receives a
handler which is used to control the
microthreads.

2) the initial thread then executes sequential
code, if any is available. When a parallel
block?, usually containing a loop of some
form, is reached, the main thread sets up the
block for parallel execution, and tell the
microthreads via the handler to go execute
the block. '

3) all microthreads, together with the main
thread ‘concurrently execute the parallel
block. All microthreads synchronize at the
end of the block via a barrier mechanism.

4) once all microthreads have synchronized, .
the call returns, and the microthreads will be
spinning again, waiting for the next parallel
block.

Our execution model introduces the concepts of
Jfree and bound microthreads. Free microthreads
run in the default partition, without. any
processor allocation control. Bound
microthreads always run on a processor partition
which the runtime environment creates on
behalf of the application. In the current
implementation, the number of bound
microthreads always matches the number of
physical processors assigned to the partition.
This provides sustained performance by
guaranteeing the allocation of necessary
Processor resources.

This parallel execution model, although simple,
can be very effective for numerical paratlel
programs which deal with large arrays of data.
The parallelism inherent in the data allows
efficient execution of multiple threads.

4. Performance results

In order to evaluate the effectiveness of our
scheme, we executed two parallel applications: a
matrix multiplication and a 2-dimensional FFT.
These applications were run under two
environme‘nts, One environment used bound
microthreads while the other, free microthreads.

The results are shown in figure 3. To evaluate
the affect of background loads on the the

2ablock of staterments which are executed in parallel

2D FFT + compilation background 2D FFT + computation background
50 50

40 1 401

301 30
20 20 +
10 T T * T v 10 T T T T T
0 2 4 6 8 0 2 4 6 8
background processes background threads
Matrix300 + compilation background Matrix300 + computation background
50 50
40 40 1
304 304
2 20
L
10 T T T 10 T T T T T T Y
0 2 4 6 8 0 2 4 6 8
background processes background threads
3Bc) (3d)

-[}- free microthreads (no partition)
gy~ bound microthreads (partition)

Figure 3.

Execution times in seconds are given in the vertical axis of each plot. The measured parallel applications are a
64x1024 2D FFT and a 300x300 matrix multiplication. Concurrently executing with the measured parallel
applications are two types of background loads: compilation and computation. The horizontal axis in the
compilation plots (3a and 3c) represent the number of concurrrently executing compilation processes. In the
computation plots (3b and 3d), the horizontal axis indicate the number of threads executing in the parallel
applicaton being run in the background.

performance of the measured parallel
applications, we generated two types of loads:

1) compilation load: this is an attempt to
introduce timesharing background loads by
running compilations, a common activity on
systems used for software development,

2) computation load: this load type illustrates
the system behavior when other
computational intensive parallel
applications are run at the same time as the
measured parallel application.

Our measurements were taken on our four
processor shared-memory prototype system. The
measured parallel applications always ran on
three microthreads. The results show:

+ as the number of processes or threads in the
background loads saturate the system
resources, the parallel application running
with free microthreads displays severe
performance degradation.

» the measured parallel application using our
scheme was not affected by the increase
system load, delivering sustained
performance with little degradation.

= computation intensive parallel loads had a
more severe impact than timesharing loads
on the performance of application running
with free microthreads.

Overall, parallel applications running with free
microthreads, ie. without a processor partition,
suffered severe performance degradation.
Execution times increased by a factor of two or
more when the number of background processes
or threads was six.

5. Related work

Several researchers have suggested using two-
level schedulers for shared memory
multiprocessors. Zahorjan & McCann in
[Zahorjan90] give an extensive comparison of
static and dynamic processor allocation
approaches. Although their work suggests
possible implementation schemes, their
evaluation is based on simulation, and actual

real system implementations are not presented.
Tucker & Gupta in [Tucker89] propose a
process control scheme for multiprogrammed
shared memory multiprocessors. Their approach
is similar to ours; the structure of the
components follows the same pattern of using a
centralized server which implements an
allocation policy. However, their
implementation was done entirely in user-level
without kemel support to perform processor
allocation. This results in the possibility of
uncontrolled processes using more resources
than what is assumed by their process control
scheme. This is one of the problems which our
scheme wants to avoid: varying timesharing
loads interfering with the performance of
parallel programs. Their description of future
work points that out, and they agree that kernel
support is necessary to enforce processor
allocation.

Using a global server to implement processor
allocation on top of the MACH kemel has been
implemented by Black [Black90b]. Unlike his
implementation, our server uses prioritized
requests and can allocate an optimum number of
processors without clients having to specify the
number of processors.

Microtasking, or microthreading has also been
proposed by, among others such as [Cray],
[Sequent] and [Doeppner87]. Our
implementation and interface closely resemble
Doeppner’s Brown Threads microthreads.
However, the difference in our implementation
is that our microthreads can be explicitly bound
to processors.

6. Conclusion and Future work

A large number of microprocessor based
shared-memory multiprocessors are available.
Taking advantage of the multiple processors to
achieve faster execution times requires
parallellizing the applications. A lot of the work
done by parallel programmers is experimental,
where the programmers want to measure the
effectiveness of their parallelization techniques.

Supporting - this type of activity requires an
environment which - delivers - consistent
performance, ‘despite of varying system loads.
The scheduling policies in these shared-memory
multiprocessors often fail to support this type of
environment to parallel programming. Instead of
relying on running: these applications - on
dedicated systems, we proposed a two-level
scheduling scheme.. This scheme -offers a
controlled environment to parallel applications
while accommodating timesharing loads at the
same time. Our performance ' measurements
gathered on this initial implementation ‘show
that, without this processor control scheme, the
performance can dramatically degrade as the
system load increases. We have measured the
affects of both computational and timesharing
types ‘of loads. As expected, the performance
degradation is higher when computational loads
are executed together with parallel applications.

Our work proposes a- semi-dynamic processor
allocation scheme. This makes the application
controlling its resources responsible for
cooperating with the system. There are still
some hard questions regarding this scheme
when looking from the timesharing side of the
system. We need to study the effects of this
policy on the total system throughput. We also
would like to conduct some profiling, ‘and
perhaps devise a set of tools which would
automatically place calls to allocate and release
processors. These . tools would take into
consmerauon the proﬁled data, and the cost to
allocate and release processors.

Acknowledgments

We would like to thank Vu Le Phan for his
assistance and valuable comments on the
presentation of this paper.

References

[Black90a] David L. Black. Scheduling and
Resource Management Techniques for
* Multiprocessors. Technical Report CMU-
CS-90-152, Camegie Mellon University,

- Pittsburgh, PA; 1990.

[Black90b] Dav1dL Black. Schedulmg Support
for: Concurrency and - Parallelism in the
MACH Operating System. /EEE. Computer,
23(5) pages 35-43, May 1990

[Cray] Cray- Technical Manual. CRAY Y-MP
and CRAY X-MP Multitasking
Programmer’s Manual - SR0222E Cray
Research Inc 1988

[Doeppner87] Thomas W. Doeppner, IJr.
Threads: A System' for the Support of
Concurrent Programming. Technical Report
CS$-87-11, Brown University, June 1987.

[Gupta91] Anoop Gupta, Andrew Tucker, and
Shigeru Urushibara. The Impact of
Operating System Scheduling Policies and
Synchronization Methods on the
Performance of Parallel Applications. In
Proceedings of SIGMETRICS ’91, pages

| 120-132, 1991,

[Sequént] Sequent Technical Publications.
Guide to Parallel Programming on Sequent
Computer Systems. Prentice Hall, New
Jersey, 1985.

[Tucker89] Andrew Tucker and Anoop Gupta.
Process Control and Scheduling Issues for
Multiprogrammed Shared-memory
Multiprocessors. In Proceedings of the 12th
ACM Symposium -on Operating Systems
Principles, pages 159-166, 1989.

[Zahorjan90] John Zahorjan and Cathy
McCann. Processor Scheduling in Shared
Memory Multiprocessors. In Proceedings
of SIGMETRICS ’90, pages 214-225, 1990.

