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Abstract

This paper proposes a virtual memory management
system suitable for interactive continuous media applica-
tions. Our virtual memory management system enables
continuous media applications to reserve physical mem-
ory for allocating pages as soon as possible when the ap-
plications require the pages. The system implicitly and
incrementally allocates and wires pages used for process-
ing timing critical media data. Also, our system supports
applications that adapt the amount of wired memory to
the memory usages of other continuous media applica-
tions.

1 Introduction

Operating system supports for continuous media ap-
plications are one of the most exciting topics in operat-
ing system researches. Continuous media applications
such as multimedia conference systems and video on-
demand systems that play audio and video data must
satisfy their timing constraint requirements. Real-time
techniques are attractive since the correctness of contin-
uous media processing depends on whether timing con-
straints of respective media data are satisfied or not. Ac-
tually, some researchers have reported the effectiveness
of the real-time technologies for supporting continuous
media applications(2, 4, 7, 9, 12]. :

Continuous media applications usually contain some
codes for interacting with users5, 11]. We call the ap-
plications interactive continuous medie applications. For
example, movie player applications have several buttons
such as play, stop, and pause for providing VCR capabil-
ity. Most interactive continuous media applications adopt
standard user interface toolkit libraries such as the Motif
toolkit. Usually, such libraries make the code and data
segments of the applications very big, and they cause new
serious problems for supporting continuous media appli-
cations.

In traditional operating systems, demand paging
makes it possible to execute such large applications by
storing a large part of pages in secondary storages. How-
ever, continuous media applications should avoid page

faults for ensuring timing constraints of continuous media
since it takes a long time to swap pages between phys-
ical memory and secondary storages, and this makes it
difficult to satisfy timing constraints of continuous me-
dia. Therefore, some operating systems provide memory
wiring primitives that enable applications to wire pages
in physical memory by spemfymg the range of virtual ad-

- dress spaces explicitly.

However, the traditional wiring primitives cause the
following two serious problems that are not preferable
for general operating systems.

e Memory wiring primitives are not secure since ma-
licious applications may monopolize physical mem-
ory by wiring memory unlimitedly. Thus, the wiring
primitives should be called by only privileged users.

o It is difficult to predict which pages are used for pro-
cessing media data since memory wiring primitives
require to specify the range of virtual address spaces
explicitly for wiring pages.

This paper proposes a virtual memory management
system for interactive continuous media applications.
Our virtual memory management system enables contin-
uous media applications to reserve physical memory for
allocating pages as soon as possible when the application
requires pages. The system implicitly and incrementally
allocates and wires pages used for processing timing crit-
ical media data. The approach solves the above problems
caused in traditional memory wiring primitives. Also, we
implemented a prototype system, and show the effective-
ness of our approach in this paper.

2 Issues of Virtual Memory Management
for Interactive Continuous Media Ap-
plications

2.1 Memory Resource Reservation

Recently, several operating system supports adopting
real-time technologies are proposed for ensuring timing
constraints of continuous media applications. For exam-
ple, processor reservation systems reserve processor cycles



for continuous media applications[4, 7], and several net-
work systems that enable applications to reserve network
bandwidth have been developed{2]. Also, real-time syn-
chronization and IPC make the blocking time of threads
small, and the real-time server model is proposed for im-
proving the preemptability of servers[8].

However, these real-time resource management tech-
niques cannot ensure to satisfy timing constraints of con-
tinuous media if page faults occur. Thus, traditional op-
erating systems provide some primitives to wire pages in
physical memory. For example, plock(), mlock(), mlock-
all() are provided in the Unix[6]. The primitives are very
dangerous since there is no limit to wire pages in physical
memory, and physical memory may be monopolized by
an application. Thus, these primitives can be used from
only privileged users. For instance, database servers that
are started by only privileged users use the primitives to
wire buffer caches in physical memory.

Continuous media applications on Real-Time Mach
use memory wiring primitives for avoiding page faults
in continuous media applications. Vm_wire() is used to
wire pages of a specified range of an application’s vir-
tual address space. Also, task-wire_code() is used for
wiring code segments, and task_wire_data(} is used for
wiring data segments. For wiring all pages of applica-
tions, task_wire_future_data() may be used[1].

The primitives enable applications to avoid page
faults. However, operating systems cannot protect physi-
cal memory from malicious uses if the primitives are used
by usual application programmers freely. Thus, contin-
uous media applications require secure operating system
primitives for avoiding page faults in continuous media
applications.

2.2 Memory Management for Interactive
Continuous Media Applications

One of hot topics in operating system researches is
building extensible operating system kernels for cus-
tomizing physical resource managements using applica-
tions specific policies. Actually, several systems imple-
mented for supporting application specific memory man-
agement policies. However, a virtual memory manage-
ment policy suitable for interactive continuous media ap-
plications has not been reported yet. In this section, we
analyze how memory is used in interactive applications
in detail, and describe which virtual memory supports
are required for supporting interactive continuous media
applications.

Figure 1 shows a typical virtual address space layout
for a continuous media application. Let us assume that
the application contains two threads so that two stack
segments are contained in the address space. The code
segment is shared by the two threads, and the static data
segment is also shared by the threads, and contains global
variables used in the application. Lastly, the dynamic
data segments are allocated when a new buffer is required.

The buffer is used for storing media data for removing

jitters as described in Section 2.1. . ’
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Figure 1: Address Space of Interactive Continuous Media
Applications

The dynamic data segments have different character-
istics from other memory segments. Programmers know
the exact size and position of the segments in the address
space since the dynamic segments are explicitly allocated
by the programmers. Thus, the size of the segments can
be explicitly increased or decreased by changing the qual-
ity of a media stream since the necessary sizes of the dy-
namic data segments can be exactly calculated from the
sizes of media elements. The issue will be described in
the next section in detail. In the section, we focus on
issues caused in a code segment. We omit issues in the
management of a static data segment and stack segments
since their managements are similar to the management
of the code segment.
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Figure 2: Layout of Code Segment

Figure 2 illustrates a memory layout of a code segment
of a typical interactive continuous media application. The
application contains an initialization code, a user inter-
face management code, a video processing code, and an
audio processing code. The execution of the initializa-
tion code and the user interface management code is not
timing critical. Therefore, the number of wired pages is
decreased dramatically by wiring only pages containing
the video processing code and the audio processing code
in physical memory while processing media data, since
the video processing code and the audio processing code




are not usually bigger than the initialization code and the
user interface management code.

However, it is difficult to know which pages contain
procedures called by timing critical threads since a linker
that is available on a traditional workstation does not
combine the procedures by taking into account the rela-
tionship between the procedures, and page faults cannot
be controlled without knowing which pages containing
the procedures called by timing critical threads in tradi-
tional operating systems.

3 Memory Reservation System for Con-
tinuous Media Applications

3.1 Design Goals

The following design goals were considered in the de-
sign of our virtual memory management system.

o The virtual memory management system should be
simple and easily implemented.

The virtual memory management system should be
secure. This means that applications cannot wire
pages in physical memory without reserving pages
that will be wired for applications.

The system should enable applications to negotiate
the amount of wired pages in physical memory.

e The virtual memory management system avoids
page faults even if the virtual address of code and
data segments used for processing media data are
not known in advance®.

The first goal can be realized by reducing the modifi-
cation of an existing virtual memory system to the mini-
mum. The strategy makes our virtual memory system to
port to other operating systems easy.

Our virtual memory management system is divided
into two parts. The first part is a memory reservation sys-
tem and the second part is an incremental memory wiring
system. The second and third goals can be achieved by
the memory reservation system, and the fourth goal can
be realized by the incremental memory wiring system. In
the following sections, we describe these two systems in
detail. :

3.2 Memory Reservation System

The memory reservation system enables continuous
media applications to reserve the number of wired pages
in physical memory. There are two functionalities in the
memory reservation system. The first functionality re-
serves the necessary number of wired pages by applica-
tions. When pages are reserved for an applications, a

1Our approach presented in this paper does not avoid all page
faults since it requires one page fault during startup for each page.

kernel fetches the specified number of pages from a free
page list, and inserted in the reserved page pool for the
application. If enough pages are not found in the free list,
physical pages allocated for non timing-critical applica-
tions are reclaimed, and inserted in the reserved page
pool of the continuous media application. If the pages
are dirty, the contents of pages may be written back in
secondary storages before inserting them in the reserved
page pool.

The next functionality provided by the memory reser-
vation system is a notification mechanism. If the number
of wired pages in physical memory exceeds the number of
reserved pages, a notification message is delivered to an
application. When the application receives the notifica-
tion message, it decreases the number of wired pages or
increases the number of reserved pages. In this case, the
pages may be allocated for more important continuous
media applications. -

The advantage of our memory reservation system is
that applications can wire pages in physical memory in
a secure way since the applications are not allowed to
wire more pages than it reserves. When the application
calls a memory reservation request, the request may be
rejected if the total number of reserved pages exceeds a
threshold. In this case, the application must issue the
reservation request later after other applications release
their reserved pages. . ‘

As described in Section 2.1, the virtual address space
of a continuous media application contains several seg-
ments: code, static data, dynamic data, and stack seg-
ments. It is not easy to decrease the number of wired
pages of these segments since it is difficult to predict
which pages will be accessed in future for processing
media data. However, dynamic data segments may
be decreased by reducing the quality of media by us-
ing media scaling techniques and dynamic QOS control
schemes(3, 9, 10], and the size of a buffer in a dynamic
data segment can be decreased. For example, decreasing
the rate of a media stream or the size of respective video
frames reduces the total amount of data that must be
stored in the buffer in every period.

Figure 3 illustrates how applications change the size of
dynamic data segments. Let us assume that application
1 causes a page fault, but there is no reserved free page in
the reserved page pool for the application. In this case,
a message notifying that there is no reserved page in the
pool is delivered to the application. Then, the application
chariges the quality of media, and reduces the size of its
dynamic data segment. On the other hand, application
2 calls a memory reservation request for increasing the
number of reserved pages for the application periodically.
If the reservation request is succeeded, the application
may increase the size of its dynamic data segment, and
may upgrade the quality of media.

3.3 Incremental Memory Wiring

Our memory reservation system allows applications
not to specify which pages should be wired explicitly in
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Figure 3: Renegotiation of Wired Pages between Appli-
cations

physical memory. The requirement is achieved by wiring
pages when a page fault occurs. This means that a page
is not swapped out to secondary storages once the page
is fetched from a file in which a code and a data segments
are contained. Qur memory reservation system requires
to specify whether threads are used for processing media
data or not. The threads processing media data are called
real-time threads, and the remaining threads are called
non real-time threads. The separation makes the num-
ber of wired pages small, and allows programmers not to
specify pages that should be wired in physical memory
since only pages that are actually touched by real-time
threads are wired.

Our memory reservation system makes all pages of an
application in physical memory invalid before starting in-
cremental memory wiring, since respective pages touched
by real-time threads should cause page faults for wiring
pages in physical memory. On the other hand, a page
fault caused by non real-time threads is processed in a
traditional way. The pages may be reclaimed in order to
allocate them for other applications. However, a page is
allocated from a reserved page pool for a continuous me-
dia application, and the page is wired in physical memory
when a page fault is caused by a real-time thread.

The strategy ensures that less pages are wired in phys-
ical memory than the traditional memory wiring primi-
tives wire since real-time threads do not require to wire
the entire memory segments of applications. ‘

4 Prototype Implementation

We implemented a prototype memory reservation sys-
tem described in the previous section on Real-Time
Mach. This section presents how Real-Time Mach kernel
is modified for supporting our memory reservation sys-
tem. Also, we describe additional system primitives for
the memory reservation system, and a sample program

using the memory reservation system.
4.1 Structure

Figure 4 shows the structure of our prototype imple-
mentation. An application sends a request to the admis-
sion server for reserving pages for the application. The
admission server determines whether the request can be
accepted or rejected. When the request is accepted, the
admission server calls a memory reservation primitive to
a kernel.

Application 2

Application 1 ’
. ‘ Admission
Ssrver

Real-Time Mach Kernel

Figure 4: Structure of Prototype Implementation

In the current implementation, a traditional free list
and reserved page pools are combined in a unique page
list for making the implementation simple. We call the
page list free page list in this paper. When the memory
reservation primitive is called, the memory reservation
system checks the number of pages in the free page list. In
the prototype, the reserved pages are classified into wired
pages and reserved free pages, and the reserved free pages
are kept in the free page list. Thus, the kernel ensures
that the number of pages in the free list is more than the
number of reserved free pages. If the number of pages in
the free list is equal to the number of reserved free pages,
pages allocated for other non real-time applications are
reclaimed and cleaned until the number of pages in the
free list exceeds the total number of reserved free pages
required for respective continuous media applications.

When a real-time thread causes a page fault, the in-
cremental memory wiring system allocates a reserved free
page from the free page list and wires it in physical mem-
ory. Also, the incremental memory wiring system moni-
tors the number of the pages for respective tasks in phys-
ical memory, and if the number of wired pages exceeds
the number of reserved pages for the task, it delivers a
notification message to the task.

In Real-Time Mach, many OS functionalities are im-
plemented as OS servers, then it is important how to
manage page faults in the servers since timing constraints
of media data may be violated due to the server’s page
fault. In our prototype, we assume that servers receive
requests from application tasks using RT-IPC[8]. When
a server receives a request using RT-IPC, the attribute of




an application thread is inherited by the thread process-
ing the request in the server®. Thus, if a thread sending
a request from an application task is a real-time thread,
the thread receiving the request also becomes a real-time
thread, and pages touched by the thread are wired in
physical memory.

Actually, X server on Real-Time Mach receives re-
quests from an application using RT-IPC. When video
frames are displayed by X server, the code and data seg-
ments used for displaying the video frames are wired in
physical memory for avoid extra page faults.

4.2 Interface

The following three primitives are added in Real-Time
Mach for supporting our memory reservation system.

ret = vm reserve(priv_port, task, reserve_size,
notify_port, exceed_policy)

ret = vm_thread_wire_policy(thread, policy)

ret = memory_exceed_wait(notify_port)

Vm_reserve() is used to reserve pages for a task speci-
fied in arguments. The first argument priv_port allows

the primitives to be used by the admission server which -

is one of privileged applications. Reserve_size specifies
the number of pages reserving for an applications. No-
tify_port is a port for receiving messages to notify when
a real-time thread causes a page fault, but there is no
reserved pages for the application. Ezceed_policy speci-
fies policies when a page is wired when the number of
wired pages exceeds the number of reserved pages. Cur-
rently, two policies are supported. The first policy is
WIRE.WHEN_EXCEED. The policy continues to wire
pages in physical memory even when the number of wired
pages is more than the number of reserved pages. The
second policy is DONT_WIRE_WHEN_EXCEED. In this
case, a page is not wired in physical memory under the
policy, when the number of wired page exceeds the num-
ber of reserved pages.

The second primitive is wvm_thread_wire_policy().
The primitive specifies a memory wiring policy as
an argument. Currently, there are three poli-

cies: WIRE_POLICY.NONE, WIRE_ POLICY_ALL,

WIRE_POLICY_SCHED. ‘
WIRE_POLICY_NONE makes all threads of a contin-

uous media application

non real-time threads, and WIRE_POLICY_ALL makes
all threads of a continuous media application real-time
threads. WIRE_POLICY_.SCHED determines whether
threads are real-time threads or non real-time threads
according to the current scheduling policy. For example,
a real-time thread does not wire touched pages in phys-
ical memory under the round-robin policy, and all peri-
odic threads wires touched pages undér the rate mono-
tonic scheduling policy. Also, threads with real-time pri-
orities are real-time threads, and other threads are non

1The attribute is cleared when the thread waits for other re-
quests from clients.

real-time threads under the fixed priority + timeshare
scheduling[13]. Since the kernel changes a memory wiring
strategy according to the scheduling policies, the same
program can be used under different scheduling policies
without modifying programs.

The third primitive is memory_ezceed_wait(). The
primitive waits for a notification message to a port spec-
ified as an argument. The primitive is used to wait for a
notification message from the kernel when the number of
wired pages exceeds the number of reserved pages.

5 Evaluation

In this section, we show the evaluation of our proto-
type implementation using QtPlay movie player[12]. The
evaluation used Gateway2000/P5-66 which has a 66MHz
Intel Pentium processor, 16 MB of memory and 1 GB

SCSI disk.
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Figure 5: Movie Player

Figure 5 shows the structure of QtPlay movie player.
QtPlay retrieves video frames and audio samples from a
QuickTime file stored in Unix file system using CRAS[13]
which is a continuous media storage server on Real-Time
Mach. Threads in QtPlay are classified into three cate-
gories. A thread belonging in the first category executes
an initialization code and enters in an event loop for pro-
cessing input events such as mouse and keyboard input
events from X server. : i

The two threads belonging in the second category pro-
cess an audio stream. One thread fetches audio samples
from a storage server, and another thread sends them
to the audio server. The third category contains three
threads for processing a video stream. The first thread
retrieves video frames from the storage server, the second
thread decompresses the video frames, and the last and
third thread sends them to X server.

In QtPlay, threads in the second and third categories
that process video frames and audio samples are real-time

. threads. Thus, memory pages accessed by the threads

are wired in physical memory. Also, when the threads
send requests to the X server and the audio server, pages
touched by the threads receiving the requests in the
servers are also wired. In the evaluation described in the



section, stack segments are explicitly wired when threads
are created since Real-Time Mach allocates stack seg-
ments and wires them in physical memory inside a prim-
itive initializing a thread attribute.

5.1 The Number of Wired Pages

Our memory reservation system wires only pages ac-
cessed by threads processing media data in physical mem-
ory. On the other hand, in traditional approaches, all
pages in code, data, stack segments are wired for avoiding
page faults. In this section, we show how our approach
is effective and reduces the number of wired pages.

Table 1 shows the sizes of the respective memory seg-
ments and the entire address space of QtPlay and X
server. As shown in the table, the size of QtPlay is very
big since QtPlay links the Motif toolkit library that con-
tains a.very large code and data segment. However, most
of these segments are not touched by continuous media
applications.

6 Conclusion

In this paper, we proposed a virtual memory manage-
ment for interactive continuous media applications. Our
approach solves several problems in traditional virtual
memory management systems when interactive continu-
ous media applications are executed.

In our approach, the necessary number of physical
pages is reserved before starting to process timing crit-
ical continuous media streams, and it is automatically
determined which pages are touched by threads process-
ing media data. The approach wires pages in physical
memory, and it does not require to specify the range of
the address space for wiring pages since pages are wired
in physical memory when they are touched for the first
time.
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