HEE7—+52755% 81—1
(1990. 3. 23)

ARTVS7ICATAIRE~ v B JHBEO— B 482 %

TA4¥ L ANIF. BB BRI 0O E—
It XK ¥ 8 R & & F %, '

T980 fliBsTHAF2-1-1

IFIT N TY XL OB, SR E T BHFIY R 7 L OMEBHERO L H 0 D KET B, 5
VRATLDERBMOII 2=y — v a Y REFT AT X ACEL CELT 20 C. BRETER
BN, 0L 2 EREWRET 20D RHE 2 b, RETI, Hxon ML CRE
L BHEBRGHE T O ICERT B2 II o THND, BEMIZE,. ADELTYS TRE &M
RIEAS 2 6 070, EETHMEEKEEO b AV EPT BT AL T) XL 2T 2, £
NP FoPERBELOLZDIIMHL, BEXRKLLN S,

A genetral Solution for the Optimal Mapping Problem on
Bounded Degree Graph

Issam A. Hamid Norio Shiratori ~ Shoichi Noguchi
Research Institute of Electrical Communication, Tohoku University
2-1-1, Katahira, Aoba-ku, Sendai shi, 980, Japan.

The performance of a parallel algorithms depends highly on the interconnection topology of the
target parallel architecture. The reconfigurable interconnection network can efficiently support
application algorithms of different communication requirements whose the communication pattern
change from one algorithm to another. In this research, we have presented an algorithm which can
generate a network topology which is optimal due to the communication pattern of a given task. This
algorithm generate a task graph with optimal topology that closely matches the optimal (i.e., high
cardinality) input task graph. The performance of these algorithms have been analyzed for proof of

optimality.

I
I

1-Introduction

Parallel computers have a big role in executing
complex real time tasks in efficient execution time.
But an extensive need is necessary to map the
parallel tasks on the parallel machine topology
efficiently without increasing the system
communication overhead for message handling
between these parallel tasks.

Suppose we have at hand a computational task
and to perform it we are also given a suitable
algorithm to be used. In addition assuming this
algorithm has been divided intc some number of
subtasks in away that some number of subtasks may
be run concurrently. As these subtasks run (on the
different processors) they may need to exchange data
amongst themselves, and it may not be possible to
start the execution of one subtask before the
completion of some other subtasks. If we can

estimate the extent of this data exchange, i.e.,.

communication between subtasks, and their data
dependencies, then we can estimate the general
behavior of the algorithm on the system.

The scheduling problem is how does one find an
optimum allotment.of these subtasks among the
processors so that the maximum possible speedup (or
equivalently some other performance parameters)
may be achieved.

Numerous authors have considered the problem
of allocating non interacting tasks in a distributed
environment. - They have not considered the effects
of data dependency or communication amongst these
tasks.

Several approaches to task assignment in
distributed computing system have been suggested.
They. can roughly classified into three categories,
namely graph theoretic, mathematical
programming and heuristic methods.

The graph theoretic method uses a graph to
represent a task and applies the minimal cut
algorithm to the graph to get the task assignment
with interprocess communication.

Bokhari [Bo80] showed that when assigning
tasks to the processors, pairs of tasks or module that
need to communicate with each other should be
placed, if possible on processors that are directly
connected. The property that characterize such an
assignment is known in graph theory as the
cardinality of the mapping, which is the number of
edges in the problem graph that fall on the links in
the system graph. In this case, all the problem edges
are considered identical.

2- The mapping problem in graph theory

Gp, represents the undirected graph related to
tasks problem such that: Gp=(Vp, Ep}, where
Vp, represents the set of modules (vertices)
representing the subtasks of task graph. Ep denotes
the communication requirements between these
subtasks.

I

Gg=(Vg, Eg), represents the system
configuration of the parallel model of machine
architecture, where Vg, denotes the set of processors,
and Eg, is the interconnection pattern between these
processors. Eg in our model is not statical because it
is assumed to be changeable with Gp’ configuration
such that to make the requirements of tasks graph
comply with the new processors topology represented
in our model by Benes interconnection network
which is capable to support N! bijection mapping,
where N is the number of input terminals t the
network{Ha88]. If we have Mp which denotes one-
to-one mapping between Vp onto Vg, then the
quality of this mapping is determined by the number
of edges, Ep that fall on processor edges, Eg. This
number is called Cardinality[Bo80] such that;

[Mp|= 1/2 T Gp(x,y) *Gs(Mp(x),Mp(3)).

" Cardinality refers to the number of data transfers
of the communicating subtasks falling upon
physically or directly connected processors. In other
words it gives a number indicating how well the
algorithm has mapped on the architecture in a
physical sense, It has been shown that the mapping
problem falls into a class of intractable problems
called NP-complete[Ah74].

Bokhari[Bo80] has assumed a fix topology,
therefore his problem is to map Gp onto Gg such that
to have a task graph be mapped on directly
connected processors, i.e., of maximum cardinality.
In our model we assume that; Gg is changeable -
according to the type of the permutations
representing the communication demands between
processors. - Such type of mapping is supported by
Benes IN whose control algorithm has complexity of

~ Otk logz N) where k=logeN, N=2n[Ha89]. Hence,

the degree of every vertex in Ggs is bounded due to
constant fanout of each processor connected to Benes

"IN. Therefore the problem is to map Gg such that

the resulted mapping has a bounded degree per
vertex.)

Spanning subgraph is a subgraph containing all
of the nodes of a graph G, which is connected if every
pair of nodes are joined by a path. A maximal
connected subgraph of G is called a connected
components of G. A factor of a graph is a subgraph
whose vertex set is that of the whole graph, If every
vertex of a factor has degree 7 then we call it an y-
factor. dg(x) is the degree of node x in G and
represents the number of edges in E(G) that are
incident with x.

A graph is regular of degree 7 if all vertices of G
isy. If a,b, are integers such that 0=a=b, then a G
graph is called an [a,b]-graph if a=dg(x) for all
x€V(G). A factor ¢ of G is called an [a,b]-factor if
a=dgx)= b, for all x€ V(¢). Ifa=0, and b=y, we call
such a factor a deficient y-factor. The deficiency 8, of
a deficient y-factor ¢ is; §=X y —dg(x). A maximal
deficient y-factor is an y-factor with the maximum
number of edges.

I

Spanning subgraph ¢ of a graph is called [a,b]-
factor of G if a= dy(x)= b for all x€ V(). A bridge of a
graph G is an edge whose removal increase the
number of components.

We call the assignment of task modules to
processors as; a mapping. ,

The problem of maximizing the number of pairs
of communicating modules that fall on pairs of
directly connected processors is called the mappmg
problem[Bo80].

3- The algorithm problem representation

Hence the problem can be stated as follows:

A connected and undirected graph Gg= {V(Gg),
E(Gg)} with N nodes. A set of N nodes V(P) and a
bijective functxon g: V(G) —V(P); and an mteger
r= 2.

Find a function ¢: V(P)X V(P) —{0,1}, such that
P={V(P), E(P)}, E(P) ={(u,v); c(u,v)=1} is a
connected graph with dp(v)=7 for all v€ V(P) and
cardinality of =|{u,v), (u,0)€E(G) and (g(u),
g(v)€E(p)} | is maximized.

G is a task graph that represents the algorithm to
be executed on the system. G is a graph= {V(@),
E(G)}, V(@) denotes the graph nodes, and E(Q)
denotes the graph edges. Nodes in the graph
correspond to individual tasks and an edge between
two nodes signifies that communication occurs
between these two tasks. The processor system is
also represented as a graph with nodes
corresponding to processors and edges corresponding
to communication links. The problem is to find the
set of edges that maximizes the number of pairs of
intercommuicating tasks that fall on pairs of directly
connected processors. At the same time because of
the limited number of links each processor can
access the degree of each node must be bound. The
resultant graph must also be connected since a
message sent to processor that is not directly
connected to a source processor, must be forwarded
through intermediate processors. graphs meeting
these conditions are called 7- degree constrained
connected graph. The problem is related to such
graphs. ,

Most of the above methods adopt some types of
cost function to evaluate the effectiveness of task
assignment algorithm. The most commonly used
cost function is defined as the sum of the interprocess
communication cost and the processing cost. But
these two types of cost are measured in different
units and it is difficult to give a reasonable meaning
to the resulting cost summation.

Then the problem can be represented as to
maximize the cardinality such that if the edge
(i,/)€Gp, and (Mp(i), Mp(j))€Gg, then Gp should be
maximized. '

Spanning subgraph is a subgraph containing all
of the nodesof G .

A graph is connected if every pair of nodes are
joined by a path. A maximal connected subgraph of

G is called a connected cbmponend; of G. A factor of
G is a spanning subgraph of G that is not totally
disconnected.

dg (x) degree of node x in G represents the
number of edges in E(G) that are incident with x. A
graph G is regular of degree y or simply y-regular if
dg(x)=y for all x€ V(G).

The graph follows the above conditions may
named as y-degree constrained connected graph,
which is NP-complete. But there is a. polynomial
time solution for such graphs if the restriction that
the resultant graph be connected is removed{Ah74].

This is accomplished by observing that the
number of edges in a maximal deficient y-factor of
(G) gives an upper bound on cardinality.

Such a maximal deficient y-factor can be found
using a ‘polynomial time graph matching
algorithm[Ga83].

Using this algorithm we develop an algorithm for
finding suboptimal y-degree constrained connected

graph. After finding a maximal deficient y-factor

the components of the factor are connected using
heuristics.

These heuristics which are developed .and
analyzed in the following, must guarantee that
discontinuties are not introduced when deleting
edges between nodes within a component.

A bridge of a graph is an edge whose removal;
increases the number of components.

(1) We note that if a component consists only of
bridge edges it is a tree and thus has at least two
nodes with degree one.

Hence (2) every regular graph with degree
greater than 1 has at least on non bridge edge
These two properties are used in the coming Th-l to
show that the algorithm is correct.

The idea of algorithm methodology :

(1) Find a maximal y-factor of G usmg a
polynomial time graph matching algorithm of
[Ga83]

(2) Use heuristics such that; the connected
components of the factor are then clustered into
larger components by adding edges between nodes
with degree less than r until no more components
can be combined in this manner. The resulting
components includes at most one nonregular
component and all other components are regular.

(3) The algorithm next selects the non regular
component if it exists or an arbitrary component
otherwise. Then it selects another component such
that there is an edge in the orlgmal graph G
between the two selected components.

Accordingly the function Joinl which is shown
in Fig.1, tries to merge these two components using
the edge in G.

If it is not possible to use that edge function
Joinl merges the two components by adding an edge
between the different nodes.

After the first two components are merged into a

component named as « the remaining components

are merged into w one at a time, using the function
Join2, shown in Fig. 2. '

Note that after the execution of the synthesis
algorithm there may still exist nodes with degree
less than y.

Edges can be added to these nodes however they
do not increase the cardinality.

In the following we have proved the synthesized
algorithm should be correct.

(1) The fact that every node in the resultant
graph has degree less than or equal to 7, is true, is
trivial since the algorithm adds edges between nodes
with degree less than y by removing edges first if
necessary.

(2) To show that the algorithm terminates is true,

note that the clustering step shown in Fig. 3,
terminates since the number of joined components in
a maximal deficient y-factor ¢ is finite and each
iteration reduces the number of nonregular
components in ¢ by one.
Similarly, the connection step terminates since there
is only a finite number of components in ¢, after
gathering and one component is removed after each
call to Join2.

To show the resultant graph is connected is true,

note that functions Joinl and Join2 remove only
nonbridge edges and thus they never partition
connected components.
Function Joinl connects ® and «’ since @’ is a
regular component and thus has a nonbridge edge
and @ has a node with degree less than y or has a
nonbridge edge. Thus an edge can always be added to
connect ® and w’.

Each time a regular component is connected to @
the resulting component is non regular.

Thus function Join2 also always successfully
connects ® and a regular component «’. Therefore
the resulted graph is connected.

The next step is to show that the algorithm has a
time complexity of O(N |E(G)|), N is the number of
nodes. i

By using the algorithm of Gabow[GaB83] a
maximal deficient y-factor can be found in O(V(N7)
|E(G))) time. Locating the connected components
can be done in O(E(@)]) time [Ah74].

Since there are at most N nonregular components
and since each iteration in the clustering step can be
performed in O(N2) time.

Determing whether all edges incident with a node
are bridges, can be done in O(y) time and locating a
nonbridge edge can be done in O(|E(G))) time.

Thus both Joinl and Join2 have a maximum
running time of O(E(G)|).

Since there are at most N components in ¢ the
connection step can be performed in O(N |E(G)|)
time. Therefore the total running time of the
algorithm is;)

O(V(Ny) |[E(@]+N2+NIE(@)| = OWNI|E@G)]).

4- Analysis of the synthesized algorithm

From now on we will discuss the analysis of the
synthesized algorithm from the worst case analysis
point view.

How close the topology comes to the optimum
topology. Since the optimum cardinality is not
known, then an exact answer is impossible.

However the cardinality of the maximal deficient -
factor is an upper bound on the optimum cardinality.
In addition, the loss in cardinality due to connecting
the connected components of the factor can be
bounded.

Hence, we can determine how close the topologies
generated by our algorithm come to realizing the
cardinality of an optimum topology in the worst case.

We first bound the maximum reduction in
cardinality due to the connection algorithm and then
show that the bound is tight.

Lemma 1 :

Let G be a non empty y-regular graph when
y=2, suppose G has a node u such that all edgesin G
incident with u are bridges then y must be greater
than 2 and G has more than 3(y +1) nodes.
proof:

If y =2 then G is a cycle and thus it cannot have a
bridge. Therefore y>2. Since u is incident with only
bridges and G is regular u must be adjacent to y
distinct y-regular component. Since the minimal
size of any y-regular component is (y+1) G has at
least y(y +1)+1 nodes which is greater than 3(r +1).

= ,

Theorem-1

Given a deficient y-factor ¢ the loss in cardinality
due to the connection step of the algorithm is less
than LN/(y +1)J1

proof:

Since the minimum size of a regular component is
(r+1) and since there is at most one nonregular
component after the clustering step there are at most
LN/(y+1)+11 components in ¢ immediately after
the clustering step.

The component w after Joinl is ‘nonregular
throughout each iteration of the second while loop.
Since w is nonregular each remaining regular
component can be connected to using the function
Join2 with cardinality loss at most one.

Thus it suffices to show that if the cardinality loss
due to Joinl is k where k=0,1 or 2, then there are
less than LN/(y + 1)1 —k regular components left in ¢
after Joinl. Let (ug,vg) where ug€w and vo€w’ be
the edge in G that is passed as an argument to the
function Joinl. Let (z,v) where u€® and v€w’ be the
edge added to connect w and w’.

When k=0: Since the regular component o’
connected to w using Joinl1 has at least (y +1) nodes
at most LIN—=(r+1)/(r+1)I1=LN/(r+1)1-1
regular components are in ¢ after Joinl.

When k=1:

l

Since o’ isregular an edge must be removed from
®". Thus k=1 implies that either @ (u,v) €E(G) and
an edge incident with u is removed from o or @
(u,v)€E(G) and the degree of u in » before Joinl is
less than 7.

In @ the fact that an edge incident with u needs
to be deleted implies that d,(z) =7 and thus o has at
least (y+1) nodes. Since w’ also has at least (7 +1)
nodes the resultant component must have at least
2(y +1) nodes. Thus at most LN —2(y+1)) / (+1)J
=LN/y+1)1-2, regular component are left in ¢
after Joinl,

In @ since Joinl tries to use the edge
(10,v0)€E(G) to connect » and o’ (u,v)¢E(G) means
that all of the edges incident with either ug€w or
vp€w’ are bridges.

The former implies that w’ has at least 3(y +1)
nodes from lemma-1.

In either case the resultant component has at least
2(y +1) nodes.

The case for k=2. Cardinality loss equals two
only if (1,0) ¢ E(G) and edges are removed from both «
and . Edge (u,v) €E(R) means either ug#u or
vg v or both.

If up# u then an edge is removed from o implies
that w is regular and all edges incident with u are
bridges. Thus » has at least 3(y + 1) nodes.(lemma-1)
similarly vp# v implies that ’ has at least 3(y+1)
nodes . Thus at most LN-3(r+1) / (y+1)1=
LN/(y +1)1—38, regular component are left in ¢ after
Joinl. | |

‘We should note that the loss in cardinality due to
the connection step of the algorithm is less than or
equal to the number of components in ¢ after
clustering. This is because the function Joinl
connects two components and reduces the
cardinality by at most two. Also, each call to
function Join2 reduces their cardinality by at most
one for each component.

Therefore the algorithm will performs better on
the average if the clustering minimize the number of
components.

One way to achieve this is to sort the components
of ¢ in decreasing order of deficiency and then
cluster components with the largest deficiencies
first.

There is another consequence result comes from
Th-1. Such that for a given task graph G, if
wopt(G,r) is the cardinality of an optimum -
bounded connected graph, and wAcn(G,r) is the
achieved cardinality of the given G and 7, then
©@4ch(Gs7) > wopt(G,y)—LN/(y+1)). This follows
from Th-1 because wQp:.(G,7) is less than or equal to
the number of edges in a maximal deficient y-factor.

Although our connection algorithm is not optimal
we can show that the worst case performance of our
algorithm equals that of any algorithm. That is for
every N and y there exists a graph with a maximum
deficient y-factor such that the connection of this
factor using any algorithm reduces the cardinality

by LNAy+1)1—1. We now explain how to construct
such a graph given N and 7. Letting m= LN/(y+1)l]
we first construct m y-regular graphs each with
(7 +1) nodes.

Then let G be the union of these regular graphs
and a connected graph called w with N—m(y+1)
nodes. We note that @ may be empty however if
exists it contains at least one node v such that
dg()<y . Choose one node from each of the m
regular components and label them as uu;,
0=i<m—1. Let Ey={(uo,v)] 1=i=m-1}.
G={v(@), E(@)U E U (ug,v) } where (ug,v) is omitted
if wis empty.

One maximal deficient y-factor of G consists of
the edges in the regular graphs and a maximal
deficient y-factor of w. This factor has LN/(y +1)1+1
(or LN/(y +1)J if w is empty) connected components.

The component with ug can be connected to w
without any loss in cardinality.

To connect the remaining LN/((y +1)1 —1 regular
components one edge has to be removed from each of
them. Hence the total reduction in cardinality is
LN/(y+1)J-1.

For graphs constructed as above we now show
that any connection algorithm will reduce the
cardinality by the bound given in Th-1.

First at least one edge to be removed from each
regular component.

Second the only edges that increase the
cardinality during the connection step are those
incident with ug,

Third an edge incident with up cannot be used
without first removing another edge incident with
uo. Hence the connection of each of the y-regular
components except the one with ug to another
component will decrease the cardinality by at least
one. We next bound the worst case cardinality of a
maximal deficient y-factor of [a,b]-graph.

There are three cases to consider depending on
the values of a and b.

The first case is for a=y and b=y. Here the
cardinality obviously equals [E(G)|.

The second case is fora>y, and b>7.

The third caseisfora<yand b =Z7y.
The following four theorems analyze those such
cases.

For these theorems a certain result has been used
from [Bo74] as follows. In the case where G is an
(y +1)-regular graph a maximal deficient y-factor
can be generated by first finding a maximal 1-factor
¢ of G and then deleting the corresponding edges of ¢
from G. After deleting these edges G has 2|E(¢)]
nodes with degree y and N —2|E(¢)| nodes with
degree y+1. From each of the nodes with degree
(7 +1) we delete an edge. The deletion of an edge

)

from each node with degree (y+1) results in a

deficient y-factor. The deficiency of the resulting
factor is less than N -2 |E(9)|. Thus to bound the
deficiency we need to know the smallest value that

=5=

|E(d)| can be taken. This value has been studied
thoroughly by [Bo74] due to the following lemma.
Lemma 2 [Bo74])

Define a function m.(N,y,A) on the set of all N-
node y-regular graphs with A edge connectivity to be;
me(n,y,M)= min { B1(G): |[V(@®)|=N, G is y-regular
and A edge connected }, where B1(G) is the number of
edges in a maximal 1-factor of G.

Define, mc(r)=7'(y2—-27)+2(y 1)/ (2("'(y2—27)+
7(r—1))), where 7’ is the least even integer not less
than y. If 7 is odd then m(N,7,1)= Lm ()N —1/21if
y is even of A>1 when y is odd then,
me(N,7,0)Z min{LN/2J, N(ry’+2X) / 2(r(y’ + 1)+ X’
)} where X’ is the least even (or odd) integer not less

than A if y is even (or odd). n
Th-2 is a consequence from the above lemma[Bo74]
and given without prove.

Theorem-2

If G is an (y+1)-regular graph then a maximal
deficient y-factor has deficiency
8= N—-2m,N,r+1,) |

Several observation make it easier to predict the
behavior of the equations in the preceding theorem.

The first observation is that the maximum
possible number of edges in a 1-factor is LN/2J.

The second observation, that the number of edges
in a 1-factor increases with the edge connectivity of
the graph until it reaches the maximum value
LN/2J. The bound on the number of edges also
increase as y increases.

As an example of the range of values that the
equations in the above lemma, takes on, let us
consider graphs with y =4 and edge connectivity of
one. Here, 2m.(N,4,1) = 5N/11 and hence, the
efficiency of an y-factor of an y+1-regular graph
varies between 0 and approximately N/11.

The next lemma taken from [Ka83] and our Th-3
establish bounds for [a,b]-graphs where both a and b
are greater than y. In any case Th-3, holds only
when b is close to a.

Lemma 3 [Ka83]

Let0=k=gq,0=s,and 1=t. If(ks)=(at), thenan
[a,a+ sl-graph has a [k, k+t]-factor.]
Theorem-3

Let G be an [a,a+sl-graph with N nodes if s+0
and y —1=a/s, then there exists a deficient y-factor
with deficiency = N.
proof:

Let G be a graph meeting the conditions of the
theorem and let t=1 in Lemma-3, from which there
exists an [y —1, y]-factor ¢ of G.

Let Ri={x: x€V(G) and df(x)=y—1}, and
Ro={x:x€ V(@) and dr(x)=y}, § is maximum when
|R1|=N, and |Rg|=0, which implies §= N. []

‘The next theorem bounds the least number of
edges a maximal deficient y-factor can have for an
[a,b)-graph G where a<y and b=7.

Note that, since some nodes of G have degree less
than 7, the most number of edges any maximal
deficient y-factor can have, is

2 min(dg(x), 7).
Theorem-4

Suppose G is an [a,a+s]-graph where a<y and
ats>y.

(1) If y~1=y/(a+s—7), then there exits a
deficient y-factor ¢ such that
Z min(dg(x),r)—Z dgp(x)=N. (1)

(2) If y—1> y/(a+s—r), then there exists a
deficient y-factor ¢ such that;

Zdg(x) 2 X (r—1—(d—dgu))+(=1) | {x€V(G):
dglx) Z d}f (2)

Where d is the least integer such that (y—1) =
d(/a+s—d) and S={u€V(@):dg(u)<d and d—dg(u)
<r}
proof:

To show these bounds we embed G into an
[2,a+s]-graph G such that every node x€ V(G) with
dg(x)<zhasdegreezin G. '

The embedding of G into G is accomplished by
adding extra nodes to G, and then adding edges
between these extra nodes and the nodes in G with
degree less than z. We let z be y for (1) and d for (2).

(1) y—1=y/a+s—7) embed G into an [y, a+s}-
graph G’. Let U be the set of edges in E(G’) that are
not in E(G). Since y —1=y/(a+s—7), lemma-3 states
that theye exists an [y —1,7}-factor ¢’ of G°. Define
F={V(®),E(G)NE(d)}. For each node x€G with
dg(x) <7y there are 7 —dg(x) edges incident with x in
U. Since dgp(x)=7r—1, we have dp(x)Zdgx)—1.
Furthermore for all nodes x€G with dg(x)= 7, we
have dp(x) = y —1. Therefore (1) follows.

(2) y—=1>yla+s—y), embed G into an [d,a+s]-
graph G’ and define the set U as in part (1). Since d
was chosen to satisfy y —1=d/(a+s—d), lemma-3
states that there exists an {y —1,y]-factor ¢’ of G’
Define ={V(G),E(G)NE($"}

Let x be a node in G with dg(x)<d, if d—dg(x)
=y, then all of the edges of ¢’ incident with x can be
in U.

Here, dp(x) 2 y—1—(d—dg(u))), where S=
{u€V(): dg(u) <d and d —dg(u)<y}.

Furthermore for every node y such that dg(y)= d, we
have dp(y)= 7 —1. Therefore, (2) follows.]
Theorem-5

If y —1=y/a+s—7y), then the difference between
the maximum number of edges a deficient y-factor
could have, and the number of edges it might
actually have, is less than or equal to N, the same
results as obtained in Th-5.

This is surprising since in Th-6 some nodes have
degree <y whereas in Th-5 all nodes have degree
greater than y —1.

If both a and b are greater than y but b is such
that Th-3 does not apply we can bound the least
number of edges in a maximal deficient y-factor by
using the embedding technique of Th-4. This bound
is shown in the next theorem.

Theorem-6

Let G is an [a,a+s]-graph whereaZ 7,7 —1> als,

and if d is the least integer such that y~1 = d

=6 =

fla+s—d), then there exists a deficient y-factor ¢
such that, Zdy(@Z Z(r —1—(d—dg(u) +(r—1) |
{x€V(@):dg(x)Z d}|, where s = {u€ V(Q): dg(u) <d and
d—dgu)<r}.

Proof:

Embed G into a [d,a+s]-graph G’. Since d was
chosen to satisfy y —1=d/(a+s—d), lemma 3 states
that G’ has an [y —1,7]-factor. The rest of the proof is
the same to the case that of y —1>y/(a+s—7), case
of the previous theorem. |

Eq-2 in theorem-5 and eq-3 in Th-6 show that if
the difference between the minimal degree and
maximal degree of node in a graph is large then the
least number of edges a maximal deficient y-factor
can have is small,

Consider for example the star graph G on N
nodes, It has a minimal degree of 1 and a maximal
degree of (N —1); the number of edges in a maximal
deficient y-factor of G is only 7.

The lower bound also depends on the relative
number of nodes with minimal degree that is the
more nodes with degree less than 7 or d the smaller
the bound becomes.

Conclusion

Algorithm given here generates a network
topology for a given task graph. Its analysis has
given the best, worst and average cases performance
behavior of it.

On average case it was shown that the algorithm
produces almost optimum topologies with respect to
cardinality. The algorithm uses an arbitrary
mapping between tasks and processors. One
alternative mapping would entail sorting the tasks
and processors according to its degree. A task would
then be mapped to the processor with the same
relative degree.

The use of reconfigurable networks allows one to
select the network topology that closely matches the
communication requirements of the algorithm to be
executed.

References

lAh74] Aho,A. V., et.al., The design and analysis of

computer algorithms, Reading,

MA:Addison-wesley, 1974,

Bokhari, S., “On the mapping problem,”

IEEE, Trans., Comput., vol. C-30., pp.207-

214, March, 1981.

Bollobas, B., et.al., “Maximal matchings in

graph with given minimal and maximal

degree,” in Proc. Cambridge Phil, Soc., vol.,

79., 1974, pp.221-234.

[Ga83] Gabow, H.N., “An efficient reduction
technique for a degree-constrained
subgraph and bidirected networks flow
problems,” in Proc., 1983, ACM, Symp.,
theory Comput., 1983, pp.448-456.

[Ka83] Kano, M., et.al.; “[a,b]-factors of graphs,”

[Bo81}

[Bo74]

Discrete Math., vol. 47. pp.113-116, 1983. B

|Le88] Lee, I, et.al., “A synthesis algorithm for
reconfigurable interconnection networks,”
IEEE, Trans. Comput., vol.37, No.6, June,
1988, pp.691-699.
[Ha87] Hamid, I.A., et.al.,“A new fast control
mechanism for rearrangeable
interconnection network useful for
supersystems,” T'ran. [IEICE, vol. E70 No.
10, Oct. 1987, pp. 997-1008.
Hamid, I.A., et.al.,“A new controlling
algorithm for Benes interconnection
network without symmetry,” Trans.,
IEICE, vol.E71, No.9, E71, Sep., 1988,
pp.895-904.
Hamid, I.A., et.al.,“A new fastparallel
computation model for setting Benes
rearrangeable interconnection network,”
Trans., IEICE, vol. E72, No.4, April, 1989,
pp.393-405.
Wittie, L., “Communication structures for
large networks of mircocomputers,” IEEE,
Trans., Comput., vol.C-30, pp.264-273,
April, 1981.

|Ha88]

[Ha89]

[Wis1]

Acknowledgment

This research has been done when the first
author was with NEC, Tohoku software group under
a visiting fellowship program sponsored by NEC.
Much thanks go to NEC Tohoku software group,
which has giving me such research environment.
Also, much thanks go to the research group of the
large computer center of Tohoku University, for
their various assistance.

7=

Function Joinl(w,»’: Component, e:edge):
/* ® may not be regular */
/* @’ is always regular */
/* eis an edge between w and @’ */
begin
let (/) be edge e, where i€ V(w) and j€ V(w")
if dg(i) =7, and all (/") in @ are bridges then
if there is a node ii in w such that
d(if) <7 then
Let i be ii else choose a non-bridge
edge (x,x") in @
/* @ isregular */ Remove (x,x)
letibex
end if
else
if dj(i)=7 then remove a non bridge edge
(i,0) from @
endif
ifall (j’) in @’ are bridges then choose a non-
bridge edge (y,y") in &’
remove (y,y")
letjbey
else remove a non-bridge edge (j;') from &’
endif
connect ® and w’ by adding edge (i,j)
return the resulting component
end Joinl

Function Join2(®,0’:component): component
/* @ is always non regular */
/* @' is always regular */
begin
find i in © such that d(i) <y
find a non-bridge edge(j ') in &’
remove (jj') from o’
connect ® and &’ by adding edge (i,j)
return the resulting component
end Join2

/* Joining Algorithm; connect components by
adding and deleting edges */
if there is a non-regular component in F then
let w be it else
Let wbe any component in F'
endif
Remove dJ from F
Find &’ in F such that thereisan edgeein G
between G and G'. '
Remove J’ from F, J: =dJoinl{w,»’,e)
while there is a component in F do
choose any J” from F, remove o’ from F,
w:=Join2(w,w’)
endwhile

Input= aconnected graph and an integer
r=2

Output= an y-degree constrained connected
graph. '

Use a matching algorithm to find a maximal
deficient y-factor of G
Let F be a set of connected components in the
factor.
/¥*Gathering Algorithm--Gather components
by adding Edges only */
While there is more than one-regular
component in F do '
Choose any two non-regular components
w)andwgin F
Remove w1 and wg from F
Find a node x in 01 such that dg, (x)<r
Find a node y in wg such that dg,(x) <y
Connect 01 and wg by adding edge(x,y)
Add the new component to F.
End While

