HEH7 -7 F ¢ 70 -3
(1988 3 10)

NUZINDEHDLIIS—3 27— a> 7T U X LOTERIEDEH
T4H L A NI F BE HIAR o E-—

HAL R SFEEFGBIEUIFURT
7980 iR F2-1-1

AKX Tik, ~N ¥ X IN (Interconnection Network) (2 3> T, HIE S 173551z o W T L. i)
N=3a7=2ary7ThI)ZLOFRMEE LT, OW®/N)log,N) ¥+ 5, 2T, NIiZAJ
D, OEEIEET N AERT HUBBEF OB, e TEBIIESSI A TY L LMBERORE T,
COTHREIR, N> O(Sh &flRs N EIHELIER) OBEERTH S, 72, NROIIA T, e
FHFIS— 3 aF—ar T A T) A LOWMS CERYE2 A2 $EHT S,

Lower Bound Derivation of Parallel Permutation Algorithm for Benes
Network— With Restricted Parallelism

Issam A.HAMID, Norio SHIRATORI, and Shoichi NOGUCHI
Research Institute of Electrical Communication,
Tohoku University, 1-1-2, Katahira, Sendai, T 980.

This companion paper has discussed the limited restriction of parallelism, such that we have derived the
lower bound of parallel permutation algorithms as O((®/N) log, N), where ¢ is the number of the neighboring
Processing Elements(PEs) directly connected, ® is the total number of PEs consisting the general nonshared
memory computaiion model, and N is the number of data elements that represents the permutation. This bound
is useful in case that, N> ® (restricted parallelisim) when the number of the data items are much bigger than
the total number of PEs, therefore each PE will compute a subpermutation of T'N/®71 data items. We have
proven that ¢, (in addition to N and @) affect the complexity of the (dynamic) parallel permutation algorithm
which has been shown that it is not completely parallelizable on any e-parallel computational model.

<1>

1. Introduction

Parallel computers which have thousands of
processors working cooperatively, are becoming
more feasible and practical for many applications
for instance, the Connection Machine[83].
Generally, there are two groups of models for the
parallel architectures. The first group is concerned
with the shared memory model to which all
processors have access. The second model is
concerned with the many processors with private
local memories, each accessed exclusively by one
processor. The second group should effectively be
capable to permute data items among the Processor
Elements; PEs by high permutability
interconnection network. We have concentrated on
the second group because, it is more practical to be
constructed compared to the first group’s model,
which has many drawbacks such as; memory
conflict and the N —1 fanout per processors, (wWhere
N is the total number of PEs). But, in the second
group’s model the interconnection network
becomes the most important part to synthesize
powerful mappings.

We have concentrated in our research on a type
of Interconnection Network (IN) named as Benes
IN, because of its capability to realize arbitrary
permutation at its input. In a companion
paper[Ha88], we have presented a new
computational model with efficient algorithm to
control the SWitching elements; (SWs), in a setting
time of O(Fn/k1 logg N), assuming N is the number
of the input elements at the input of IN, and it is of
base 2, (i.e., n=logoN), k is the number of the
Processor Elements; (PEs), per cycle of the Cyclic
Cube Engine; (CCE). However, that bound is
within the lower bound for setting Benes IN, for
arbitrary permutation, i.e., O(logaN), which also,
represents the propagation time delay for such type
of IN[Wa68]. These results could be concluded by
assuming the number of processors of the
computation model are large enough to hold one
record; (record represents one data element of a
permutation), therefore, ®=N, where @ is the
number of PEs which are constructed and
connected according to the computation model.
This means that the computational model should
always be tolerable to the size of the problem (i.e.,
the number of data items to be permuted or
processed), therefore according to N we can specify
®. In this paper, we have changed the assumption
concerned with ®=N, such that, ® becomes
constant, and N data items is so large, i.e., N>®.
Therefore, we want to examine the parallel
permutation algorithm presented in the companion
paper, and see the complexity of the setting time for
arbitrary permutation using the computational
model of the Cyclic Cube Engine, (CCE) [Ha88].

However, we have proved that the permutation
problem is not completely parallelizable on any
degree parallel computational model. Specifically,
permuting N data items on the parallel model of $
total number of PEs, each with ¢ of direct connected
neighbor PEs(i.e., for CCE model =3}, is required
a lower bound of Q((N/®) loge @) data routings
steps, when N> ®. Please note that, if N=®, then
we have the above bound to become as N log; P, as
were shown in the pervious paper[Ha88].

This paper is organized to have, Chap. I, for the
introduction, Chap.Il, represents the assumptions
and notations, with some realizations useful to
describe our construction. Chap.llI, represents the
theortical construction for the parallel permutation
algorithm by assuming N> ®.

1. Assumptions and Notations

In this chapter we have given assumptions and
notations with some useful characteristics related
to this paper.

(1) We have represented here, every PE as a
vertex of graph. The edges represent the
connection between these PEs. Therefore, the
structure of the CCE, can be represented by
undirected graph such that every vertex represents
a PE and the communication between them is
represented by the edges that connect these
vertices.

(2) Assume ®; represents the set of the total
number of the PEs consisting the computation
model represented by the CCE [Ha88].

(3) In order to have more general results, we
assume here to have a model whose PEs have a
degree of e. Therefore, degree ¢ PE is the ¢ number
of the neighbor PEs. Please note that, e=3 for our
CCE model.

(4) Generally the time complexity of an
algorithm denoted as; tp(N) in a sequential model,
(the sequential model is the model that has a single
PEs and executes its operations serially, i.e.,
without any form of parallelism; y@=1)(N)), is a
function of the problem size; N which represents
the number of records or data items for certain
permutation. Whereas, for the parallel algorithms,
their time complexity is a function of the problem
size N, and the parallel processor size; ®. (The
computations carried out locally at a PE is included
here.)

(5) Generally there are different kinds of
applications that are affected or not affected with
the size of the computation model; i.e., ®. This is
related to how much parallelism we can offered
using these ® PEs. For instance, for the summing
of the N numbers, there is a sequential algorithm of
exact bound of ®(log ©). But if N becomes larger
than @; N>®, we can let each PE computes IN/®1,

<2>

numbers, individually. Therefore, the total sum of
these local sums, can be computed in time of,
O((N/®) +log @), but if N> @, then top(N) =O(N/D).

We will have the following claim concerning
with the time complexity of a problem. Claim: If
the complexity of a problem on a sequential
proceesor is ta(N) then its complexity on a parallel
processor of size ® is Q(tp(N)/D).

(6) As well as the main considerations in our
discussion is how to permute the N data items in
parallel, between ® PEs, assuming N> @,
Therefore, the computation of Z output items
denoted as ; (zp,z1,....2N—1), depends on N input
items (ag,ai,....aN—_1). If each a; data item needs at
least, one z; then fag,a1,....aN-1)=20,21,....2N —1,
such that fla;=x1)# fla;=xy) for every i, where f
denotes a permutation function like for instance,
the perfect shuffle permutation.

(7) Let ® ={PEg,PEj,....PE¢ 1}, represents the
total parallel PEs consisting the parallel
computation model, such that every PE has ¢
neighbors of PEs. The distance from a PE; to PE}, is
represented by d such that; 3(PE;,PE;) denotes an
integer value. But for 3(PE;,PE;)= o, if there is no
connection or path between those PEs. Also, note
that, the minimum or short distance between those
processors denoted as A, represents the least
integer of d, such that, the short distance from PE;,
to PEj=PE,PEy,..PEA=PE;. Therefore PE; is
within distance A of PE; if 8(PE;, PE/) = A.

(8) The speedup, denoted as SPp(N), of a
parallel algorithm is the ratio of the time
complexity of the fastest known sequential
algorithm to the time complexity of the parallel
algorithm for the same problem. This is can be
concluded because a parallel computational model
can work as a sequential processor by using a
single PE. Also, the sequential processor can works
as a parallel processor at the cost of time as a factor
of ®.

(9) In this paper we have followed Knuth’s
terminologies which indicate the asymptotic orders
of algorithms, represented as, O, @, Q, which are
representing the upper, exact and lower bounds
respectively.

IlI. Lower Bound for the Parallel Permutation

Algorithms

In this chapter we have studied the
asymptotic lower bound of the complexity of the
permutation algorithm for any ®-parallel
computational model. Specifically, we want to
show that a permutation algorithm for a degree ®
parallel processor needs time of Q((N/®) log, ®).
Therefore, any permutation algorithm for a
bounded degree parallel computational model
needs time Q((N/®) loge @) for the case when N> ®,

Therefore, the parallel permutation algorithms are
not parallelizable on any degree parallel model.

This chapter have been divided into three
sections. In Il.1, we have presented a general
bounds for any parallel computational model which
is completely parallelizable for any problem. While,
in Sec.lll.2, we have presented the lower bound for
the parallel permutation algorithms taking in the
consideration that N»® for any parallel
computational model in general and our CCE
model in special. Sec.lll.3, represents, how the
parallel permutation algorithms are not completely
parallelizable on the CCE model and other parallel
computational models by analyzing the lower
bounds of those algorithms due to its execution on
the CCE model.

llI.1. The General Computational Bounds

We have presented here, a general lower bounds
for any parallel computational model which is
completely parallelizable for any problem. We
mean by the completely parallelizable problems as
the problems which utilize optimally all the PEs of
the parallel model. Hence, as well as we have ®
PEs, we can execute on our model ® computations,
simultaneously. These computations represent a
sequence of time steps during which each PE can do
trivial operations such as for instance; either, 1) do
binary operation, or 2) do binary test, or 3) receive
data, or 4) receive test result. Therefore, we want to
find the lower bound for @ computations on a
parallel processor of e-degree, in general and our
CCE model of £ =3, in special.

Due to previous results concerning with the
graph problems[Ge78], we can have the number of
vertices or PEs, (recall that every PE corresponds
to one vertex), within distance 4 of PE; which is =
ed+1—1. We have modified this result in the
following proposition.

Proposition 1

If Y is the number of PEs within distance § of
PE;; then;)

a-1
T=1+ » ee-1)°, H
proof: =

Within distance 0, only PE; itself is within this
distance.

Within distance 1, there are ¢ neighbors PEs.
Within distance 2, there are ¢ —1 neighbors, and so
on. Thus in general within distance 3 the number of
PEs is at most; I1+e+e(e~1)+
ele—1)24........ e(e—1)8—1, Therefore, for instance
for e=2, T=2 3+1, and for e=3, T=(e
(e—1)a—2))/(e-~2). O

Due to the above proposition we can find the
maximum distance between PE;, and any other PE
such as PE; such that PE; belongs to T. Such

<3>

maximum distance can be represented by the
following proposition.
Proposition 2

If T is the number of PEs within distance d of
PE;, such that T C®, and if PE; €®, PEj€ T, then
for e>1 we may have, loge(|]T|+1)—-1=
maximum(3(PE;,PE;)) [|
proof:

Let maximum(3(PE;,PEj))=dM, hence all
PE;€T are within 3y of PE;. Therefore using the
propos. 1, we may have, |Y| = emM+1)—1, which
results, log (|T}+1)=(dm +1) log ¢, from which the
results can follow. 0

From Propos.2 we can conclude that a parallel
computational model of degree ¢, has maximum
distance of at least loge(|®|+ 1) — 1. This conclusion
can be proved by putting @ instead of T in Propos.2.
Please note that the maximum distance between
two vertices in a graph represents the graph
diameter, in the graph terminology. Due to the
above two propositions we can construct the
following Lemma which gives the lower bound of
any parallel computational model of degree of e;
¢>1. Therefore the ® computations for a single
data item z; of a permutation depends on N given
data items and requires a time of Q(loge N+ (N/®)),
for any ¢ such that, 1<e<®.

Lemma 1

The ® computations of a single data item z;of a
permutation depends on N given data items and
requires a time of Q(loge N+ (N/®)), for any € such
that, 1 <e<®d.]
proof:

If we can be able to partition or divide the data
items for the permutation into the available
number of PEs, (recall that ® <N), such that, each
of T'N/®71 data items is in one PE, Therefore any
PE examines Q(loge N) data items and test results,
hence, Q(N/log.N) PEs must communicate in a
direct way or indirect way with the PE that has the
output value z. As well as log(N/logeN)=Q(log N),
hence the results follows from the propos.2. O

Due to this result we can compute a single item
(z), (depending on N data items), by the parallel
computational model whose PEs are much less
than the number of these data items, in .time of
QUog @+ (N/®)). This can be correct for the
summing of the N numbers. The summing of the N
numbers in parallel algorithm using N=® PEs,
can take O(log ®). But as well as N> ®, we can let
each PE computes IN/®1 numbers individually.
Therefore the total time for summing N numbers is
O((N/D)+1og D).

In fact Lemma-1 represents a very general
lower bound for computing an output items from N
input items. But in our work we have concentrated
on the parallel permutation algorithms. Therefore,

from now on we will discuss the lower bound

concerning with the parallel permutation

algorithm on a parallel computational model of any

¢, such that, 1<e<®,and N>®,

[ll.2. The General Bound for the Parallel
Permutation Algorithm

In this section we have presented the lower
bound for the parallel permutation algorithms
taking in the consideration that N>® for any
parallel computational model in general and for
our CCE model in special, such that 1<e<®, and
N> ®, Therefore, in order to achieve this, let us
prove at first through the following proposition,
that most pairs of PEs are separated by a distance
of at least logarithm in terms of the number of PEs.
Proposition 3

Assume that the following set denoted as; A of
PEs includes the PEs such that; A={PE;€T" |
A(PE;,PEj)>¢ log|T}, where T represents a set of
PEs such that I'C®, and PE;€I'. Also assume, for
each £<1 there exists an 0>0, such that, the set A
has cardinality at least equal to LE |TjJ+1, when
o= 1/(2(log £ —log(1—¥))) L]
proof:

By Propos.1 we may have, A —y=(efolog A1-1),
where A=|A|, and y=|I'|. Hence, y=A—(elo log
M —1=(LE Al+1)+ (1 -1 ~elo log A1, Therefore
it is suitable to select o such that; efo log A1=
M(1—9&AT, therefore, (o log A+1) log ¢ = log A +
log(1—¢), and solve for ¢ in terms of other known
variables, therefore ,

logA+log(1 —§—loge

0= ; (by dividing by log e);
log Aloge
1+ (log(1l -8 —1 /log A
L f)g OB NIOB .\ dividing by log \)
og e

1§
1 +log(~——)log A
€

A

1-§
a ,thenlog (—— —X)=~—1/2
€

loge
hence,we have 6= 1/(2 log ¢) and this can be true if,
AZ((1-=¥8)/e)—2,
However, for any A, if 0= (1/log b), leads to satisfy
this proposition, therefore, 0= (1/log((1 —§)/e)—2)=
1/(2(log e—log(1—¥))), and this is will be true if
A<((1=%)/e)—2, this will lead us to select o, such
that, 0= minimum(1/ (2 log &), 1/(2(log e—1log
A=) =1/(2loge—1log (1-¥)). O
Assume we have a set of data items, such that,
7 ={z0,21,....ZN — 1}, distributed among the PEs,
according to an arbitrary permutation II of the
input set, A={ap,a,....aN—1}, such that Ii(a;)=z;.
Hence, Z represents the permutation set of the
input set A. Let us assume a subpermutation; X
such that XCZ. Therefore, we want to permute (i.e.,
have the bijection mapping) X on the PEs subset

<4>

represented by I'C®, such that each PE€T" has one
data element; z€X. Hence, according to arbitrary
permutation I, the set of data items corresponding
to that permutation is permuted by the PEs, which
assigns the data item, located in PE;, to II(PE;).
Hence, according to this permutation a data item in
PE;€l', moves a distance A, if a(PE;, II(PE;)=A,
(recall that A represents the minimum data
transfer necessary to transfer the one item from
PE; to II(PE)). Please note that, we are specifying
the distance between two PEs in the subset I', but
generally, the sequence of PEs used to measure the
distance, may be chosen from all elements of the set
.

The next step in our derivation is to find out the
Hamilitonian cycles, (i.e., each PE; there is at least
PEj, which is a logarithmic distance away.). We
have used the result of the following theorem, from
the graph theory[Di52] concerning with; how to
detect the Hamiltonian cycles.

Theorem[Di52]

A certain graph contains a Hamiltonian cycle, if
all vertices of that graph have a size of =3, and
every vertex has a degree of at leaste=(®/2). M

According to the above theorem we can have a
Hamiltonian cycles in a certain graph if the
number of the vertices of that graph is =3.
Therefore, this theorem helps us to construct
propos-4, which detects that, for each PE; there is
at least PEj, which is a logarithmic distance away.
Proposition 4

For any set of PEs such as I' C ®, there is a
subpermutation on I'; denoted as II, such that each
PE;€T transfer its data item a distance A, to
II(PE;), where A >gclog I. This can be true if there
is o such that o= 1/(2(log £ +log 2)).]
proof:

Using propos.3 , by letting £=1/2, we can find
0=1/(2(log e+log 2)). If we consider the graph
whose vertices is the set I', and its edges’ set is
denoted as B, such that, the edge (PE;,PE€E, if
J(PE;,PEj)>o0 log I. Then according to the propo.3,
every vertex has a degree of A, such that
A= LT/2+112T/2. Therefore, according the above
theorem, we can detect there is Hamiltonian cycle.
On this cycle we can find II(PE;) to be connected to
PE;. O

We have mentioned that the above proposition
shows that, any subsets of PEs can be permuted
such that each PE’s items is transferred to another
PE at logarithmic distance. However, if the data
items located on @ processors, are evenly
distributed such that every item in one PE, i.e.,
@ =T. Therefore, Prop. 4, can be useful by setting
® =T, such that all data items in PE; are
transferred to II(PE;), according to the permutation
II. Butin case we have ®>T, (i.e.,, N®>®) then we

at first, partition the set of the total permutation’s
elements of the set of the N input data items
located initially in the all PEs of ®@. Therefore, this
set which is denoted as; A, is partitioned into
different subsets such as, A1,Ag,..A;, where each
|Ai|=TN/®1, consists of one item from each PE in
I'iC®, such that, 1=i=p (p is the maximum
number of items in any group of PEs), and A; CA.
Please note this is also, the same for the output set
Z where Z=1I(A), according to the permutation
function II. Hence, every subpermutation is
assigned to a group of PEs such as T';, where, I';,C .
Therefore, for every group of PEs such as T, we
have a set of A;, which is permuted according to the
permutation function II, to have the output set of
Z;. Then, we apply propos. 4, to each subgroup of
PEs; T';, individually. Please note that, we have
assigned the large possible set of data items (i.e.,
greedy algorithm) to I';, and A;, in condition that,
the set A; or Z;, has at most one data item for any
PE in I';. Therefore, according to such partitioning,
and the applying of propos.4, to these different
partitions, we should compute then how much time
(the least time) is needed to execute the resulting
data permutation. Hence, the following proposition
is constructed for this purpose.

Proposition 5

The number of times needed to apply prop.4, to
have the permutation II, is at least, o(FN/®1) log
(FN/p7), where o has the same value resulted from
props.4. |
proof:

According to propos.4, any data item, a;, which
is needed to be transferred according to the
permutation, IT, such that, II(a;) =z;, needs at least,
o log |Aj], or o log |Z;], where, a;, z; belongs to A;,
Z;=TN/®1, respectively. Recall that, A; CA and
Z;CZ, for 1=i=p. However, we have ® data
transfers for the first application for propos.4,
therefore the number of times to apply propos.4,
necessary to have the permutation Il is (at least),

1 N
3 2 olajoglal;
but in order to'mimimize the summation of |A{] or
|Z;] for all i, where, 1= i=T'N/®1, we have applied
Lagrange multiplier argument such as:
IN/®7 FN/®)
Z lAil or Z |z|=N
therefore the r'iulmber of ‘tiine becomes, o(N/®)log
IN/mT. O

From these propositions we can have the
following lemma which gives us the lower bound’
needed to have the parallel permutation algorithm
executed on any degree ¢ of the parallel
computational model.

Lemma 2

<5>

The number of times needed to apply propos.4,
to permute the data items among ® PEs of degree
is at least, o(N/®) log @, where o here is, 1/(3(log e

+log 2)). ||
proof:
By the application of prop.5, the

subpermutation, IIy, for instance, requires, (by
applying prop. 5), at least (o1(TN/®7) log (®/p))
times, in order to achieve Il permutation, where
01=1/(2(log e+log 2)), and p, is the maximum
number of items initially located in any one PE.
Then, let us have the subpermutation IIg, such that
it needs p times by prop.4, in order to be
represented by PEs. Of course, the time needed to
have the permutation II is more than the time
needed for I11, and IIs. Therefore the number of
cycles needed to have the permutation IT is at least,
max((61(FTN/®1) log ®/un), p). After some
calculations, we can find that (o1(TN/®17) log
®/p)>p, when p=(2/3) o1 (N/®) log ®. Therefore,
setting 0=(2/3)01, we can have the lemma to be
satisfied. O

From the above results we can conclude that for
any permutation algorithm works on a parallel
computaional model of @ PEs where every PE has
degree of ¢, we have a lower time bound of Q((N/®)
loge ®). This bound is because the permutation
problem is not completely parallelizable on any
degree of parallel computational model, this is
because, if log e=0(1)log @ then e=@o(1),

We could see the lower bound for the parallel
permutation algorithm is as a function of the
number of data items needed to be permuted; N, the
number of processor consisting the computational
model; ®, and the degree of each processor e.
Therefore, the computational model has a big role
to specify how much fast the parallel permutation
can be.

We could see the lower bound for the parallel
permutation algorithm is as a function of the
number of data items needed to be permuted; N, the
number of processor consisting the computational
model; @, and the degree of each processor e.
Therefore, the computational model has a big role
to specify how much fast the parallel permutation
can be.

From now on, we will discuss the lower bound
given in the above result, on the parallel
computational model represented by the Cyclic
Cube Engine(CCE) given in previous paper[Ha88].
In that paper we have discussed a fast parallel
algorithm for the parallel permutation problem in
®(og N) time, assuming N= ®, (i.e., one item is per
PE). But for the CCE model which has e=3, we can

permute in parallel these N data items, when we’

have N» ®, such that each PE has x data items, for
N=(x ®). Therefore we want to implement the

parallel permutation algorithm which has the
lower bound given in the above results, on the CCE
model. Hence, we want to show that the CCE, can
permute in time of @((N/®) log N), when N> ® and
£2 3. Because it is clear that for parallel
computational model of e=1 or 2 and N=Q(Pe),
there is no algorithm to permute evenly distributed
data items in time of O((N/®) loge N). (Please note
that, we have discussed previously, the parallel
permutation algorithm on CCE when x=1.)

Therefore, in order to permute the data items
according to the permutation II, each data item of
the set A such as a; in PE;, should be transferred or
sent to the PE which has the value z;, as its
destination, i.e., PE(II(a;))=PE(z;). In order to
achieve this, we have represented the permutation
I1 by two dimensional matrix as & X x, such that
the row represents the PEs of the computational
model, and the columns represents the number of
data items per each PE. Therefore, every PE has x
data items from the total items N, where N=x,
Hence, we can do the permutation IT, such that, @
In each PE;(of each row in the representation
matrix) do the sub permutation on the local data x.
@ To each column apply the parallel permutation
algorithm given in previous paper x times, for
N=0&.® thesame as @.

The steps; @ and ® are sequential
permutations and need ®(x) time. While step @ has
to apply the parallel permutation algorithm x times
on @ PEs. Thus the total bound to implement this
algorithm is @(x log ®). To the authors
information, we do not know of a dynamic
permutation algorithm for N>® and has
complexity of @(x log ®).

lI.3. The Lower Bound Algorithms on the
CCE Model

This section represents, how the parallel
permutation algorithms are not completely
parallelizable on the CCE model and other parallel
computational models. Therefore, here we have
analyzed the lower bounds of those algorithms due
to its execution on the CCE model using the results
of the previous sections, to show that the
algorithms are optimal if their computational
bounds are within the bounds given in the previous
sections.

We have shown that, the CCE model is an N-
cycles cubic topology of 2k-PEs per cycle[Ha88].
We have shown there a control algorithm for our
objective network; Benes IN, when x=1, (recall
that x=N/®; represents the number of data items
per processor), Therefore, an arbitrary permutation
can be represented or realized in O(log N)
communication steps consisting of cube, inverse
cube, and transpositions which are supported by
the CCE model, and executed in time of O(1)

<6>

because of the direct connection. We have
researched here the case when x>1, such as when
N>®. Therefore, how much parallelism can be
gotten by ® PEs configured as CCE.

Let us compute and realize the computational
steps needed for permuting N data items between
® PEs, such that N> ®, according to the arbitrary
permutation; IT.

The first step in such realization is to set within
each PE the x data items of the pair (a;,z;) of
permutation II, recall that a; is the input element,
a,2¢N, and z=TII(a). Therefore, as were given in
pervious paper[Ha88], we sort or permute the
records of those pairs on each PE according to the
field z. As well as we have x data items in each PE,
and the destinations of these items are the ® PEs,
therefore, the execution time for such a step is
O(x+®).

The next step is to choose the data items which
have distinct z. As well as every PE is interpreted
as a vertex in a bipartite graph, therefore, the
choices of distinct z from every group represents the
complete matching in the graph terminology[Di52].
It is known that, the maximal matching in the
bipartite graph between the input vertices;
a{0,...x~1}reeeees »8{®—x,... 01}, and the output
vertices, 2{0, x— 1} Z{® —x,...d— 1} Tepresented by
the edges’ set according to the permutation II can
be executed in time of @(®2.5)[Di52]. As well as
among all PEs there are at most ®2 data items
which are needed to be relocated according to z.
Therefore the total execution time is O(®2.5(2)).

During these ®2 executions of the data items, a
total of x permutations are affected, which take a
time of @(x log @). Each PE then takes time of ©(x)
to permute its local subpermutation. Therefore the
total time for the parallel permutation algorithm
takes a time of; O(x+®)+0O(P4.5)+0O(x log
P)+0(x) = O(DP4.5)+0(x log ®), which is
optimal.if ®4.5+x log ®=0, then x= ®4.5/log P.
This bound computed here, is within the results
given in the previous sections.

IV. Conclusions

We have shown that the lower bound for any
parallel computational model of degree of ¢ can
permute its N data items with time of O(N/®) log,
@)) in condition that these data items are evenly
distributed, e= 3, and N=Q(®e). Hence, for CCE
model of e=3, we can permute in parallel,
according to arbitrary permutation, N data items of
N> ®, such that each PE has x data items where
x=N/®. However, we have discussed in a previous
paper[Ha88], a fast algorithm for the same problem
when N=@, such that each item is assigned per
PE. That algorithm has a bound of ®(log N) when

<7>

®=2n+% PEs where n=1loggN, and 2k is the
number of PEs per cycle of the CCE model.

REFERENCES:

[Di52] Dirac, G.A., “Some theorems on abstract

graph,” Proc. London Math. Soc., 69-81,

1952.

Gentleman, W.M., “Some complexity
results for matrix computations on
parallel processors,” J. ACM, vol. 25, pp.

112-115, Jan., 1978.

[Ha87] Hamid, I.A., et.al.,“A new fast control
mechanism for rearrangeable
interconnection network useful for
supersystems,” Trans. IEICE, vol. E70,
No. 10, pp. 997-1008, Oct. 1987.

[Ha88] Hamid, LA, et.al.,“A new Controlling
algorithm for Benes interconnection
network without symmetry-Construction
part,” Trans. IEICE, submittd to be
published in this issue.

[Hi86] Hillis, D., The connection Machine, MIT
press, Camdridge, Massachusetts, 1986.

[Kn72] Knuth, D.E., The art 6f computer
programming-Volume 1/ Fundamental
Algorithms, Addison-Wesley Publishing
company, 1972, (pp.104-108).

[Op71] Opferman, D.C., et.al., “On a class of
rearrangeable switching networks,” Bell
System Tech. J. vol. 50, pp. 1579-1600,
May-June 1971,

[Ge78]

