FEFEN SR
IPSJ SIG Technical Report

W

2008 —0OS—107
2008,71,731

Analysis of Network I/O Performance in KVM

RyoTa OzakI' and AKIHIRO NAKAO f1

Recent virtualization technologies combine para-virtualization and hardware-assisted vir-
tualization techniques as so-called hybrid-virtualization. Para-virtualization and hardware-
assisted virtualization have performance issues in different aspects, respectively, but com-
bined use of both sometimes compensates for the issues of each, thus, potentially gains bet-
ter performance. Although KVM acquires reasonable I/O performance through this hybrid-
virtualization approach, we believe its 1/O performance has room for improvement. To this
end, we investigate how KVM handles network 1/O, report its recent improvement with a
para-virtualized network driver, and finally describe a perspective toward further improve-

ment based on the investigation.

1. Introduction

x86 virtualization techniques have recently
evolved in two ways—para-virtualization and
hardware-assisted virtualization—to mitigate
the performance overhead incurred by vir-
tualizing physical resources. For example,
Xen achieves its high performance by para-
virtualization—a technique to modify guest op-
erating systems (OS) to suit their hypervisor,
while several processor vendors enhanced their
processors to assist virtualization. This pro-
cessor extension facilitates full-virtualization—
virtualization that allows a guest OS to run
unmodified—with reasonable performance.

Both of these approaches, however, still
leave room for improvement in performance,
thus, a hybrid approach combining the above
two virtualization techniques, so-called hybrid-
virtualization®, is proposed to gain more per-
formance.

KVM® is one of the virtual machine mon-
itor (VMM)—a thin software layer to enable
virtualization—implementations that adopt the
hybrid-virtualization. KVM is designed as a
host-based VMM configuration that virtual ma~
chines (VMs) are deployed on an ordinary OS
(Fig. 1).

One of the most important pros of a host-
based VMM technique is that it utilizes the
host OS’s capabilities, e.g., scheduling, mem-
ory management and power management, so

+ New Generation Network Research Center, National
Institute of Information and Communications Tech-
nology

t1 Interfaculty Initiative in Information Studies, Grad-
uate School of Interdisciplinary Information Studies,
The University of Tokyo

it can leverage the most recent developments
of the host OS that include various hardware
supports, e.g., for new architectures and for
new devices, as well as software developments,
e.g., for resource allocation/management and
scheduling. For example, it could achieve good
scalability in terms of the number of guest OSes
that may run with reasonable performance if
guests’ memories are swappable through the
host OS’s virtual memory management.

KVM has been originally designed to pro-
vide full-virtualization using hardware assis-
tance. But, unfortunately, performance of the
guest OSes in KVM’s initial implementation
turns out not great, especially under I/O in-
tensive operations. Although, after the recent
development, especially with the introduction
of hybrid-virtualization, KVM achieves reason-
able I/O performance, we yet believe its 1/O
performance still leaves room for further im-
provement, thus, set our goal to identify the
bottlenecks in its network I/0O and investigate
how we can resolve them.

To this end, this paper reports our recent
investigations into KVM’s network I/O per-
formance, both in full-virtualized configuration
and in para-virtualized one, and our attempts
to reveal how KVM handles network I/0. Fur-
thermore, we describe a perspective toward fur-
ther improvement based on the investigations.

The rest of this paper is organized as follows.
Section 2 describes virtualization technologies
in x86 architectures. Section 3 and Section
4 describe an overview of KVM and its para-
virtualization, respectively. Section 5 and Sec-
tion 6 report evaluation and analysis of network
I/O processing in KVM, respectively. Section
7 discusses further improvement of KVM and

— 111 =

(15)



eI S
Applications
- —
Guest 05

Guest 08

Guest world

J ;\pplicalinns“ QEMU

| Host world

” QEMU

|i'h!'5ifiil MﬂthinE| Virtualization Extensions ] |

Fig.1 KVM configuration.

Section 8 concludes the paper.

2. Recent x86 Virtualization Evolu-
tions

Since early generations of x86 processors
lacked hardware support to facilitate virtualiza-
tion, former VMMs used to compensate for the
lack through software techniques, such as dy-
namic translation® and para-virtualization®.
Nowadays, most x86 processors have enabled
hardware support for virtualization):”) so that
VM developers can implement VMs in a simpler
and more efficient manner than ever.

2.1 Para-virtualization

Para-virtualization aims at minimizing over-
head in virtualization through cooperation
between guest OSes and a VMM. Para-
virtualization often enables a guest OS to per-
form comparable to an OS running on a bare
machine, e.g., Xen®), one of the VMM imple-
mentations with para-virtualization, performs
as well as a native Linux in some cases.

In order to achieve the cooperation between
guest OSes and a VMM, guest OSes are often
modified to run on the VMM, for example, priv-
ileged CPU instructions, memory and time op-
erations, etc. are modified in the guest OSes.
Hypercall APIs are provided for the modified
guest OSes to use VMM functions and to com-
municate with the other guest OSes. The hy-
percalls are similar to system calls for applica-
tions in an ordinary OS.

One of the cooperations between a guest OS
and a VMM is reduction of redundant process-
ing in the VMM and the guest OS. For example,
the VMM eliminates timer-tick interrupts while
the guest OS is idling. For another example,
the guest OS can assemble multiple hardware
accesses into one hypercall.

A caveat, however, is that para-virtualization
sometimes introduces unwanted overhead, such

VMX operations
root non-root
User Mode Guest Mode

ring 3 | QEMU B

i asiaas o L) Gues o
Kernel Mode L

‘ Host Linux Kernel
Fig.2 Execution modes in KVM.

privilege levels in x86

as a redundant path in system calls. In Xen, a
guest kernel run in ring I in the x86 architec-
ture, so that system calls issued by guest appli-
cations are first handled in Xen running in ring
0. As a result, Xen cannot implement system
calls via fast-path, i.e., the system calls cause
transitions only between the guest applications
and the guest kernel.

As an aside, Xen is originally designed to pro-
vide para-virtualized VMs, but currently it also
provides full-virtualized VMs using PC emula-~
tor and hardware assistance described in the
next section. Furthermore, Xen now introduces
hybrid-virtualization technique® as explained
in the following section.

2.2 Hardware-assisted virtualization

Several x86 processor vendors have recently
enhanced their processors so that VM devel-
opers may easily fully-virtualize guest OSes
with reasonable performance. Intel VT-x”) and
AMD-VY are the most popular implementa-
tions of such a hardware assistance for x86 vir-
tualization. Since they are similar in their ca-
pabilities to each other, in this paper, we dis-
cuss Intel VT-x as a representative of the x86
hardware-assisted virtualization technologies.

Intel VT-x provides the following capabilities:

e A new operation for guest OSes

VT-x provides two additional operations,
VMX root and non-root operations, orthog-
onal to traditional privilege levels in x86
architectures. VMMs, such as a host OS or
a hypervisor, run in the root operation and
guest OSes run in the non-root operation.

o Hardware switch between the VMX opera-

tions

A state transition from a root operation
mode to a non-root one is called a VM en-
try, and the reverse is called a VM exit.
While a VM entry is explicitly called by

— 112 —



a VMM, a VM exit is triggered by special
events, e.g., privileged instructions, inter-
rupts and exceptions, in the non-root oper-
ation mode.

e Exit reason reporting

After the VM exit, CPU returns back to
the VMM. The VMM may examine the exit
reason from CPU and perform some appro-
priate actions along the reason.

Since the virtualization extension only pro-
vides CPU virtualization, VMMs still need to
virtualize MMU and peripheral devices. Sev-
eral implementations of full-virtualization with
hardware assistance utilizes a PC emulator,
e.g., QEMU?,

2.3 Hybrid-virtualization

Hybrid-virtualization employs the above two
techniques, para-virtualization and hardware-
assisted full-virtualization. This hybrid ap-
proach yields both high-performance and sim-
plicity of implementation with a few modifica-
tions to guest OSes, since each of the two tech-
niques may compensate for some of the disad-
vantages of each other.

For instance, difficulty in implementing fast
system-calls in para-virtualization would be
mitigated with hardware assistance, since with
the presence of hardware assistance, system
calls could be issued by guest OSes through
fast paths without VMM’s intervention. For
another example, support for a variety of
peripheral devices in hardware-assisted full-
virtualization would be unnecessary in com-
bination with para-virtualization, since guest
OSes might only need to para-virtualize the de-
vices in question.

VMM technologies that have recently emerged
with this hybrid virtualization technique in-
clude Xen (recent versions) and KVM®.

3. An Overview of KVM

KVM has originally been designed to provide
full-virtualized VMs combining with a PC em-
ulator and with hardware assistance. KVM it-
self only virtualizes guest memories and IRQs,
while the other peripheral components to be
virtualized are taken care of by a PC emulator.

3.1 KVM components

KVM is a loadable kernel module extension
to a Linux kernel. It manages VM instances,
virtual CPUs and virtual IRQs. It provides a
character device driver interface, /dev/kvm, to
the user space, so that user processes may con-
trol VMs, virtual CPUs and IRQs in KVM us-

User mode Kernel mode Guest mode
TOEMLUY KM 3

b ; Cuest

issue joatl __5
[KVM_RUN) H |

cll VM entry
VMRESUME i
execule
natively

handle

VM exit = \,-"i\idil‘;\"ll

110 eits ewcept for
1ROs ate not handled

in current KVM

Fig.3 A guest execution loop.

ing ioctl system call or a 1ibkvm library.
KVM provides the following APIs:
e create/destroy VMs,
e mmap virtual memories of VMs,
e read/write registers of virtual CPUs and
IRQs (IOAPIC, Local APIC and PIC), and

e inject interrupts to virtual CPUs.

Current KVM utilizes QEMU? as a PC emu-
lator in the user space (Fig. 1). QEMU provides
most emulations required for full-virtualization,
for example, PCI bus and peripheral device em-
ulations, their I/O handling, and interrupt in-
jections.

3.2 Execution modes

KVM provides a new execution mode, guest
mode, in addition to user mode and kernel mode
in ordinary OSes. KVM, QEMU and guest
OSes run in the kernel mode, the user mode,
and the guest mode, respectively (Fig. 2). The
guest mode altogether is equivalent to the non-
root operation in Intel VT-x, namely, guest ker-
nels run in ring 0 and non-root operation, and
guest user processes runs in ring 3 and non-root
operation.

Figure 3 shows the execution path of a guest
kernel. The path indicates that a mode transi-
tion between a guest and QEMU needs to pass
through KVM so that virtualization processing
in QEMU always incurs more overhead than
that in KVM.

3.3 Guest memory management

KVM allows a guest to have its own individ-
val pseudo physical memory. A guest OS can
manage its memory in a traditional manner,
while KVM actually intercepts guest’s opera-
tions for memory management such as instruc-

— 113 =



tions on CR3 register and on page tables, etc.
KVM manages a shadow copy of the guest’s
page table, and the shadow copy actually has
an effect on MMU.

KVM provides the mmap system call to ex-
pose guest physical memory to QEMU. QEMU
maps the entire guest physical memory to its
own virtual memory space when the guest boots
up*. QEMU may conduct DMA emulations
and optimizations of guest memory accesses,
e.g., para-virtualized device drivers may utilize
this interface.

3.4 Network processing

KVM implements fully-virtualized network
drivers via QEMU. QEMU provides emulated
network interface cards (NICs) and a virtual
LAN to serve network [/O requests from guest
OSes.

An I/0O request in a guest OS causes a VM
exit and the exit is initially handled by KVM.
KVM then passes a request to QEMU with a
callback function™ and QEMU processes the
request.

DMA data transfer is performed via the
mapped memory between QEMU and a guest
OS described in Section 3.3. The address of the
DMA memory area of a guest OS device will be
handed to QEMU via VM exit at its boot time.

When QEMU handles an I/O request for
the transfer from/to the DMA memory area,
QEMU copies data to/from its own buffer and
then injects an interrupt for the DMA comple-
tion into the guest using KVM’s APL

4. Para-Virtualization in K<VM

KVM only para-virtualizes a block device and
a network device. Para-virtualization in KVM
requires only the installation of driver modules
so that guest kernels may not need to be re-
compiled.

4.1 Para-virtualized network drivers

KVM has several versions of prototype im-
plementations of para-virtualized (PV) network
drivers, because the implementation of the PV
drivers has been under work-in-progress and
they are not officially included in the KVM
main development tree yet. Although each PV
driver is implemented with a different goal, the

* KVM limits a guest physical memory up to 2.047
Ghbytes on 32-bit hosts to enable QEMU to map the
entire guest physical memory into its virtual mem-
ory space.

#% The callback function is implemented as just a re-
turn from ioctl.

Guest kernel
I eth0 I | ethl |
10.0.1.2 | |192168.55.2
I rild139 driver | | PV network llrnrr—|
1 1
] |
1 1
I 8138 virual X1C | | PV network device
nic |nic
vlan0 | vanl
QEMU
ap tap
10.0.1.1 192.168.55.1
! vnetd l | wnetl —|
Host kemel

Fig.4 Network driver configuration and VLAN
configuration in QEMU.

architectures of these PV drivers are essentially
the same.

A PV network driver has a corresponding PV
network device in QEMU (Fig. 4). The PV de-
vice uses mapped memory for exchanging data
with the PV driver. Since the PV network
driver and the PV device cooperate with each
other, they can eliminate unnecessary I/O port
accesses and switches between a guest OS and
a VMM in transferring data in bulk.

4.2 Hypercalls

KVM has a capability of hypercalls described
in Section 2.1 as well as Xen. KVM has two
types of hypercalls; one is a user hypercall han-
dled in QEMU, and the other is a kernel hyper-
call handled in KVM.

An early implementation of the para-
virtualized network driver, which is in kvm-36,
uses a user hypercall for a notification from
a PV network driver to a PV network de-
vice, while a recent implementation of the para-
virtualized network driver, which is in kvm-51,
uses an I/O port access for the notification in-
stead of a hypercall.

5. Evaluation

5.1 Experiment setup

We conduct several experiments to evaluate
KVM network I/O performance with the two
versions of KVM, kvm-36 and kvm-51 that im-
plement prototype PV drivers®,

Table 1 shows the host configuration used
in the experiment. We use iperf-2.0.2-3.fc7
and ping commands in iputils-20070202-3.fc7

#*%% Note that the PV driver that is used with kvm-51

is not actually implemented for kvin-51. We have
imported a patch set of the PV driver to kvin-51,
because later versions of KVM do not work in our
environment due to a bug.

— 114 -



Table 1 Experiment Setup
CPU

Model Intel Pentium D 930 (SL95X)
# of cores 2
Clock 3.0 GHz
FSB 800 MHz
L1 data cache 16 KB
1.2 16 KB (per core)
Extensions Virtualization, EM64T, SpeedStep

Main memory
Capacity | 4,096 MB

OS
Host Fedora 7 (linux-2.6.23-rc3)
Guest (kvm-36) | Fedora 7 (linux-2.6.23-rc3)
Guest (kvmn-51) | Fedora 7 (linux-2.6.24-rc3)

Table 2 Cost of Hypercalls

Kernel hypercall | 3.93 usec.
User hypercall | 6.76 usec.

in our evaluation. We deploy iperf and ping
both in the guest OS and in the host OS. The
guest OS and the host OS communicates with
each other over the VLAN in QEMU as illus-
trated in Figure 4. Note, throughout these
evaluations, the SpeedStep feature* has been
turned off.

5.2 Cost of hypercalls

This section evaluates the cost of two hyper-
calls in KVM. We implement a null(empty) hy-
percall handler both in QEMU and in KVM,
respectively, and deploy a benchmark program
in a guest kernel as a kernel module. The
module issues hypercalls to QEMU and KVM
from the guest kernel. A kernel hypercall runs
through (i) guest kernel (ii) KVM (iil) guest
kernel, while a user hypercall runs through (i)
guest kernel (ii) KVM (iii) QEMU (iv) KVM
(v) guest kernel.

Table 2 shows the cost of the hypercalls is at-
tributed to the round trip time (RTT) between
the guest kernel and KVM/QEMU. Some func-
tions of KVM are implemented in a host ker-
nel (KVM) while others are in a user process
(QEMU). Those implemented in QEMU will
suffer from the extra overhead represented by
the difference in RTTs shown above, compared
to those implemented in KVM.

5.3 TCP bandwidth

This section evaluates TCP bandwidth with
various TCP window sizes. We perform two
iperf runs: sending packets from an iperf

* The SpeedStep is a function to change its clock
speed dynamically. In Linux, the speed is changed
by a daemon process that periodically checks CPU
loads.

PV TX (kvm-36) —— ']
pv RX (kvm-36) =--%---

Bandwidth (Mbps)

& 8 8 8 B8 23

T T — T T
Ty

1 1 L 1

[N]
S
T
L

L 1 L L : 1 L
0 5 10 15 20 25 30 35 40
TCP window size (KB)

Fig.5 TCP window size v.s. bandwidth (pv in kvm-
36).

o

wmol T T 8139 TX (kvm-36) 1—— ]
118139 RX (kvm-36) ---—

120 b _

@ 100 | ]
8
g

S eof _
S

2 e} i

s —
[s4]

2 d

20 J

o e

15 20 25 30 35 40
TCP window size (KB)
Fig.6 TCP window size v.s. bandwidth (rt18139 in
kvm-36).

ov TX (kvm-51) ——— |
pv RX (kvm-51) +--x---

>
=]
T

]
=]
T
1

o
=3
T
1

o
o
T

60 |

Bandwidth (Mbps)

a0t

20

0 5 10 15 20 25 30 35 40
TCP window size (KB)

Fig.7 TCP window size v.s. bandwidth (pv in kvm-
51).

client on a host OS to an iperf server on a
guest OS (RX), and vice versa (TX). We eval-
uate four drivers; RealTek RTL-8139 ethernet
driver (rt18139) and a para-virtualized net-
work driver (pv) in kvm-36, and those in kvm-
51.

— 115 —



18139 TX (kvin-51) -+ ']

10 - 118139 RX (kvm-51} =--%--=
120 F B
g 100 - 4
s x
z o 1, g
H A
IS S Sy ) 1
& PENTA L
aor R S
20 B
0 ) L L . L 5 . L
0 5 10 15 20 25 30 35 40
TCP window size (KB)
Fig.8 TCP window size v.s. bandwidth (rt18139 in
kvm-51).
— T T —7 T T T
pv TX (kvm-36) +——i
500 - pv RX (kvm-36) --%=-+ -
R T WY
2
400 ,r’ﬂr‘ 4
& 2
g 300 Mx"‘
< i
3 "
2 2} por -
3 s
rm
100 PRisrt B
o L L . L L L L

0 10 20 30 40 50 60 70 80 90 100
TCP window size (KB)

Fig.9 TCP window size v.s. bandwidth (pv in kvm-
36).

Note that a baseline bandwidth is 1.6 Gbps,
which is obtained from the iperf measurement
where client and server run on the host OS.

Figure 5, 6, 7, 8, 9 show the results of this
experiment.

We increase the TCP window size until the
bandwidth saturates. As shown in Figure 6,
RX bandwidth of pv in kvm-36 constantly in-
creases until the TCP window size reaches 80
KB, while, as in Figure 7, the other bandwidth
curves saturated at less than 40 KB. As shown
in Figure 9, the maximum RX bandwidth of
the pv achieved in kvin-36 is 469 Mbps. How-
ever, Figure 7 shows that bandwidth of the pv
in kvm-51 reaches only up to 82.5 Mbps. The
reason of this result could be that the pv in
kvm-51 is implemented fairly recently and has
not been optimized for performance yet. Devel-
opers of KVM, however, have reported that the
performance of pv has greatly been improved
with recent modifications that have been added.
We intend to conduct further evaluation using

nomal condition I}
rtI8139(RX; [
30 8139 (TX) £=

UWHOTO

[

pv(RX; -
pv (TX

# of accesses / msec.

Fig.10 The number of I/O port accesses and
hypercalls.

this improved implementation.

6. Analysis Network I/O processing in
KVM

6.1 A case of a full-virtualized driver

We pick up a network driver for rt18139 ether-
net card for the evaluation of a full-virtualized
driver. The rtl8139 driver has the following fea-
tures:

e maximum size of ethernet frames: 1,536

bytes

e number of concurrent DMA data transmis-

sion: 4

e receive buffer size: 32 Kbytes

As shown in Figure 10, packet transmission
and reception cause many I/O accesses. All the
accesses cause VM exits, each of which invokes
two transitions between the non-root operation
and the root one and vice versa.

Figure 11 (TX) shows that I/O port ac-
cesses in processing a packet transmission as
follows. First, a socket buffer from a network
stack is copied to a DMA buffer, and then the
DMA controller in rt18139 gets triggered. When
the transmission is completed, the controller is-
sues an interrupt. If only one packet is trans-
mitted through NIC, the total number of I/O
accesses is three.

Processing a packet reception is more com-
plex than the transmission. The rtl8139 driver
implements the NAPI framework®. The NAPI
framework enables network drivers to process
packet reception more efficiently than ever by
eliminating redundant interrupts and expen-
sive interrupt handling, and disabling them

* The NAPI framework is a new design concept of
network drivers in Linux kernel.

— 116 —



(TX)
(1) set data to a DMA buffer
(2) W: fire DMA
(3) interrupt (tx completed)
(4) R: interrupt status
(5) W: ACK (to all tx completions)

(RX)

) interrupt (packet arrived)
) R: interrupt status
} W: disable interrupts
) 7z poll (called from software interrupt)
) R: rx interrupt?
) while (R: not empty?)

(a) receive packet

(b) if (R: rx interrupt?) then W: ACK
(7) W: enable interrupts

'R:” and 'W:’ indicate read /write operations from/to a I/O
port respectively.

Fig.11 I/0O accesses in full-virtualized driver
processing.

while handling incoming packet. Thus, network
drivers can handle multiple incoming packets
with one interrupt.

Figure 11 (RX) shows I/O port accesses in
processing a packet reception.

The rate of I/O port accesses (the number of
accesses per packets) in a packet reception is
greater than that in a packet transmission. If
packets come in apart in time, the total number
of I/O accesses is up to seven. On the other
hand, if incoming packets are bursty, the total
number of I/O accesses could be close to three.

Without virtualization, NAPI might achieve
efficient processing by eliminating expensive in-
terrupt handling, but in a virtualized environ-
ment, NAPI cannot eliminate I/O port accesses
so that packet reception processing may end up
being unable to achieve sufficient performance.

6.2 A case of a para-virtualized driver

PV network driver and device are imple-
mented using VirtIO, a common architecture
and API for virtual I/O implementations in
para-virtualization.

VirtIO consists of tree conditions; the first is
that a guest and a VMM can cooperate with
each other, the second is that they share some
memory areas, and the third is that they pro-
vide a mechanism to notify to the other side. It
uses virtqueue that is the shared page between
them in order to notify (i) addresses of data
buffers (ii) provisions and (iii) consumptions of
the buffers (Fig. 12).

buffers in slab cache

i

Guest kernel (mapped)

slab allocatorg-+1"" l%l

PV network driver

[F[E.
SN Ll
- —_— A [ ]
PV network device F*Iiiil " :/ = ll

QEMU virlquene

(i) address of data buffer
(ii) provision of the buffer
(iii) consumption of the buffer

Fig.12 Para-virtualized driver and device.

Data exchanges are performed not with the
virtqueue but through another memory area. In
KVM, the PV driver and device share memory
as described in Section 3.3 so that the PV net-
work device can access memory areas not only
of the PV network driver but also of the entire
guest kernel. sk buff* is used as data buffers
to exchange between the PV driver and device,
in fact, buffers in the sk_buff that are allocated
in the guest kernel in advance are used for the
data transfer from the PV network device to
the PV driver and vice versa.

When a virtqueue in one side gets filled or a
pre-set timer expires, one side notifies the other
side to let it consume the buffer using a specific
I/O port access or a hypercall in a transmission,
and an interrupt in a reception.

6.3 Pros and Cons of a para-virtualized

network driver

A PV network driver have two advantages
over drivers for physical NICs: First, a PV
network device can be equipped with the ideal
NIC capabilities such as pseudo scatter/gather
DMA. The pseudo scatter/gather DMA is
known to gain better performance than the nor-
mal pseudo DMA®Y. It could also enable bulk
data transfer of larger size than the on-chip
buffer and MTU on the physical NICs.

Second, the PV driver can avoid redundant
I/O port accesses. The PV driver and de-
vice will share memory areas so that they can
read/write data and each status without any
I/O requests. This eliminates VMM interfer-
ences that incur operation transitions and mode
switches.

Unfortunately, these advantages are effective
only within a virtualized environment. If an
application sends data to outside the physical
host, the efficiency of the data transfer is lim-

* sk_buff is data structure in Linux networking. The
sk_buff is able to contain fragmented data buffers.

— 117 —



Table 3 TCP bandwidth (Mbps)

with in-kernel IRQ handling

ave. | min | max o
RX | 743 | 73.0 | 755 | 0.626
TX | 449 | 44.8 | 45.1 | 0.119
without in-kernel IRQ handling
ave. | min | max o
RX | 696 | 67.8 | 70.6 | 0.772
TX | 399 | 39.8 | 40.1 | 0.110

ited by the capabilities of the physical NICs.

7. Consideration towards further im-
provement

Our experiment results have confirmed that
network I/O performance in KVM has greatly
improved using PV drivers, however, we believe
that the performance still leaves room for fur-
ther improvement.

For example, KVM in the host kernel should
implement PV devices within itself, not in the
user space. A current PV device implemen-
tation requires redundant two mode switches
and a packet copy between KVM and QEMU
in both send and receive paths. We strongly be-
lieve that in-kernel PV devices could avoid this
inefficient path, and could improve the network
1/0 performance further.

For the feasibility study for this conjecture,
we conduct the following experiment. Table 3
shows a bandwidth comparison between two
configurations in KVM. One configuration en-
ables in-kernel IRQ handling, while the other
configuration disables it. Table 3 shows that
the former bandwidth is superior than the lat-
ter, by 6.5% in RX and by 12.5% in TX.

A difference between processing in these two
configurations is where I/0O exits caused by the
accesses to PIC get handled. In the former case,
the I/O exits are handled in KVM so that only
transitions between a guest kernel and a host
kernel may occur. On the other hand, in the lat-
ter case, I/O exits are handled in QEMU so that
transitions between the host kernel and QEMU
may occur in addition to the above transitions.

This indicates the in-kernel PV driver has a
potential to improve network performance more
or less by 10%. In addition, the in-kernel PV
driver is expected to eliminate data copy be-
tween QEMU and the host kernel.

8. Conclusion

KVM is still not a mature VMM implemen-
tation yet, compared with the other VMM im-
plementations. Nonetheless, its potential has

recently attracted lots of attentions in the com-
munity.  Especially, hybrid-virtualization in
KVM is expected to overcome inefficient I/0
performance of guest OSes.

This paper has made two contributions: one
that we have unveiled network processing of
KVM both on full-virtualization and on para-
virtualization, the other that we have evaluated
and analyzed KVM’s network I/O performance
in these two cases and also propose possible fur-
ther improvement based on the results.

We intend to continue investigating how
KVM handles network I/0 and its performance
in more detail. We also plan to implement a
proposed method described in Section 7 and to
evaluate its effect.

References

1) AMD: AMD64 Virtualization Codenamed
“Pacifica” Technology, Secure Virtual Machine
Architecture Reference (2005).

2) Bellard, F.: QEMU, a Fast and Portable Dy-
namic Translator, Proc. USENIX 2005 An-
nual Technical Conference, FREENIX Track,
pp.41-46 (2005).

3) Kivity, A., Kamay, Y., Laor, D., Lublin, U.
and Liguori, A.: kvim: the Linux Virtual Ma-
chine Monitor, Proc. Ottawa Linuz Symposium
2007 (OLS '07), pp.225-230 (2007).

4) Menon, A., Cox, A.L. and Zwaenepoel, W.:
Optimizing Network Virtualization in Xen,
Proc. 2006 USENIX Annual Technical Confer-
ence (USENIX '06), pp.15-28 (2006).

5) Nakajima, J. and Mallick, A.K.: Hybrid-
Virtualization — Enhanced Virtualization for
Linux, Proc. Ottawa Linuz Symposium 2007
(OLS ’07), pp.87-96 (2007).

6) Sugerman, J., Venkitachalam, G. and Lim,
B.-H.: Virtualizing I/0O Devices on VMware
Workstation’s Hosted Virtual Machine Mon-
itor, Proc. 2001 USENIX Annual Technical
Conference (USENIX ’01), pp.1-14 (2001).

7) Uhlig, R., Neiger, G., Rodgers, D., Santoni,
A L., Martins, F.C.M., Anderson, A.V., Ben-
nett, S.M., Kagi, A., Leung, F.H. and Smith,
L.: Intel Virtualization Technology, IEEE Com-
puter, Vol.38, No.5, pp.48-56 (2005).

8) Barham, P., Dragovic, B., Fraser, K., Hand,
S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I. and Warfield, A.: Xen and the art of vir--
tualization, Proc. the 19th ACM Symposium
on Operating Systems Principles (SOSP 03),
pp.164-177 (2003).

— 118 —



