FEFEN SR
IPSJ SIG Technical Report

W

2008 —0OS—107
2008,71,730

Live-upgrading Hypervisors: A Study in Its Applications

EmiL MeNnG,™ Mrtsue Tosuryuki,?! Hipexi EIRaku, !
TAKAHIRO SHINAGAWA!! and Kazuniko Kartot!

Hypervisors are currently designed with a single purpose in mind, leading to the develop-
ment of software which is loaded and remains static since boot time. We propose a method
where a hypervisor can be switched out with another without the requirement of a system
reset. This provides the ability to refresh or even upgrade a hypervisor without any significant
interruption to the user of the VMs/VMM. This process completes within 50 milliseconds and
allows for the enforcement of security policies, live-upgrading of hypervisors, and faster VMM

development.

1. Introduction

Large organization’s IT infrastructure con-
tinually seek to reduce the downtime of their
machines. While unplanned downtime is
usually mitigated through redundant servers,
planned downtime for system software is un-
avoidable. Virtual machine monitors, like com-
modity operating systems, require maintenance
and newer versions are often released that ad-
dress security issues or bug fixes, which requires
updates. Typically, an update to virtual ma-
chine monitor requires a system reset, which
also forces any guest OSes running to also be
shut down.

We also envision that large organizations will
install security-based virtual machine monitors,
such as SecVisor? | on regular user workstations
in the future. When these virtual machine mon-
itors are deployed across an entire organization,
updates need to be scalable and as unintrusive
to the user as possible. Rebooting an entire
organization’s workstations should be avoided
whenever possible.

‘We have created a proof-of-concept that al-
lows a newer hypervisor version to be switched
with the current one without the requirement
of a system reset. We call this process a live-
upgrade. Live-upgrading hypervisors can be
used in many different applications including:
upgrading the hypervisor, faster hypervisor de-
velopment, and even policy enforcement. Fur-
thermore, our switching process is very fast,
and causes minimal interruption to any guests
it runs. We have achieved a live-upgrade in less
than 50 milliseconds, with the guest’s service
outage lasting less than 3 milliseconds.

11 University of Tsukuba

CPU makers have also noted this demand and
have focused their attention on offering more
features for virtual machine monitors at the
hardware level. Intel’s Trusted Execution Tech-
nology® (TXT, formerly known as LaGrande
Technology, LT) provides new features in hard-
ware such as only permitting a trusted and mea-
sured virtual machine monitor to be executed
without requiring a system reset. While TXT
is not required for live-upgrading hypervisors, it
is useful for ensuring the security of the virtual
machine monitor layer.

The rest of this paper is structured as follows:
section 2 discusses related works. Section 3 de-
scribes the background of the hypervisor that
we use. Section 4 details the design of our hy-
pervisor switch process and section 5 discusses
implementation issues. Section 6 delves into the
applications of ouwr hypervisor switching con-
cept and we evaluate our method in section 7.
Future works are discussed in section 8 and we
conclude in section 9.

2. Related Works

Microvisor®) is a virtual machine monitor
that can dynamically enable and disable itself
from virtualizing resources to its guests. They
propose that a virtual machine monitor should
be able to shut itself down when it is not needed
for performance reasons. Our approach also
shuts down itself, but with the only purpose
of bringing another hypervisor online.

SecVisor”) is a hypervisor whose purpose is
to protect the guest OS’s kernel code from ma-
licious attacks. It utilizes AMD’s SVM?) exten-
sions to provide hardware protection for mem-
ory and to track kernel entries and exists. Sim-
ilarly, our switching method focuses on using
a hypervisor that is security-centric and with

®)

the use of TXT, it can be executed in a trusted
manner. However our focus is on the security
of the hypervisor while SecVisor’s security is fo-
cused on the guest’s kernel. Furthermore SecVi-
sor has no live-upgrade functionality.

Kourai et al.®) focuses on rejuvenating the
Xen' virtual machine monitor without a power
reset for performance purposes. However, his
technique is limited to only rebooting an identi-
cal hypervisor. Furthermore, their method fur-
ther requires suspending all domUs, and a full
reboot of the dom0. Our method has the ca-
pability of upgrading the switched VMM and
does not require any action from the guest VM
and executes much quicker.

3. Background

In this section, we will go into the background
of our hypervisor, the secure virtual machine
monitor, and Intel’s Trusted Execution Tech-
nology. Those who are already familiar with
these subjects are invited to skip these sections
altogether.

3.1 Our Hypervisor

Our hypervisor was originally designed with
security in mind, and is implemented such that
the guest VM sees almost all of hardware di-
rectly, with the exception of storage and net-
work devices. The guest OS therefore believes
that he sees hardware as is, while in reality the
hypervisor is receiving clear-text communica-
tions on the storage and network devices and
encrypts it before sending them to the real stor-
age or network devices.

Our hypervisor design does not require a
guest VM to know about it. This complete
separation between the virtual machine mon-
itor and its guest allows for greater security.
Currently, live-upgrading our hypervisor re-
quires interaction through the guest via vmcall
instructions, though this mechanism can be
switched freely.

3.2 Intel Trusted Execution Technol-

ogy

We intend to use Intel’s Trusted Execution
Technology (TXT) in our implementation in
order to heighten the security of our systemn.
This technology is based off of the Trusted
Computing Group’s'® (TCG) Trusted Plat-
form Module!") (TPM) and uses it to discrim-
inate against VMMs. The main purpose of
TXT is to make a trust decision on whether
or not to allow a virtual machine monitor to
boot. An administrator must initially take a

cryptographic hash of a virtual machine moni-
tor and load that into non-volatile memory in
the TPM. TXT then has a special set of in-
structions to load a new VMM, and during this
time, it checks to make sure that the target
VMM matches one that is trusted. If it does
not, then the system is reset, as TXT will not
execute untrusted code. Since this trust deci-
sion is made in hardware instead of software, it
is considered more secure.

4. Hypervisor Live-upgrade Design

Our hypervisor live-upgrade technique was
designed with type-II virtual machine monitors
in mind. These are virtual machine monitors
that are completely independent of a host oper-
ating system and separate from the guest OS it
manages. Furthermore, we limit our discussion
to only virtual machine monitors that are capa-
ble to execute a guest OS without modifications
to the guest OS’s kernel. In other words, the
guest OS has no idea that it is in a virtualized
environment and believes that it is in control of
the entire machine.

Furthermore, we limit our design to switch
between virtual machine monitors of the same
family and architecture. This means that we
limit our goal to switch one version of a vir-
tual machine monitor to another version of the
same virtual machine monitor. To further clar-
ify, we do not consider switching between het-
erogeneous VMMs such as from Secure VM to
Microvisor.

The interface in which hypercalls are pro-
vided to the guest OS must not change, or else
applications depending on that interface will
cease to function properly. It should be noted
here that the the hypercall interface must be
limited to only user-space calls. This is a direct
result to our type-II virtual machine monitor
rule. Since the guest kernel does not know that
it is being virtualized, it should not communi-
cate through the hypercall medium.

From here on in, we will use and define a
virtual machine monitor that meets the restric-
tions stated above in this section as a hypervi-
$oT.

Our goal is to have an executing hypervisor
be able to switch itself with another hypervisor
in the same family without significantly affect-
ing its guest OS’s service. This mecans that a
new hypervisor needs to be loaded without a
system reset. This present some unique chal-
lenges and we will delve into what considera-

tions need to be made in order to achieve this
functionality. Furthermore, our design can be
applied to all virtual machine monitors that
meet our hypervisor description, and is not spe-
cific to a single hypervisor.

One of the most important aspects of switch-
ing between hypervisors is to preserve the state
of the guest OS and the hypervisor itself. Using
our hypervisor definition, preserving the state
of the guest OS is a relatively simple task. The
guest OS’s resources (such as memory, its de-
vice’s states, CPU state, etc.) cannot be mod-
ified or else its state will be fundamentally al-
tered. The hypervisor must be aware of any
changes it makes in the guest OS’s domain, and
those changes need to be reverted before return-
ing control to the guest OS.

The hypervisor itself must be aware of its own
state as well. Any stateful information that
cannot be initialized by a new hypervisor must
saved by the departing hypervisor. Further-
more, this state information (hypervisor and
guest OS) must not be lost between the switch
from one hypervisor to another and needs to be
stored in a non-volatile location.

Since the new hypervisor will be loaded into
the same exact location as to where the pre-
vious hypervisor is loaded, an independent
switching process is needed. If the previous hy-
pervisor attempted to directly load a new hy-
pervisor, the copy process would overwrite code
that was currently being executed which would
cause improper execution. Therefore, the out-
going hypervisor needs to call the switching
code, whose purpose is to copy the new hyper-
visor into the old hypervisor and jump into the
new hypervisor’s entry point.

5. Hypervisor Live-upgrade Imple-

mentation

While our method can be implemented by
any hypervisor that meets our definition, we
chose to use the Secure VM as our hypervisor
of choice. We chose Secure VM due to the fact
we are most intimate with its design and imple-
mentation. Furthermore, the Secure VM’s state
is currently simple, which makes it an ideal hy-
pervisor to test and create a proof-of-concept
hypervisor live-upgrade.

Live-upgrading hypervisors can be broken
down into three distinct and separate stages.
The first stage is the hypervisor copy, followed
by a hyperuvisor switch, and is ended with a hy-
pervisor initialization. In this section we will

New hypervisor
is passad to the
old hypenvsor
and is saved in
memoary. The
nEw Nypervisors
entry point is also
passed and
stored. Guest is
actively running

Guest is
suspended and
virtual CPU state
Infermation ks
saved in non-
volatile memory

Fig.1 Hypervisor copy stage

detail each of these stages and how we imple-
mented then.

The first thing that needs to be done in or-
der to do a live-upgrade between hypervisors is
to provide the running hypervisor with a new
hypervisor. This is achieved in the hypervisor
copy stage. We created a user-space application
that provides the new hypervisor through the
hypercall interface. In Secure VM, this inter-
face is defined through the vmcall instruction
found on Intel VMX capable chipsets. When
the guest OS executes the vmcall instruction,
the hypervisor assumes control of the physi-
cal CPU and takes action based on what was
passed in the virtual CPU’s registers of the
guest OS. This is how we pass the new incom-
ing hypervisor to the running hypervisor. Data
is passed to the hypervisor on a pass-by-copy
basis, and is repeated multiple times until the
new hypervisor is copied in its entirety. Fur-
thermore, the entry point of the new hypervi-
sor also needs to be passed via the hypercall
interface.

After the hypervisor receives all the informa-
tion it needs about the new hypervisor, it sus-
pends the guest OS from executing. Since the
hypervisor has control of the CPU, we know
that the guest is not executing and is in a sus-
pended state. At this point, we preserve the
guest OS’s CPU state by saving all of its con-
trol and general registers. This data is stored
in a structure that is located in a non-volatile
memory address and supports variable-length
data storage. Usually, you would have to save
the state of the hypervisor itself, but in our hy-
pervisor, it is not necessary as there is no state
that needs to be preserved as of this writing.

Next, the independent switching code is
copied from within the hypervisor to its final

Memory @) Memory

Fig.2 Hypervisor switch stage

Memory

New hypervisor
mitializes itself,

Hypervisor loads
saved CPU state

Finally, guest is
then resumed.

Fig.3 Hypervisor initialization stage

location. It needs to lie outside of the hyper-
visor because the new hypervisor will overwrite
the old one, and if the instruction pointer points
to somewhere that is overwritten, the execution
becomes unpredictable and useless. Finally, the
hypervisor jumps into the switching code pro-
viding information about the location of the
new hypervisor, its size, and its entry point.
The next stage, the hypervisor copy, copies
the new hypervisor over the existing hypervisor,
effectively overwriting it. Before we attempt to
do this, we have to create and initialize our own
page tables and stacks as the ones in the run-
ning hypervisor will be overwritten with junk
data. Therefore, the switching code must im-
plement its own simple memory management,
which in our case is identical to the current hy-
pervisor and the subsequent hypervisor. Once
this is completed, the switching code executes
the copy and jumps into the new hypervisor at
the entry point provided by the previous stage.
The final stage, hypervisor initialization, dif-
fers only slightly to the normal boot process.

First, the normal boot process’ entry point is
disregarded as we are not executing the hyper-
visor from boot, but rather a system that has
been initialized from boot at least once. We
achieve this by creating a new function that
only initializes the things it needs to and skips
initializations that need to be done only once
by the bootstrapping hypervisor. This is then
entry point that was passed in the first stage.

The biggest change between bootstrapping
the system and initializing a once-booted subse-
quent hypervisor is that instead of initializing
the guest VM’s processor to a constant state,
we reload its general and control registers to
exactly what they were before the switch took
place. In other words, the virtual CPU’s state
is exactly the same after the switch as it was
before the switch.

Currently our implementation only switch
implementation only supports single-threaded
execution. In the context of switching hy-
pervisors, it is critical that the second and
third stages are run serially and not in par-
allel. A single processor may only be ac-
tive during this critical section, and all other
processors must idle until they are reinitial-
ized by the new hypervisor. This is achieved
through inter-processor interrupts in modern
day operating systems, a mechanism that al-
lows processors to communicate and interrupt
each other. However, in the case of Secure
VM, the inter-processor interrupt table is un-
touched and given exclusively to the guest OS,
and therefore we cannot use it in the hypervisor.
Due to this restriction, our hypervisor switching
implementation currently supports only single-
processor machines.

6. Applications

Switching between hypervisors without sig-
nificantly interrupting the guest OS offers many
different applications ranging from refreshing
the hypervisor, upgrading the hypervisor, en-
hance hypervisor development, and enforce se-
curity policies. We will detail each of these sce-
narios in the rest of this section.

6.1 Hypervisor Refresh

Most production hypervisors are designed to
be booted once and run for long periods of time
before being reset. This leads to the software
aging problem” where software performance
degrades. Moreover, this degradation occurs in
the hypervisor itself, which in turn could possi-
bly cascade the degradation to any virtual ma-

chines it is in charge of.

The traditional solution to this problem is to
reboot the entire machine, but that causes sig-
nificant interruption to the guest OS. A reboot
typically ranges on the order of minutes, and a
service interrupt of that magnitude negatively
affects the user’s experience. However, with the
live-upgrade approach, the hypervisor can be
rebooted very quickly, and its state will be the
same as if it were bootstrapped. At this time-
frame, interruption to the guest OS is minimal
and users do not perceive the downtime.

6.2 Hypervisor Upgrade

An even better solution to the software aging
problem, especially when it is caused by pro-
gramming errors such as memory leaks, is to
upgrade the hypervisor itself. Our live-upgrade
method is not restricted to only a single-version
hypervisor, and therefore we can fix bugs in the
hypervisor that lies in a production environ-
ment without causing a significant service in-
terrupt. Furthermore the same can be applied
when security updates to the hypervisor that
are released.

We also envision that hypervisors will be-
comne ubiquitous in the future and that virtual
machine monitors will be used on all comput-
ers, likely in regards to securing the guest OS.
In large organizations, supporting these virtual
machine monitors must be scalable. It would be
a very costly endeavor to have an IT team go to
each machine and reset it in order to execute a
new hypervisor. Rather, with the live-upgrade
method, a team can simply broadcast a live-
upgrade command and have all the hypervisors
replaced in a timely fashion. We believe that
if such a feature was offered to IT managers,
it would be received warmly and would accel-
erate the rate of which hypervisors are used on
regular user’s workstations.

6.3 Hypervisor Development

One of the most interesting, and currently
the most used application of the live-upgrade
process as of this writing is the ability to debug
the hypervisor by switching the hypervisor from
one to another. When one can freely switch a
hypervisor on-the-fly, it opens many powerful
different debug processes that would be much
slower and less effective if it were not on-the-fly.

On more than one occasion, we have used
this application to optimize code, and quickly
test small changes to see whether it is correct
and effective. This can include things such as
rewriting inline-assembly, changing a function’s

prototype, adding or removing printing state-
ments, and so on. Furthermore, developers of
the hypervisor can switch between a production
and development hypervisor on the fly. For ex-
ample, if a developer were using the system and
suddenly wanted more information about the
running hypervisor, he could simply switch to
a development hypervisor which outputs more
debugging information. Conversely, if a user is
using a development hypervisor, and finds that
it is too slow, he can freely switch to a produc-
tion VMM to see if that is a viable workaround.

6.4 Enforcing Security Policies

Our live-upgrading method combined with
the security features offered by TXT offers a
unique and unorthodox method of creating and
enforcing security policies. Traditionally, poli-
cies are enforced through modules that are out-
side of the base system, but loaded on the fly.
This makes the software smaller and easier to
confirm its correctness. It also allows greater
flexibility. However, when policies are enforced
from within the hypervisor, live-upgrades are
available, and TXT is used to attest it, inter-
esting properties emcrge.

Given a policy that is enforced by both a
modular construction and a monolithic con-
struction as described above, and looking from
the viewpoint of TXT, two different and dis-
tinct identities can be cryptographically pro-
duced. However, if you change both policies
such that they differ from the original, the
monolithic hypervisor will generate a unique
and distinct cryptographic hash, but the mod-
ular hypervisor’s identity will not change. In
other words, if you switched from policy A to
policy B, TXT would not be able to differenti-
ate between the two if the policies were enforced
modularly.

When TXT can differentiate between whether
a VMM is enforcing a policy or not, the user
and administrator can have more faith that the
correct VMM is running. On the contrary, if
a modular hypervisor were loaded, users and
administrators can have faith that the correct
VMM is running, but there is no evidence at the
hardware level that the correct policy is being
enforced. Furthermore, a modular hypervisor’s
policies are more likely to be able to be changed
during run time, whereas a monolithic hypervi-
sor’s policies are more likely to remain static.

Policy changes in a modular hypervisor are
relatively easy to enforce since they are de-
signed from the beginning to be loaded and un-

loaded. In a traditional monolithic hypervisor,
this would be impossible without severe inter-
ruption to services, as it would require a re-
boot. However, with our live-upgrade method,
one can easily build a new hypervisor with a
different policy and use that hypervisor with-
out interfering with the guest OS. Furthermore,
this new hypervisor can be cryptographically
attested by TXT to ensure that the new hy-
pervisor conforms with the correct policy the
platform is designated to run.

One setback to this approach is the need to
keep track of multiple hypervisors, as each one
with a different policy will have a different cryp-
tographic hash. If an organization creates poli-
cies at an individual platform level, the number
of hypervisors that need to be maintained will
not likely scale. However if these policies are
created so that they have general properties,
common to many platforms, it can be managed.

7. Evaluation

We evaluated our switching method based on
the time it takes to complete the live-upgrade
process as well as its interruption to the op-
erating guest VM. These are the only areas
where the live-upgrade method impacts. We
conducted a micro-benchmark measured within
the hypervisor itsclf, and a macro-benchmark,
measured from an independent machine.

Our test environment is a machine running an
ICHS chipset with an Intel Core 2 CPU running
at 2.66 GHz. It has 2 gigabytes of memory and
is running the 2.6.20.7 Linux kernel.

Our first benchmark is executed from within
the hypervisor itself. This micro-benchmark
measures the time it takes to execute each of
the three stages discussed in our design section,
which include the hypervisor copy, the hypervi-
sor switch, and the hypervisor reinitialization.
Accurate time measurements were calculated
by the rdtsc instruction and stored in memory.
Since the time for the calculation of the times-
tamp itself is negligible, and the results aren’t
read and interpreted until after the switch is
completed, it is safe to presume that it does not
add significaut overhead to the measurements.
The results are listed in table 1.

In the three separate stages, the first does
not cause a service interrupt to the guest OS,
but the second and third stages do. This is be-
cause the first stage is a user application that
uses the hypervisor’s hypercall interface to pass
a new hypervisor to the running one. Since it

Stage clocks (time)
Hypervisor copy 76342900 (28700 usec)
Hypervisor switch 162710 (61 usec)
Hypervisor initialization 7081820 (2662 usec)
Total switching time 83587430 (31423 usec)
Total interrupt time 7244530 (2723 usec)
Table 1 Switching stage times

Tsber of [0 packete ——

Hypervisor
Copy. ‘

{
6 Pre-switch | Postswitch

2 ‘

0.03 0.04 0.05 0.06 0.07)|'9D.08 0.09 0.1
time (seconds)|

| Hypaervisor Initialization
Hypervisor Switch

Fig.4 Guest OS service

is a user application, the kernel may interrupt
it and execute other processes and therefore, it
does not affect the guest OS’s service. However,
service is affected in the second and third stages
because the second stage shuts down CPU vir-
tualization and it isn’t re-enabled until after the
third stage completes. These stages total to less
than 3 milliseconds, and do not significantly af-
fect the guest OS’s service.

We also measure service outage through a
macro-benchmark. This experiment is setup
such that the machine running the hypervisor
is ping-flooding another independent machine.
The reason we need an independent machine is
because time cannot necessarily be trusted in a
virtual environment within the guest and it is
safer to have an independent entity to measure
time.

In figure 4, we can see that the hypervisor is
consistently sending icmp requests before and
after the switching takes place. However in the
first stage of the hypervisor switch, the hyper-
visor copy, you can sec that multiple hypercalls
lead to a partial service slow-down as there is
a dip in how often packets were able to be sent
in the first four milliseconds. Afterwards, the
hypervisor copy routine docs not affect the per-
formance of the guest OS significantly. How-
ever, once the hypervisor copy is finished, the
guest OS must not be able to execute anything

72‘7

while the hypervisor attempts to switch itself.
Therefore in the second and third stages (hyper-
visor switch and hypervisor initialization), we
see the expected outage of the guest. This out-
age corresponds to the three millisecond outage
reported by our results in table 1.

8. Future Work

It is our goal to expand our current method
to support multiple-processor systems since our
hypervisor switching method currently only
works with single-processor systems. Since the
inter-processor interrupts (IPI) table is given
exclusively to the guest, we cannot use it with-
out violating the guest’s resources. Therefore
we would like to investigate what methods ex-
ist for synchronizing CPUs without the use of
IPIs as well as methods to trap IPIs and virtu-
alize a guest IPI table.

Furthermore, we would like to investigate
how easily, and the benefits of porting our
hypervisor switching method to other small
VMMs.24)8)9) We would like to see our method
work on other hypervisors and once this is
achieved, we have the ambitious goal of creat-
ing a VMM that can be switched with another
VMM of a different architecture. For exam-
ple, we are deeply interested in bootstrapping
a VMM, say Microvisor and then switch Micro-
visor with another oune, say SecVisor.

Finally, we also intend to fully support the
security features offered by Intel’s Trusted Ex-
ecution Technology. When we do so, we can
rely on hardware to validate that the correct
hypervisor is being loaded, as described in our
applications section. More importantly, when
a hypervisor switch or live-upgrade takes place,
we can be confident that the correct hypervisor
was loaded. The hypervisor’s security policy
can also be verified through TXT’s attestation
since the policy is embedded in the hypervisor
itself.

9. Conclusion

We have successfully created a proof-of-
concept live-upgrade method to switch between
hypervisors of the same architecture. It does
not require a reboot of the guest OS, and its
interruption is not significant. Furthermore, we
have studied its applications and detailed how it
can be used to switch hypervisors, enhance hy-
pervisor debugging, and enforce security poli-
cies.

References

1) Barham, P., Dragovic, B., Fraser, K., Hand,
S., Harris, T., Ho, A., Neugebauer, R., Pratt,
[. and Warfield, A.: Xen and the art of vir-
tualization, Proceedings of SOSP 2003, Bolton
Landing, New York (2003).

2) Garfinkel, T., Pfaff, B., Chow, J., Rosenblum,
M. and Boneh, D.: Terra: A Virtual Machine-
Based Platform for Trusted Computing, Pro-
ceedings of the 19th Symposium on Operating
System Principles(SOSP 2003) (2003).

3) Intel Corporation: Intel Trusted Execution
Technology Preliminary Architecture Specifi-

cation, http://download.intel.com/technology/

security/downloads/31516804.pdf (2007).

4) Kaneda, K.: Tiny Virtual Machine Monitor,
http://wuw.yl.is.s.u-tokyo.ac.jp/~kaneda/
tvmm/.

5) Kourai, K. and Chiba, S.: A Fast Rejuvena-
tion Technique for Server Consolidation with
Virtual Machines, DSN '07: Proceedings of the
37th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks,
Washington, DC, USA, IEEE Computer Soci-
ety, pp.245-255 (2007).

6) Lowell, D.E., Saito, Y. and Samberg, E.J.: De-
virtualizable virtual machines enabling general,
single-node, online maintenance, SIGARCH
Comput. Archit. News, Vol.32, No.5, pp.211~
223 (2004).

7) Parnas, D.L.: Software aging, ICSE ’94: Pro-
ceedings of the 16th international conference
on Software engineering, Los Alamitos, CA,
USA, IEEE Computer Society Press, pp.279—
287 (1994).

8) Ramachandran, M., Smith, N., Wood, M.,
Garg, S., Stanley, J., Eduri, E., Rappoport, R.,
Chobotaro, A., Klotz, C. and Janz, L.: New
Client Virtualization Usage Models Using In-
tel Virtualization Technology, Intel Technology
Journal, Vol.10, No.3, pp.205-216 (2006).

9) Seshadri, A., Luk, M., Qu, N. and Perrig,
A.: SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity
OSes, SOSP ’07: Proceedings of twenty-first
ACM SIGOPS symposium on Operating sys-
tems principles, New York, NY, USA, ACM,
pp-335-350 (2007).

10) The Trusted Computing Group: Trusted
Computing Group Web Page, https://www.
trustedcomputinggroup.org/home.

11) The Trusted Computing Group: TPM Main
Part 1 Design Principles Specification Version
1.2 Revision 103 (2007).

