AERT —FF I F+ 98- 4
#* & H B { 65-4
(1993. 1. 21)

SREBIEHNSNEXEBHE_FRES S 7%
S e HDIFELT LT Y R 4

B et L Z—1 FE fE=1
T IEIREE TRES R
I FERSE KRB v v 2 —
T 606-01 FER T Z2 X o FHAH]

o E L
HADREY 7 7 GEREIEE 24 3 v 7R3 ISR OREHREE. 7 % MER. BRESRA ¥ 0SB CIEEA < F
AEhtwse Lol 5 REBSZEEIC . 5 LSO EFRAROMN L T 2 2 0EFARCAE AEEL 4 -
T\njeo ARSTREMFEO “REE LICHIIE Nck & RitE 20 E 7 7 7 % BIRR CERET 2 D OIEESE T+
Y R %R_RT b0 7—27 AF—3 =2 ¥ Sun SPARC Station 2 _FIKSEE LT 500MB ~— F7 4 2 7SR FIH LT
iz o TR TIE, PIZE 14 ¥y VREBORBEIRS b Ch oL T o IRERIE Y £+ 58 ZMReEr 5 7 287
FHEICIER T2 € 2 3 C R oo ATHEIC LY REEBIE RS 2 7 4O TRHER K E K22 b0 e i E n B,

XF—7—F ZHREST 7, TIRFCHE. RERS. REHREE

A Secondary Storage Oriented Breadth-First
Algorithm for Manipulating

Very Large SBDD's

Hiroyuki OCHI', Koichi YASUOKA! and Shuzo YAJIMA'

t Department of Information Science
Faculty of Engineering

{ Data Processing Center

Kyoto University, Kyoto 606-01, Japan

Abstract

Boolean function manipulators based on Shared Binary Decision Diagrams (SBDD’s) are widely utilized in formal
design verification, etc. Iowever, in many applications we have to give up to prove large-scale problems due to
the limitation of the size of the main memory to store SBDD’s. We propose a breadth-first algorithm for efficient
manipulation of very large SBDD’s stored in the secondary storage. This proposed algorithm is implemented on the
workstation Sun SPARC Station 2. Using 500MB hard disk space, an SBDD for 14-bit multiplier is constructed in
7 hours from a circuit description. The developed technique for SBDD manipulation is expected to enable us much

larger and more complex design.

F key words Binary decision diagram, secondary memory, Boolean function, design verification

1 Introduction -

Boolean function manipulation is one of the most essen-
tial operations in various applications of Computer-Aided
Design (CAD) of digital systems. Because the efficiency of
Boolean function manipulation is closely connected with
the representation of Boolean functions, various represen-
tations of Boolean functions have been proposed. A Shared
Binary Decision Diagram (SBDD) is a graph representation
of Boolean functions [1][2]. Because of its excellent prop-
erties to realize efficient Boolean function manipulation,
SBDD’s are widely used in various applications, including
formal design verification, test generation, logic synthesis
and so on.

At present, SBDD manipulators are, in inost cases, im-
plemented on workstations [3][4]. The recent progress in
VLSI technologies, however, requires to manipulate larger-
scale Boolean functions. The maximum size of the SBDD’s
which can be manipulated on workstations is limited by
both the required time for manipulating SBDD’s and the
required memory to store SBDD’s. In order to reduce the
computation time, the use of parallel machines or connec-
tion machines [5] and the use of vector supercomputers [6]
have been proposed. However, yet in many applications
we have to give up to prove large-scale problems due to the
limitation of the size of the main memory to store SBDD’s
rather than the computation time. In order to reduce the
size of SBDD’s, attributed edges have been proposed [3][4].
Ordering of the input variables has been also studied by

many researchers.

In this paper, the use of the secondary memory, such
as the hard disk of workstations or the semiconductor ex-
tended storage of vector supercomputers, is considered in
order to manipulate very large SBDD’s which is not able to
store in the main storage. In contrast to conventional al-
gorithms that are based on depth-first manipulation which
causes the random access of the memory, this proposed al-
gorithm is based on breadth-first manipulation; SBDD’s
are manipulated level-by-level. The nodes of a level are
recalled from the secondary memory in one lot, then the
operations for the nodes of the level are performed in the
main memory, and the nodes of the level are stored to
the secondary memory together. This breadth-first algo-
rithm is effective to reduce the overhead due to the access
to the secondary memory, because it requires small num-
ber of the accesses for large data blocks in the contiguous
space of the secondary memory rather than frequent ran-
dom accesses for simall data blocks scattering in the space
of the secondary memory.

We implemented and evaluated the proposed algorithm
on the workstation Sun SPARC Station 2 with 64 mega
byte main memory and SCSI hard disk. More than 28 mil-
lion nodes can be allocated within 500 mega byte virtual
memory space, and an SBDD representing the primary out-
puts of the 14bit multiplier can be constructed from the
circuit description in about 7 hours. If the conventional
SBDD manipulator manipulates the SBDD stored in the
virtual memory space which is much larger than physical
main memory size, it is estimated that it takes about 35
times longer time than our manipulator.

{c) Binary Decision Trees

Fig. 1. An SBDD, a Quasi-Reduced SBDD
and Binary Decision Trees

2 Preliminaries

2.1 SBDD

A Shared Binary Decision Diagram (SBDD) is a rep-
resentation of Boolean functions using an acyclic directed
graph [1][2]. An example of an SBDD is shown in Fig.
1(a). This graph represents four Boolean functions corre-
sponding to four root-edges. The node pointed to by the
root-edge of a Boolean function is referred to as root-node
of the Boolean function. There are (at most) two sink
nodes, leaf-nodes, which are labeled with 0 and 1. Every
node other than leaf-nodes, called internal-node or simply
node, is labeled with a Boolean variable. Every node has
exactly two outgoing edges. They are labeled with ’0" and
’1’. They are called 0’ edge and I’ edge, respectively.

In this paper, we consider quasi-reduced SBDD’s (Fig.
1(b)) in order to allow the level-by-level manipulation.
Quasi-reduced SBDD is defined as the directed acyclic
graph obtained from the binary decision trees (Fig. 1(c))

by repeating the following transformations until they are
not applicable.

o Share isomorphic sub-graphs.

o Delete every node both of whose "0’ edge and ’1’ edge
point to the same leaf-node.

If all those nodes both of whose "0’ edge and ’1’ edge point
to the same internal-nodes are deleted, then an SBDD is
obtained. Note that no Boolean variable appears more
than once in every path of an SBDD, and the variables
appear in a fixed order in all the paths of an SBDD. An
integer number, called level, is assigned to every Boolean
variable with respect to the ordering of the variables in
an SBDD. This assignment corresponds to the ordering
so that a variable nearer to the leaf-nodes has a smaller
number. We denote the variable with level ¢ as x;. The
above statements are also true of quasi-reduced SBDD’s.
Quasi-reduced SBDD’s are different from SBDD’s in the
following points;

e Every 0" edge and ’1’ edge of a level ¢ node points to
either a level ¢ — 1 node or a leaf-node.

e Root-nodes which are externally referred to by users
have the common level, called level_maz, except the
root nodes which represent 0 or 1.

o There may be nodes whose ’0’ edge and '1’ edge point
Yy g ge p

to the same internal-node. We call such nodes as
redundant-nodes.

SBDD’s and quasi-reduced SBDD’s have following excel-
lent properties:

e Canonical, i. e. there are no two root-edges of a graph
which point to the different nodes and yet represent
the same Boolean function {1}{2].

The size of the graph is feasible for many of the prac-
tical Boolean functions.

The manipulations for various operations on Boolean
functions represented by an SBDD (or a quasi-reduced
SBDD) can be done in time proportional to the num-
ber of the nodes of the graph [2]. Therefore Boolean
functions represented in the feasible size can be ma-
nipulated in feasible time.

The equivalence of two Boolean functions can be
tested simply by comparing the root-edges correspond-
ing to the functions.

We denote the sub-function of Boolean function f, which
is obtained by substituting 0 (1) for the variable z;, as
fla; = 0) (f(a; = 1)), or simply fo (f1) if z; is obvious
from the context.

2.2 A Conventional Algorithm for Manipulating
SBDD’s

The principal tasks of Boolean function manipulators are

(1) comparison of two Boolean functions,

(2) the unary operation for a Boolean function (i. e., NOT),
and

(3) binary operations for Boolean functions, including
AND, OR, EX-OR, and so on.

If the Boolean functions are represented by an SBDD,
(1) can be achieved simply by comparing two root-edges of
the given functions. (2) is also easily realized if output in-
verters [3] are employed. The major focus of the remaining
sections, therefore, is placed on algorithms to achieve (3).

h=AND(f, g)

Fig. 2. Conventional Recursive Algorithm

For example, let us consider a conventional recursive al-
gorithm [3][4] for generating the graph that represents the
Boolean function A=AND(f, g), where f and ¢ are Boolean
functions represented by a given SBDD with two root-edges
e; and e,. We denote the levels of the root-nodes of f and
g as Ly and L, and let L, = maz(Ly, L,).

[A Conventional Algorithm for AND]
Examine the given two edges, e; and e,, and execute one
of the following statements.

(1) If e or e, point to the leaf-node 0, then return the
edge pointing the leaf-node 0.

(2) Ifes (eg) points to the leaf-node 1, then return ¢, (ey).
(3) If €5 = €, then return e;.

(4) Otherwise, compute the root-edges of h(zr, = 0) =
AND (f(zg, =0),9(zz, = 0)) and h(zy, = 1) = AND
(f(zr, = 1),9(zr, = 1)), recursively. Then examine
the root-edges of h(zp, = 0) and A(zg, = 1) and
execute one of the following statements.

(5.1) If h(zp, = 0) = h(zy, = 1), then return the
root-edge of h(zy, = 0).

(5.2) Otherwise, generate a new root-node for £ whose
level is Lj, and whose '0’ edge and ’1’ edge point
to the root-node of h(zy, = 0) and h(zg, = 1),
respectively (Fig. 2).

Before generating a new node in (5.2) of the above algo-
rithm, it should be examined whether there exists a node
whose level is L, and whose '0’ edge and '1’ edge point to
the root-node of hy and hy, respectively. If such a node
exists, this old node must be used instead of generating a
new node. This task is crucial for keeping SBDD canonical.
For this purpose, a hash table, node-table, is introduced to
manage all the nodes of the graph. The keys of the node-
table are the level, ’0’ edge and ’1’ edge of a node.

Another hash table, opcration-result-table, is introduced
to avoid repeating the same operations. The keys of the
operation-result-table are a Boolean operator (e. g. AND)
and given two edges. Every time when (5) of the above
algorithm is completed, the result is registered to this ta-
ble. Execution time for the statement (5) is saved when
the result is found in this table before executing the state- -
ment (5). This table is not only effective but also essen-
tial especially when there are many reconvergences in the
sub-graphs of the given functions. The simple example
is shown in Fig. 3. Let us consider the case of computing
AND(f,g). According to the above algorithm, one must ob-
tain AND(f(z35 = 0),¢) and AND(f(z35 = 1),¢). In order
to obtain AND(f(x3s = 0),g), both AND(f(x3s = 0,733 =
0).g) and AND(f(235 = 0,233 = 1),g) are required, while
in order to obtain AND(f(x35 = 1),g), both AND(f(z35 =
1,233 =0),9) and AND(f(x3s = 1,233 = 1), ¢) are required.
Because f(a35 = 0,233 = 0) is equal to f(zg5 = 1,755 = 0),

the result of AND(f(235 = 0,z33 = 0),g) can be reused as
the result of AND(f(z3s = 1,733 = 0),¢) if the operation-
result-table is introduced.

X e =0) =
{Kgs=1, X,g=0)) ¥a=t)
023520, X,i=0)

Fig. 3. Effect of the Operation-Result-Table

2.3 Secondary Storage

Today, almost all general purpose computers have sec-
ondary storages which have much larger capacity than
main memories. - In this paper, we assume the following
devices as the secondary storages.

Hard disk of workstations

One of magnetic memory devices whose capacity is hun-
dreds of mega bytes or more. In section 4, we will show
the experimental results on the workstation Sun SPARC
Station 2 (SunOS 4.1.1) with 64 mega byte main memory
and SCSI hard disk drives, using the hard disk implicitly
as the physical memory device of the virtual memory space
supported by OS.

Fig. 4 shows the result of the following simple benchmark
program for estimation of the transfer rate of the hard disk
compared with that of the main memory.

void mwrite (mem, bytes, data)
int *mem, bytes, data;

{
int i
for(i=0;i<bytes/sizeof (int);i++)
’ mem[i]=data;
} Ellnnd“mno
{vec)
°
°
100 °
°
°
°
10 o

Transfer Rate 3
(MB / 30c)

g L 20
Secondary Storage
s Dominated 20
................. %ty 137
- 10
” R s s u oc
10 2 30 40 5060 B0 100 = w00
(mega bytes)

Fig. 4. Transfer Rate of Secondary Storage
v.s. Main Memory

Elspsed Time @

(sec)
0000g000p00
100 | °
L]
Transter Rate 86
(M8 sec)
10}
» - 14
- 12
| 10
| 08
- o5
| 04
-
- 02
* *
U™ .

e p—————— T e
12 4 816 32 64 126 256 512 1024, 4096 STEP
(words)

Fig. 5. Transfer Rate of Hard Disk for Sparse Data
(Array Size = 400 mega bytes)

From Fig. 4, the average transfer rate of the hard disk
is approximately 1.37 mega bytes per seconds, while that
of the main memory is about 5.3 mega bytes per seconds.
Therefore, the transfer rate of the hard disk is about 1/4
of the transfer rate of the main memory.

Fig. 5 shows the result of the other benchmark program
as follows in order to examine the relation between transfer
rate and data density.

void mwrite(mem, step, data)
int *mem, step, data;
{
int 1i;
for(i=0;i<400%1024%1024/sizeof (int) ;i+=step)
mem[i]l=data;

Y

From Fig. 5, elapsed time is independent of the data den-
sity when step is not greater than 1024 words (1 word = 4
bytes). This is because the transfer between main memory
and the hard disk is performed by a block transfer of con-
tiguous 4096 byte space. The minimum unit of the transfer
between main memory and the hard disk, 4096 bytes, is
called page. In order to keep the maximum transfer rate,
every transferred page should be filled with actually used
data.

Semiconductor extended storage of vector super-
computers

A secondary memory made of semiconductor memory de-
vices, such as DRAM’s. Its capacity is several giga bytes.
Similar to the hard disk of workstations, the transfer be-
tween main memory and the semiconductor extended stor-
age is performed by a block transfer of the page. The page
size is one kilo bytes or more, and the access time overhead
is relatively great, as discussed above.

3 A Breadth-First Algorithm for Ma-
nipulating SBDD’s on the Secondary
Storage

As mentioned in the previous section, the conventional
algorithm for manipulating SBDD’s is based on a recursive
procedure (i. e. depth-first algorithm). On the memory
access during the depth-first algorithm, the following can
be said;

Fig. 7. Reduction Phase of the Breadth-First Algorithm

o The access to the nodes causes random access, because
there are so many traversal order of the nodes for so
many root-edges.

o The access to the operation-result-table and the node-
table causes random access, because they are hash ta-

bles.

In this section, we propose a breadth-first algorithm for
efficient manipulation of SBDD’s stored in the secondary
storage.

The proposed algorithm consists of two parts; an ez-
pansion phase and a reduction phase. In the expansion
phase, new nodes that are sufficient to represent the re-
sultant function are generated in a breadth-first manner
from the root-node toward the leaf-nodes (Fig. 6). In
the reduction phase, the nodes generated in the expansion
phase are checked and the pseudo-leaf nodes and the non-
unique nodes are removed in a breadth-first manner from
the nodes nearby the leaf-nodes toward the root-node (Fig.
7). The nodes generated in the expansion phase are called
temporary nodes, while the nodes which already exists are
called permanent nodes. In order to allow the level-by-level
manipulation, the proposed algorithm manipulates quasi-

reduced SBDD’s.

3.1 The Expansion Phase

An input for the expansion phase is a triple (op, e,
€,), where op is a Boolean operator to be executed, and
es and ¢, are root-edges of operand Boolean functions
represented by a quasi-reduced SBDD. We refer to this
triple as a requirement. The requirement (op, ey, e,) re-
quires to compute a root-edge of the resultant function of
op(f.g). During the processing of the requirements of the
level 4, new requirements of the level i — 1 will be gener-
ated for computing the operations between sub-functions

of the operand functions. Actually, every requirement cor-
responds to a procedure call in the depth-first algorithm.
We introduce a queue, a requirement queue, for each level
in order to manage these requirements, making our proce-
dure breadth-first. (The procedure would be depth-first if
we use a stack instead of the queue.)

For the given requirement (op, €;, €,), 2 new root-node
is not always generated. A new node should not be gen-
erated if a node representing the result of op(f,g) already
exists. For example, if the result of op(f, g) is found trivial
(vefer to (1)-(3) of the conventional algorithm), or deter-
mined by looking up the operation-result-table, a new node
is not generated. In these cases, a judgement can be made
immediately from e; and e,. There are cases, however,
where the existence of the root-node of op(f, g) cannot be
determined until the whole graph for the sub-functions of
op(f, g) is constructed. In the proposed breadth-first algo-
rithm, a temporary node is generated in such cases. We
examine whether this temporary node is actually essential
or not in the reduction phase.

The following procedure is executed in the expansion
phase. Initially, a requirement queue is empty, and there
is no temporary node.

[The Expansion Phase of the Proposed Algorithm)]

(1) Put the given requirement (op, ¢y, ¢,) to the require-
ment queue of level level maz.

(2) lev = level-maz

(3) Execute one of (3.1), (3.2) or (3.3) for every require-
ment in the queue of the level lev.

(3.1) 1f the root-node representing the result of op(f,)
is found trivial, then attach the edge pointing to
the node as the result of the requirement.

(3.2) If the root-node representing the result of op(f, g)
is found in the operation-result-table, attach the
edge that is found in the table as the result of the
requirement.

(3.3) Otherwise, generate a new temporary node of
level lev and attach the edge pointing to the tem-
porary node as the result of the requirement. At
the same time, register the edge pointing to the
temporary node to the operation-result-table as
the result of op(f,g) and put new requirements
(op, fo, 90) and (op, f1, ¢1), whose result will be
'0” edge and '1’ edge, respectively, of this tempo-
rary node, to the requirement queue of the level
lev — 1.

(4) lev=1lev—1

(5) If the requirement queue of the level lev is not empty,
then go to (3).

Note that the temporary nodes must be registered to
the operation-result-table in the expansion phase in order
to avoid repeating the same operations.

Also, note that the total number of requirements pro-
cessed in the above procedure is the same as the number
of procedure calls in the conventional depth-first algorithm
and, thus, there is no serious increase in the computation
cost. The only drawback of this algorithm is an increase of
the number of nodes because of quasi-reduced SBDD.

The procedure explained so far is effective for the quasi-
reduced SBDD’s stored in the secondary storage if all the
nodes of every level are stored together in a contiguous

location in the secondary storage. We can execute the re-
quirements of the level 7, only if nodes of the level i and
the level ¢ — 1 are in the main memory. Furthermore, if we
use multiple operation-result-table, one table per a level,
then we can swap out all the operation-result-tables but
one from the main mermory during the expansion phase.

3.2 The Reduction Phase

After the expansion phase is completed, there may be
the following temporary nodes;

o A pseudo-leaf node: A temporary node whose ’0’ edge
and 1’ edge point to the same leaf-node.

o A non-unique node: A temporary node whose '0’ edge
and ’1’ edge are equivalent to those of a permanent
node of the same level.

The main tasks in the reduction phase are to find pseudo-
leaf nodes and non-unique nodes and to remove them. In
this algorithm, these tasks are executed in a breadth-first
manner from the nodes nearby the leaf-nodes toward the
root-node. On the other hand, temporary nodes that are
neither a pseudo-leaf node nor a non-unique node are reg-
istered to the node-table.

In practice, removed pseudo-leaf nodes and non-unique
nodes of the level i remain in the free list of the level ¢ as
free nodes to be recycled in the expansion phase of the suc-
ceeding operation. The ’1’ edge of every removed node is
used as a forwarding pointer, which indicates the node that
takes the place of the removed node. When the 0’ edge or
’1” edge of a temporary node of the level i 4 1 points to a
removed node of the level ¢, the edge is modified to point
to the node pointed to by the 1’ edge of the removed node
before checking whether the temporary node is neither a
pseudo-leaf node nor a non-unique node.

The reduction phase is formalized as follows;

[The Reduction Phase of the Proposed Algorithm]

(1) lev =1
(2) Execute (2.1) - (2.4) for every temporary nodes of the
level lev.

(2.1) If its ’0’ edge or 1’ edge points to a removed
node, modify the edge so as to point to the node
pointed to by the "1’ edge of the removed node.

(2.2) If its 0’ edge and '1’ edge point to the same leaf-
node, remove the node to the free list, leaving its
"1’ edge pointing to the leaf-node.

(2.3) If there is an equivalent node registered in the
node-table, remove the node to the free list, set-
ting its '1’ edge to point to the node found in the
node-table.

(2.4) Otherwise, register the node to the node-table,
and change the attribute of the node to “perma-
nent” from “temporary”.

3) lev=lev+1
(4) If lev < level_maz, then go to (2).

This procedure is also effective for the quasi-reduced
SBDD’s stored in the secondary storage if all the nodes
of every level are stored together in a contiguous location
in the secondary storage. If we use multiple node-table,
one table per a level, then we can swap out all the node-
tables but one from the main memory during the reduction
phase.

3.3 Data Structure for the Breadth-First Algo-
rithm

As mentioned in section 3.1 and 3.2, all nodes of a level
are stored in one contiguous space of the secondary storage,
and both two kinds of hash tables, operation-result-tables
and node-tables, are constructed in every level. The allo-
cated secondary storage space for the nodes of every level
includes free nodes for generating new temporary nodes.
While there are free nodes of a level, the nodes of the level
are overwritten in the same location of the secondary stor-
age as they were. If there is no free nodes when a new
temporary node should be generated, garbage collection is
performed. If there is no node to be recycled anymore,
then the total number of the nodes of the level is increased
by 4 times by adding new free nodes, and a new location
in the secondary storage is allocated to store the greater
data block. As described in [4], the necessary size for the
operation-result-table and the node-table to keep the effi-
ciency of the operation is 1/4 to the number of the nodes.
When the total number of the nodes of a level is updated,
then the operation-result-table and the node-table of the
level are also increased in size, and all of the elements are
re-hashed into the larger tables. This strategy has the fol-
lowing advantages in the use of secondary storages;

o The allocated spaces of the secondary storage for levels
are proportional to the number of the nodes of the
levels. Tt optimizes the utilization of the space of the
secondary storage.

The data density, i. e. the number of the actually used
nodes per the number of allocated nodes, is kept high
during the manipulation. It is crucial to keep the data
density to reduce the overhead of the access of the
secondary memory, as mentioned in section 2.3.

3.4 Parallelization of Multiple Operations

If multiple requirements of Boolean operations are given
simultaneously, then they can be processed together by
putting them to the requirement queue of the level
level_maz at the initial step of the expansion phase of the
proposed algorithm (Fig. 8). This technique is effective for
parallel implementation of SBDD manipulators, because
it extends the parallelism of the process [5]. This tech-
nique is even more effective for our algorithm to use the
secondary storage. The number of the access for the sec-
ondary storage depends mainly on the repetition of the
expansion phase and the reduction phase. Therefore, oper-
ations should be given as many as possible simultaneously
in order to reduce the access time of the secondary storage.

In the case of such application as construction of an
SBDD for a given Boolean formula or a given circuit de-
scription, multiple operations can be evaluated together
whose maximum levels in the parse tree or in the circuit
diagram are the same [5].

Fig. 8. Processing Multiple Operations Simultaneously

Table 1. Bechmark Results of our Manipulator

circuit | #in #out #node time (sec) #1/0
#Hused #red. #alloc elapsed CPU (user)
mult8 16 16 11,345 208 103,023 2.459 2.30 0
mult9 18 18 31,314 336 237,165 6.640 6.22 0
mult10 20 20 87,387 567 666,219 18.438 17.20 0
mult11 22 22 241,084 - 959 1,661,289 51.386 48.55 0
mult12 24 24 656,710 1,650 4,547,943 154.312 135.01 523
mult13 26 26 | 1,794,499 2,787 13,931,877 7468.787 430.82 359,320
multld | 28 28 | 4,857,875 5,126 18,191,715 | 25945.720 1,161.22 | 1,230,083
Table 2. Bechmark Results of the Conventional Manipulator
circuit | #node in Hard Disk within Main Memory
F#used time (sec) #1/0 time (sec)
elapsed CPU (user) elapsed CPU (user)
mult8 10,669 790 2.20 36,867 0.93 0.93
mult9 30,372 2,285 7.70 108,779 2.71 2.71
multl0 | 85,937 6,933 22.28 318,834 7.72 7.67
multll | 238,527 | 24,228 72.40 | 1,144,632 23.37 23.33
mult12 | 652,307 | 84,833 220.95 | 3,818,404 80.45 80.13

4 Implementation and Evaluation

4.1 Implementation

We implemented the proposed algorithm in C language
on the workstation Sun SPARC Station 2 (SunOS 4.1.1)
with 64 mega byte main memory. As the secondary storage,
SCST hard disk drives are connected. 500 mega bytes of
the hard disk space is allocated as the swap area, which is
used as the physical storage of the virtual memory space
managed by the OS. We used the 500 mega byte hard disk
space implicitly under the memory management system of
the OS. This is the simplest implementation of our breadth-
first algorithm.

As proposed in [4], operation-result-tables are imple-
mented as a hash-based cache in order to omit the collision
chain, while the collision chain of the node tables is imple-
mented by an additional field, link, of every node. The link
field is also used for managing free nodes by chaining them
to avail lists. Of course, an avail list is constructed for
every level in our implementation. The link fields of tem-
porary nodes of every level are used to construct another
linked list, temporary list, in order to maintain the tem-
porary nodes of the level. There are only two requirement
queues, which are always resident in main memory. Dur-
ing the expansion phase, when the requirements of level ;
are executed according to one requirement queue, new re-
quirements of level i — 1 are generated and put to the other
requirement queue. After all the requirement of level i have
been done, the queue which was used as the queue of level
¢ will be reused as the queue of level i — 2. The required
space per a node is 18.25 bytes, including the space for the
hash tables. Within the 500 mega byte virtual memory
space, more than 28 million nodes can be allocated.

Minato et al. have proposed several attributed edges, in-
cluding output inverters, for the purpose of reducing the
number of the nodes and/or the time used for the ma-
nipulation of SBDD’s [3]. The output inverter is an at-
tribute that complements the function of the subgraph that
is pointed to by the edge. We employed the output invert-
ers for the implementation of our breadth-first algorithm.

4.2 Experimental Results

We chose multipliers as benchmarks of our algorithm in
order to demonstrate the manipulation of very large SBDD
which is not able to store in the main memory.

Table 1 shows the experimental results of our manipu-
lator. This table shows the required CPU time (in user
mode) and the elapsed time for constructing a quasi-
reduced SBDD representing all the Boolean functions of
the primary outputs of every unsigned multiplier from its
circuit descriptions. The ordering of the input variable em-
ployed is

poy > g > apo2 > b1 > ap3 > by > > a9 > by

where a’s and s are the multiplicand and the multiplier,
respectively, and ao and by are the LSB of them. This
ordering requires relatively small number of nodes during
the process of the construction among several systematic
orderings. The column #used shows the number of the
nodes of the final quasi-reduced SBDD necessary to. rep-
resent all the Boolean functions of the primary outputs of
every citcuit. The column #red. shows the number of the
redundant nodes among them (#used — #red. is the num-
ber of the nodes required for SBDD’s). We can see that the
number of the nodes of a quasi-reduced SBDD is almost the
same as the number of the nodes of an SBDD. The column
#alloc shows the number of the allocated nodes. #alloc
is much greater than #used because the intermediate di-
agram representing the Boolean functions of the internal
nets of the circuit is much more complex than the final di-
agram. From Table 1, the elapsed time for generating a
quasi-reduced SBDD for 14-bit multiplier is about 7 hours.
The column #1/0 shows the number of page faults requir-
ing physical I/0O. From Table 1, multipliers up to 11 bits
required no physical I/0’s. This is because they can be
performed within the 64 mega byte main memory. This
is yet another advantage of our implementation of incre-
mental allocation and the use of the virtual memory space
managed by OS.

Table 2 shows the experimental results of the conven-
tional depth-first algorithm. The manipulator used for

these experiments is the SBDD manipulator coded by Mi-
nato which supports two kinds of attributed edges, out-
put inverters and input inverters [3]. His SBDD manipula-
tor does not support the incremental allocation of memory
space; all the space are allocated at the initialization pro-
cess. The column in Hard Disk shows the result obtained
by allocating (virtual) memory space for 16,777,216 nodes
(372 mega bytes), that is probably the least 2’s power nec-
essary to generate an SBDD for 14-bit multiplier in order
to estimate the elapsed time for 14-bit multiplier (In fact,
we could not make the experiments for the multiplier of 13-
bit or more, because they take too long time). The column
within Main Memory shows the result obtained by allocat-
ing 24 mega byte memory space (If more memory space
is allocated, the hard disk is activated and we cannot ob-
tain the proper result). From Table 2, the elapsed time for
generating an SBDD for 12-bit multiplier according to the
conventional depth-first algorithm is about 12 hours when
the SBDD is stored in the hard disk.

Fig. 9 illustrates the results shown in Table 1 and Table
2. From the figure, the following estimations can be made;

o The elapsed time required by our manipulator is about
25 times greater when the diagram is stored in the
hard disk than when whole diagram is stored within
the main memory. As shown in the section 2.3, the
ratio of the transfer rates of the main memory and the
hard disk is about 4, therefore, the actually used data
in the transferred pages can be estimated as about 1/6
on the average.

‘For constructing a diagram for 14-bit multiplier, the
elapsed time required by the conventional manipulator
using hard disk is estimated to be'about 10 days, which
is 35 times greater than ours. The elapsed time re-
quired by the conventional manipulator is about 1,000
times greater when the diagram is stored in the hard
disk than when whole diagram is stored within the
main memory. The actually used data in the trans-
ferred pages can be estimated as about 1/250 on the
average. This means that only 16 bytes are actually
used in every page on the average, which is the size of
the structure of one node.

Elapsed Time
(sec) o
Depih-First
(I Hard Diak) 1R 35 times
100,000 -
a'/
X a0 &
o times + Breadth-First
10,000} - -
Y 4 (nHard Disk)
/'/x ,v’,
rs
A
1, o
000 » w
Py N H
225 times ;
100- A
& A
Breadth-First o K DeptheFinat
(within Main Memory) @" .- (within Main Memory)
10 -
o A
o -
f/o /Ar
1] A’f
P
T T T T v ! I 1 Bt
T i - o 2 ! 14 Number of Bits

of Multiplier

Fig. 9. Comparison of the Elapsed Time

5 Conclusion

We have proposed an efficient algorithm for manipulat-
ing an SBDD in secondary storage and shown benchmark
results of the proposed algorithm on the workstation Sun
SPARC Station 2 with 64 mega byte main memory and
SCSI hard disk drives. An SBDD representing the primary
outputs of the 14-bit multiplier can be constructed from the
circuit description in about 7 hours within 500 mega byte
hard disk space. Also we have shown the estimation that
if the conventional SBDD manipulator manipulates SBDD
in the virtual memory space that is much larger than phys-
ical main memory, it probably takes about 35 times longer
time than our manipulator.

The developed technique for SBDD manipulation is ex-
pected to be utilized for various applications of CAD sys-
tems for digital systems such as formal design verification,
test generation, logic synthesis and so on in order to en-
ables us much larger and more complex design which were
not possible with conventional SBDD manipulator.

The future works involved in the SBDD manipulator us-
ing the secondary storage are as follows;

o To increase the data density of transfer between sec-
ondary storage and the main memory.

o To test the developed SBDD manipulator with a semi-
conductor extended storage instead of a magnetic hard
disk.

e To implement the proposed algorithm on a vector su-
percomputer with a semiconductor extended storage.

Acknowledgment

The authors would like to express their sincere appreci-
ation to Dr. S. Kimura of Kobe University, Dr. N. Ishiura
of Osaka University and Mr. S. Minato of NTT for their
valuable suggestions and advices. The authors would like
to thank Mr. K. Takagi and Mr. Y. Fujiyoshi of Kyoto
University for their help in carrying out the experiments in
section 4. Thanks are also due to all the members of the
Prof. Yajima’s Laboratory at Kyoto University for their
valuable discussions and comments. This work was sup-
ported in part by Foundation Grant of Ministry of Ed.
Japan 00041196.

References

[1] S. B. Akers: “Binary Decision Diagrams”, IEEE Trans.
Comput., vol. C-27, no. 6, pp. 509-516, (June 1978).

[2] R. E. Bryant: “Graph-Based Algorithms for Boolean
Function Manipulation”, IEEE Trans. Comput., vol. C-
35, no. 8, pp. 677-691, (Aug. 1985).

[3] S.Minato, N. Ishiura and S. Yajima: “Shared Binary Deci-
sion Diagram with Attributed Edges for Efficient Boolean
Function Manipulation”, Proc. 27th ACM/IEEE DAC,
pp- 52-57, (June 1990).

[4] K.S. Brace, R. L. Rudell and R. E. Bryant: “Efficient Im-
plementation of a BDD Package”, Proc. 27th ACM/IEEE
DAC, pp. 40-45, (June 1990).

[5] S. Kimura and E. M. Clarke: “A Parallel Algorithm
for Constructing Binary Decision Diagrams”, Proc. IEEE
ICCD'90, (Sep. 1990).

[6] H. Ochi, N. Ishiura and S. Yajima: “Breadth-First Ma-
nipulation of SBDD of Boolean Functions for Vector Pro-
cessing”, Proc. 28th ACM/IEEE DAC, pp. 413-416, (June
1991).

