
Developing the Flexible Conformance Test Execution Platform
for OAuth 2.0-based Security Profiles

TAKASHI NORIMATSU 1,2,a)　YUICHI NAKAMURA 1　TOSHIHIRO YAMAUCHI 3

Received: February 28, 2024, Accepted: August 27, 2024

 Abstract: Developers of OAuth 2.0’s authorization server or OpenID Connect 1.0’s OpenID provider software that

support multiple OAuth 2.0-based security profiles need their products to pass conformance tests provided by the

OpenID Foundation. However, they usually encounter several challenges. Specifically, they require extensive man-

hours to create programs other than the product targeted for the conformance tests, provide support for execution of a

new conformance test if required by a new security profile, and execute multiple conformance tests. Together with

the Open-source Software community OAuth Special Interest Group, we developed a conformance test execution

platform to resolve these issues, using Keycloak as the target for conformance tests. We evaluated the platform and

confirmed that it resolves these issues. Using the platform, we executed conformance tests of the Financial-grade API

(FAPI) and Open Banking security profiles to Keycloak and confirmed that Keycloak passed the conformance tests of

these security profiles. This implies that Keycloak complies with their specifications. We confirmed by the evaluation

of the platform that automating execution of a conformance test reduced its completion time by 56.8%, parallelizing

execution of nine conformance tests reduced its completion time by 62.4% and lines of code of programs the devel-

oper needs to write was reduced by 85.7% by the platform. Finally, we published the platform on the GitHub reposi-

tory for public use.

 Keywords: conformance test, security profile, OAuth 2.0, Financial-grade API (FAPI), Keycloak

1.　 Introduction

The Financial-grade API (FAPI) security profile [1] has been

developed by the OpenID Foundation (OIDF) as a security spec-

ification for accessing Application Programming Interfaces

(APIs) that require high security, such as ones providing finan-

cial services. The FAPI security profile is based on OAuth

2.0 [2] --- an authorization protocol, and OpenID Connect 1.0

(OIDC) [3] --- an authentication protocol based on OAuth 2.0.

Some of the security profiles of Open Banking, which is an

ecosystem that supports APIs and provides financial services,

are based on FAPI security profile (Table 1).

The OIDF provides a Conformance Suite [11] as open-source

software (OSS), which performs conformance tests of the FAPI

security profiles and security profiles of open banking, as shown

in Table 1. In addition, the OIDF certifies the software’s compli-

ance with the security profile [12]. An OAuth 2.0’s authorization

server or OpenID Connect 1.0’s OpenID Provider (OP) software

product, which supports the security profile, can be certified by

the OIDF if the product passes a conformance test of the security

profile provided by the Conformance Suite and sends the result

of the conformance test to the OIDF.

An authorization server or OP software product certified by

the OIDF has business benefits. For example, Open Finance

Brazil only allows authorization servers or OP software products

certified by the OIDF to connect to its ecosystem. Generally,

customers who want to procure an authorization server or OP

that supports security profiles tend to prefer products certified by

the OIDF as compliant with the security profiles.

If the conformance tests are executed in parallel as a part of

existing continuous integration (CI) of an authorization server or

OP, the conformance tests should be executed automatically and

the completion time of the conformance tests should be almost

the same or shorter than the existing CI. If the completion time

of the conformance tests is longer than the one of the existing

1 Hitachi, Ltd., Chiyoda, Tokyo 100–8280, Japan
2 Graduate School of Natural Science and Technology, Okayama Univer-

sity, Okayama 700–8530, Japan
3 Faculty of Environmental, Life, Natural Science and Technology,

Okayama University, Okayama 700–8530, Japan
a) takashi.norimatsu.ws@hitachi.com

Table 1　Open Banking security profiles.

©  2025 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.33

CI, adding the conformance tests to the CI increases the comple-

tion time of CI. Increasing the completion time of CI stalls the

speed of development of the authorization server or OP applying

the CI, which is a problem.

The developers of authorization servers or OP that support

multiple FAPI and Open Banking security profiles as shown in

Table 1, face three issues during conformance testing. These are

related to the increase in man-hours for software development

and maintenance;

(1) Automation: Preparing programs other than the authoriza-

tion server or OP being tested for automating execution of

conformance tests

(2) Cost Reduction of New Conformance Test Execution: Sup-

porting conformance test execution of a new security profile

(3) Parallelization: Automating execution of multiple confor-

mance tests in parallel

We assumed Keycloak *1 as a target for the conformance tests

and developed a conformance test execution platform that in-

cludes a Conformance Suite to resolve these issues. The authors

contributed implementation of several security profiles to Key-

cloak [13]-[16]. We executed conformance tests of the security

profiles. Consequently, we confirmed that Keycloak passes the

conformance tests, and thus complies with the specifications of

the security profiles.

Members of the Keycloak community other than the authors

received certification from the OIDF [12], indicating that Key-

cloak complies with the standard specifications and security pro-

files based on the conformance test results obtained using our

conformance test execution platform. Keycloak is an OSS;

therefore, anyone can use it as an OIDF-certified authorization

server/OP.

Using this conformance test execution platform, we executed

conformance tests against Keycloak as part of regression testing

whenever a new version of Keycloak is released, which ensures

that the new version remains compliant with supported security

profiles. The test results are published on the Keycloak’s OAuth

Special Interest Group (SIG) website *2 for easy accessibility.

The conformance test execution platform was also published

on GitHub *3 as a sub-project of Keycloak for easy accessibility.

The contributions of this study are as follows:

 ・ Design and development of conformance test execution

platform. We assumed Keycloak as the target of confor-

mance tests. Hence, we designed and developed a confor-

mance test execution platform that resolves three issues

faced by software developers of an authorization server or

OP that supports multiple standard specifications and the

security profiles defined by OIDF with the OSS community

OAuth SIG.

 ・ Contribution to Keycloak’s acquisition of certification.

Based on the test results obtained using the developed con-

formance test execution platform, members of the Keycloak

community received certification from the OIDF that Key-

cloak complied with the standard specifications and securi-

ty profiles. Because Keycloak is an OSS, anyone can use it

as an OP or authorization server certified by the OIDF.

 ・ Quality assurance of Keycloak. Each time a new Keycloak

is released, regression testing is performed using the devel-

oped conformance test execution platform. This is to ensure

that the new version remains compliant with the supported

standards and security profiles.

 ・ Publication of the study results. The developed confor-

mance test execution platform was published on GitHub as

a sub-project of Keycloak for easy accessibility.

2.　 Issues

2.1　 Issue 1: Automation

To execute a conformance test using a Conformance

Suite [11], it is necessary to prepare programs other than the au-

thorization server or OP being tested. The program type is attrib-

utable to the security profile. For example, the FAPI security

profile requires an OAuth 2.0’s resource server. Several man-

hours are required for the developer of the authorization server

or OP to prepare such programs.

Moreover, if the automated conformance test can be executed

as a part of existing CI of the authorization server or OP in par-

allel, the completion time of the conformance tests should be al-

most the same or shorter than the existing CI.

To resolve the issue, the following requirements need to be

satisfied:

(1) Test Automation: A conformance test using a Conformance

Suite can be automatically executed.

(2) Reduced Time of Test Automation: The completion time of

the conformance test executed automatically is less than the

one executed manually.

(3) Test Applicability to CI: When the conformance test is exe-

cuted as a part of existing CI of an authorization server or

OP in parallel, the completion time of the conformance test

is almost the same or shorter than the one of the existing

CI.
*1 https://www.keycloak.org/
*2 https://github.com/keycloak/kc-sig-fapi?tab=readme-ov-file#passed-

conformance-tests-per-keycloak-version
*3 h t t p s :// g i t h u b . c o m/ k e y c l o a k/ k c- s i g- f a p i/ t r e e/ m a i n/

conformance-tests-env

Electronic Preprint for Journal of Information Processing　Vol.33

©  2025 Information Processing Society of Japan

2.2　 Issue 2: Cost Reduction of New Conformance Test Exe-

cution

When the developer of the authorization server or OP supports

a new security profile, it is necessary to execute a new confor-

mance test of the security profile using the Conformance Suite.

This requires considerable effort by the developer of the authori-

zation server or OP.

To resolve the issue, the following requirements need to be

satisfied:

(1) Execute New Security Profile’s Conformance Test: The

conformance test execution platform is developed and it

can execute a new security profile’s conformance test.

(2) Reduced Effort of New Conformance Test: The confor-

mance test execution platform reduces the effort for writing

programs required to execute a new security profile’s con-

formance test.

2.3　 Issue 3: Parallelization

Although the Conformance Suite supports the automatic exe-

cution of conformance tests in series, it is not possible to auto-

matically execute conformance tests of multiple security profiles

in parallel. Therefore, considerable time is required to complete

the execution of multiple conformance tests by the Conformance

Suite, and the developer of an authorization server or OP cannot

proceed to develop it until the execution is completed.

Moreover, if the automated conformance test can be executed

as a part of existing CI of the authorization server or OP in par-

allel, the completion time of the conformance tests should be the

same or shorter than the one of the existing CI.

To resolve the issue, the following requirements need to be

satisfied:

(1) Test Parallelization: Conformance tests using a Confor-

mance Suite can be automatically executed in parallel.

(2) Reduced Time of Test Parallelization: The parallelization

reduces the completion time of several conformance tests.

(3) Test Applicability to CI: When the conformance tests are

executed as a part of existing CI of an authorization server

or OP in parallel, the completion time of the conformance

tests is almost the same or shorter than the one of the exist-

ing CI.

3.　 Design Principles

We devised design policies to develop a conformance test exe-

cution platform that resolves the issues described in Section 2.

Conformance tests themselves need to be executed by the

Conformance Suite [11]: hence, the Conformance Suite must be

included in the conformance test execution platform. Therefore,

we first describe the logical structure of the Conformance Suite

and subsequently explain the design policies to resolve each is-

sue.

3.1　 The Logical Structure of the Conformance Suite

We clarified the logical structure of the Conformance Suite as

a class diagram (Fig. 1) by reverse engineering, reading its docu-

mentation and running it.

The Conformance Suite consists of the following components:

 ・ Test Server: A server that executes conformance tests by

simulating clients, Relying Parties (RPs), and a user’s

browser to interact with the authorization server or OP be-

ing tested.

 ・ Test Database: A database for storing the data necessary for

the execution of a conformance test and its results.

 ・ Reverse Proxy: A reverse proxy in front of the test server.

 ・ Test Configuration: A configuration for the execution of a

conformance test. This shows which security-profile con-

formance test is executed against which authorization server

or OP is being tested.

 ・ Test Runner: A program that invokes the test server and ex-

ecutes the conformance test using the test configuration.

The Conformance Suite uses Docker *4 to run each component

in a container, except for the test configuration. The Confor-

mance Suite uses Docker Compose *5 to set and manage these

containers.

The logical structure of the Conformance Suite includes a part

that does not depend on the target of the conformance test and a

part that depends on it. These are referred to as the test-target in-

Fig. 1　 Class diagram of the logical configuration of the Conformance

Suite.

*4 https://www.docker.com/
*5 https://docs.docker.com/compose/

©  2025 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.33

dependent part and test-target dependent part, respectively.

The test-target independent part consists of the following

components:

 ・ Specification: A specification of a security profile.

 ・ Specification Entity: An entity required to execute a confor-

mance test for the specification.

The test-target dependent part consists of the following com-

ponents:

 ・ Test Target: An authorization server or OP being tested.

 ・ Target Specific Entity: An entity required when executing a

conformance test of the specification against the test target.

3.2　 Issue 1: Automation

A developer of an authorization server or OP who uses the

Conformance Suite must create the specification entity and the

target-specific entity unassisted, which requires considerable

amount of man-hours. Therefore, we created and included the

specification entity and the target-specific entity in the confor-

mance test execution platform as developer support resource.

This saves time and labor.

The specification entity can be used regardless of whether the

authorization server or OP is the test target. However, the tar-

get-specific entity is different for each authorization server or

OP as the test target and cannot be shared among the test targets.

In this study, we used the Keycloak as the test target.

For example, when executing a conformance test of FAPI 1.0

Advanced security profile, which was first supported by Key-

cloak 14, the resource server (A in Fig. 2), is required as the

specification entity and the client-key hosting server (B in Fig.

2) is required as the target-specific entity.

Because the components of the Conformance Suite run in

containers using Docker, the specification and target-specific en-

tities are implemented as programs that run in containers. If

these components do not run in containers, they must be operat-

ed in the computer environment of each developer of the autho-

rization server or OP. For example, if a developer of an authori-

zation server who uses a Windows machine and another who

uses a Linux-based machine wants to execute a conformance test

using the Conformance Suite, separate conformance test execu-

tion platforms must be created for each machine. This increases

the development and maintenance cost of the platform. If the

components run in containers, a conformance test execution

platform must be developed and maintained.

When executing a conformance test, the specification and tar-

get-specific entities must communicate with each component of

the Conformance Suite and the test target. Therefore, the specifi-

cation and target-specific entities can be connected to the Docker

network of the Conformance Suite.

3.3　 Issue 2: Cost Reduction of New Conformance Test Exe-

cution

To execute a new security-profile conformance test, new spec-

ification and target-specific entities must be added. In addition,

the behaviors of the existing specification entity, test target, and

target-specific entity must be changed. Fig. 3 shows a class dia-

gram of the logical configuration of the test configuration that

considers these points.

For example, to execute a conformance test of the FAPI-CIBA

security profile, which was first supported by Keycloak 15, it is

necessary to prepare an element called an authentication entity

server as a target-specific entity (A in Fig. 4). In addition, it is

necessary to change the existing Keycloak settings (B in Fig. 4).

To resolve Issue 2, it is necessary to add new specification en-

tities and target-specific entities. Subsequently, existing specifi-

cation entities, test targets, and target-specific entities must be

Fig. 2　Object diagram of the test configuration.

Fig. 3　Class diagram of the logical configuration of the test configuration.

Fig. 4　Object diagram of the test configuration.

Electronic Preprint for Journal of Information Processing　Vol.33

©  2025 Information Processing Society of Japan

changed. By formulating these tasks, developers of authorization

server or OP can avoid the problem of executing new confor-

mance tests through trial and error.

3.4　 Issue 3: Parallelization

We considered the following design policies for automatically

executing multiple conformance tests in parallel:

(1) Automatically execute a single conformance test by Con-

formance Suite and using a script.

(2) Prepare computer environments such as multiple Virtual

Machines (VMs) and containers, and automatically execute

the script to run a conformance test of each security profile

using the Conformance Suite in parallel.

Regarding the mechanism for achieving 2, we initially decid-

ed not to implement it on the conformance test execution plat-

form. This is because other mechanisms, such as GitHub Ac-

tion *6 can accomplish this.

4.　 Developing a Conformance Test Execution
Platform

A conformance test execution platform that resolves the issues

described in Section 2 was developed according to the design

policies described in Section 3. Keycloak software was used.

The initial version of the conformance test execution platform

was built after the release of Keycloak 12. However, this study

describes a conformance test execution platform that was rebuilt

when Keycloak 18 was released. This is because the confor-

mance test execution platform was rebuilt according to the de-

sign policies described in Section 3 to resolve the issues de-

scribed in Section 2 (Table 2) *7, *8, *9, *10, *11, *12, *13, *14, *15, *16, *17,

 *18, *19.

Based on our study [13], [14], [15], [16] and contributions to

Keycloak by the OSS community, Keycloak 18 supports the fol-

lowing four FAPI security profiles:

 ・ FAPI 1.0 Advanced Final (FAPI1 Advanced)

 ・ FAPI 1.0 Client Initiated Backchannel Authentication (FA-

PI-CIBA)

 ・ Australia Consumer Data Right (Australia CDR)

 ・ Brazil Open Banking

Additionally, Keycloak 18 supports the following one stan-

dard specification defined by OIDF:

 ・ OpenID Connect 1.0 for Logout Profiles (OIDC for Lo-

gout)

Keycloak already supported the following one standard speci-

fication defined by OIDF:

 ・ OpenID Connect 1.0 (OIDC)

Therefore, the conformance test execution platform supports

the conformance test execution of the four security profiles and

two standard specifications.

4.1　 Issue 1: Automation

To resolve Issue 1, the conformance test execution platform

implements the specification entity and target-specific entity us-

ing Docker containers, connects them to the Docker network to

communicate with other components and uses Docker Compose

to set up and manage the containers according to the design poli-

cies described in Section 3.2.

Fig. 5 shows the container network configuration of the con-

formance test execution platform and Fig. 6 shows the main files

of the conformance test execution platform.

Table 2　Standard specifications supported by Keycloak.

Fig. 5　Container network configuration diagram.

*6 https://docs.github.com/en/actions
*7 https://github.com/Keycloak/Keycloak/releases/tag/2.3.0.Final
*8 https://www.Keycloak.org/docs/latest/release_notes/index.html#

Keycloak-12-0-0
*9 https://github.com/Keycloak/Keycloak/releases/tag/12.0.0
*10 https://www.Keycloak.org/docs/latest/release_notes/index.html#

Keycloak-14-0-0

*11 https://github.com/Keycloak/Keycloak/releases/tag/14.0.0
*12 https://www.Keycloak.org/docs/latest/release_notes/index.html#

Keycloak-15-0-0
*13 https://github.com/Keycloak/Keycloak/releases/tag/15.0.0
*14 https://www.Keycloak.org/docs/latest/release_notes/index.html#

Keycloak-18-0-0
*15 https://github.com/Keycloak/Keycloak/releases/tag/18.0.0
*16 https://github.com/Keycloak/Keycloak/pull/13068
*17 https://github.com/Keycloak/Keycloak/releases/tag/20.0.0
*18 https://www.keycloak.org/2023/11/keycloak-2300-released.html
*19 https://github.com/keycloak/keycloak/tree/23.0.0

©  2025 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.33

 ・ Conformance Suite (A in Fig. 6): The OSS published by

OIDF to execute a conformance suite of a security profile

or standard specification defined by OIDF against an autho-

rization server or OP.

As described in Section 3, the Conformance Suite consists of

three containers: the test server, test database, and reverse proxy.

The reverse proxy communicates outside the Conformance

Suite. The test server executes the conformance tests, stores the

results in the test database, and provides web-pages to show the

results to a browser. The test server simulates the clients, RPs,

and the user’s browser to interact with an authorization server or

the OP being tested. The test server determines whether the au-

thorization server or OP has passed the conformance test.

The Conformance Suite was not provided as a Docker image.

Therefore, the Dockerfile (A in Fig. 6) downloads the source

codes of the Conformance Suite and builds them to run the test

server, test database, and reverse proxy in each Docker container.

 ・ Test Runner (B in Fig. 6): A script referred to as run-testh.

sh invokes the test server and enable it to execute confor-

mance test automatically (as described in Section 3).

 ・ Test Configuration (C in Fig. 6): Configuration files of each

security profile conformance test stored in the directory

named fapi-conformance-suite-configs (as described in

Section 3).

 ・ Specification Entity (D in Fig. 6): An entity required to exe-

cute the conformance test of a security profile (as described

in Section 3).

There are two specification entities: resource server and con-

sent management server.

 ・ Resource Server (E in Fig. 6): A server defined in OAuth

2.0 for managing resources accessed by a client with an ac-

cess token. Execution of the conformance tests of FAPI1

Advanced, FAPI-CIBA, Australia CDR, and Brazil Open

Banking requires a resource server. Therefore, we created

and included a resource server in the conformance test exe-

cution platform, although the resource server is irrelevant to

a test target such as Keycloak.

 ・ Consent Management Server (F in Fig. 6): A server that

manages consent obtained from a user for a client to access

their resources on the resource server with an access token.

The execution of the conformance test of Brazil Open

Banking needs the consent management server. Therefore,

we created the consent management server and included it

into the conformance test execution platform, although the

resource server is irrelevant to a test target such as Key-

cloak.

 ・ Test Target (G in Fig. 6): An entity against which a confor-

mance test is executed (as described in Section 3).

 ・ Keycloak (H in Fig. 6): Actual test target of the confor-

mance test execution platform.

 ・ Test Target Configuration (I in Fig. 6): A configuration file

of Keycloak.

Because the security requirements imposed on the authoriza-

tion server or OP differ from the security profile, the confor-

mance test execution platform prepared a configuration file that

satisfied the requirements of each security profile.

 ・ Target Specific Entity (J in Fig. 6): An entity required for

executing a conformance test against a specific test target

(as described in Section 3).

 ・ Client Key Hosting Server (K in Fig. 6): A server that pro-

vides a public key of a client. Some conformance tests re-

quire the client to provide a public key for a digital signa-

Fig. 6　Layout of main files of the conformance test execution platform.

Electronic Preprint for Journal of Information Processing　Vol.33

©  2025 Information Processing Society of Japan

ture. There are two ways to provide the public key:

registering it to an authorization server or OP or providing

it by a separate server, such as the client-key hosting server.

The execution of the conformance tests against Keycloak

requires the latter server. Therefore, the client-key hosting

server was created and included in the conformance test ex-

ecution platform.

 ・ Authentication Entity Server (L in Fig. 6): A server that

performs user authentication in CIBA [17].

The specification of the CIBA does not define the method of

authenticating a user. Therefore, the method differs from autho-

rization servers or OPs. Keycloak uses an authentication entity

server for user authentication in the CIBA. Execution of a con-

formance test for FAPI-CIBA against Keycloak requires the

server. Therefore, we created and included the authentication en-

tity server in the conformance test execution platform.

 ・ API Gateway (M in Fig. 6): A gateway placed in front of

the resource server, authentication entity server and consent

management server to perform common processing and

route their communication inside the Docker network.

 ・ Load Balancer (N in Fig. 6): A load balancer placed in front

of the Conformance Suite, Keycloak and API gateway to

perform common processing and route their communication

outside the Docker network.

 ・ .env (O in Fig. 6): A file that defines the environment vari-

ables for Docker. Environment variables were used to con-

figure the conformance test execution platform.

 ・ docker-compose.yml (P in Fig. 6): A configuration file for

Docker Compose that configures all containers.

By using the conformance test execution platform, a developer

of an authorization server or OP who executes conformance tests

of security profiles and standard specifications defined by the

OIDF and uses Keycloak as their test target can execute confor-

mance tests without having to create programs other than Key-

cloak.

4.2　 Issue 2: Cost Reduction of New Conformance Test Exe-

cution

To resolve Issue 2, we formulated procedures for making the

conformance test execution platform to execute a conformance

test of a new security profile following the design policies in

Section 3.3. The procedures are as follows:

(1) The work related to the test-target dependent part

(a)　 Test Target Configuration: A developer creates a Key-

cloak configuration file for a conformance test of the

new security profile and stores it in the keycloak/

realms directory (I in Fig. 6).

(b)　 Target Specific Entity: When the developer needs to

add a new target-specific entity, it must be created as a

new container. First, a new directory is created. Sub-

sequently, the Dockerfile is created and stored in the

directory (J in Fig. 6). Finally, the container settings

are written in docker-compose.yml (P in Fig. 6).

When new functionalities are required, the files of ex-

isting target-specific entities are modified (J in Fig. 6).

(2) The work related to the test-target independent part

(a)　 Specification Entity: When developer adds a new

specification entity, it must be created as a new con-

tainer. First, a new directory is created. Next, the

Dockerfile is created and stored in the directory (D in

Fig. 6). Finally, the container settings are written in

docker-compose.yml (P in Fig. 6). When new func-

tionalities are required, the files of existing specifica-

tion entities are modified (D in Fig. 6).

(3) Conformance Suite

(a)　 Test Configuration: A developer creates a new security

profile conformance test configuration file and stores

it in fapi-conformance-suite-configs directory (C in

Fig. 6).

(b)　 Conformance Suite: The developer determines the

value of the Docker environment variable TEST_

PLAN to call the conformance test configuration file

of the new security profile, and modifies the script for

automatic test execution (run-tests.sh). (A in Fig. 6).

(4) Test execution: The developer sets the Docker environment

variable TEST_PLAN to the value determined in the proce-

dure 3.a to execute the conformance test of the new security

profile and sets the Docker environment variable KEY-

CLOAK_REALM_IMPORT_FILENAME to the name of

the Keycloak realm configuration file created and stored in

the procedure 1 (O in Fig. 6). Subsequently, the following

test execution command is executed:

docker-compose -p keycloak-fapi \

-f docker-compose.yml up --build

By following the formulated procedures, the developer of an

authorization server or OP can execute a conformance test of a

new security profile against its test target, such as Keycloak,

without any difficulty through trial and error.

4.3　 Issue 3: Parallelization

To resolve Issue 3, we considered a mechanism enables auto-

matic execution of conformance tests in parallel.

According to the design policy in Section 3.4, we did not im-

plement a mechanism to execute multiple conformance tests si-

multaneously on the conformance test execution platform. In-

stead, we used a GitHub Action to execute them in parallel. This

©  2025 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.33

is because this conformance test execution platform is published

in the GitHub repository: hence, the conformance test execution

platform can use GitHub Actions by default.

We decided to build a GitHub Actions workflow that executes

the following processes:

(1) First, execute each conformance test in parallel as a GitHub

Action’s job.

(2) After all the jobs have been executed, execute a job that ag-

gregates the results of them and outputs the name of the

failed test.

Finally, we refer to the results of Step 2 on the GitHub Actions

management console in a browser and checked whether all the

conformance tests were passed.

By using the GitHub Actions workflow, a developer of an au-

thorization server or OP can execute multiple conformance tests

of security profiles against their test target like Keycloak by us-

ing the conformance test execution platform in parallel.

5.　 Evaluation

We evaluated the conformance test execution platform de-

scribed in Section 3 to confirm whether it resolved the issues de-

scribed in Section 2.

5.1　 Issue 1: Automation

The conformance test execution platform was published on

GitHub *20 for easy accessibility. To confirm that the confor-

mance test execution platform resolves Issue 1, we simulated a

developer of Keycloak as an authorization server that has the

computing environment listed below, used git *21 to clone the re-

pository of the published conformance test execution platform

on the computing environment, and ran the conformance test of

Australia CDR against Keycloak.

 ・ Processor: Intel(R) Core(TM) i7-10610U CPU 1.80 GHz /

2.30 GHz

 ・ RAM: 32.0 GB

 ・ System: 64 bit OS, x64 based processor

 ・ OS(Host): Windows 10 Pro version 21H2 build 19044.1826

 ・ OS(Virtual): Ubuntu 20.04 (running on Windows Subsys-

tem for Linux 2)

 ・ Docker Compose version: 1.27.4 build 40524192

 ・ Browser: Google Chrome 103.0.5060.134

As developers of Keycloak, we executed Australia CDR secu-

rity profile conformance test against Keycloak 23.0.3, using the

cloned conformance test execution platform on both computing

environment of Windows 10 and Ubuntu 20.04 (running on Win-

dows Subsystem for Linux 2). We confirmed that the confor-

mance test can be executed in both computing environments by

reviewing the log of the conformance test, as shown in Fig. 7.

The number to the left of the log indicates the line number of

the log file. This is an addition to the original log to make it easi-

er to read. Furthermore, logs with long lines were wrapped.

Line 32756 in the log indicates the start of the conformance

test for Australia CDR security profile.

The Australia CDR security profile has two test patterns: AU-

CDR Adv. OP w/ Private Key and AU-CDR Adv. OP w/ Private

Key, PAR.

Line 70128 of the log indicates that the conformance test of

the test pattern for AU-CDR Adv. OP w/ Private Key has been

completed, and line 70169 of the log indicates that the number

of failed tests (shown by failures) is zero, implying that Key-

cloak passed the conformance test of this test pattern.

Line 70174 of the log indicates that the conformance test of

the test pattern for AU-CDR Adv. OP w/ Private Key, PAR has

been completed, and line 70299 of the log indicates that the

number of failed tests (shown by failures) is zero, implying that

Keycloak passed the conformance test of this test pattern.

Considering these points, we confirmed that Keycloak passed

the conformance test of Australia CDR, implying that Keycloak

complies with the specification of Australia CDR and the con-

formance test execution platform satisfies requirement (1) Test

Fig. 7　Log of the conformance test (partial excerpt).

*20 h t t p s :// g i t h u b . c o m/ k e y c l o a k/ k c- s i g- f a p i/ t r e e/ m a i n/
conformance-tests-env

*21 https://git-scm.com/

Electronic Preprint for Journal of Information Processing　Vol.33

©  2025 Information Processing Society of Japan

Automation in Section 2.1.

We executed Australia CDR security profile conformance test

against Keycloak 23.0.3 on the same computing environment ten

times with both automatically and manually by one of the au-

thors who are familiar with this conformance test. The average

completion time of the conformance test executed automatically

was 7 minutes 29 seconds with 9 seconds of its standard error

while the one executed manually was 17 minutes 19 seconds

with 23 seconds of its standard error, which shows that the com-

pletion time of the conformance test was reduced by 56.8% by

this test automation. Therefore, the conformance test execution

platform reduces the time required to complete the conformance

test, implying that the conformance test execution platform satis-

fies requirement (2) Reduced Time of Test Automation in Sec-

tion 2.1.

The existing Keycloak’s CI includes six integration tests *22

called Base IT (1) to (6) and these tests are executed in parallel.

We investigated ten runs of the existing Keycloak’s CI and found

that the maximum completion time was 35 minutes 19 seconds

with 57 seconds of its standard error, which is greater than the

average completion time of the conformance test executed auto-

matically in 7 minutes 29 seconds with 9 seconds of its standard

error. Therefore, the conformance test execution platform satis-

fies requirement (3) Test Applicability to CI in 2.1.

5.2　 Issue 2: Cost Reduction of New Conformance Test Exe-

cution

To confirm that the conformance test execution platform re-

solves Issue 2, we simulated a developer of Keycloak an authori-

zation server that need to execute the conformance test of UK

Open Banking that Keycloak 20 newly supports, and executed

the conformance test against Keycloak 23.0.3, following the pro-

cedures formulated in Section 4.2.

(1) Work related to test-target dependent part

(a)　 Test Target Configuration: We created Keycloak’s con-

figuration file realm-fapi-uk-ob.json for UK Open

Banking and stored it in a keycloak/realms directory

(A in Fig. 8).

(b)　 Target Specific Entity: We needed to do nothing.

(2) The work related to test-target independent part

(a)　 Specification Entity: The conformance test of UK

Open Banking requires the resource server to operate

in accordance with the UK Open Banking API Pro-

file [18]. Therefore, we added a new functionality to

perform processing according to this profile in the

source code of the resource server (resource-server/

main.go) (B in Fig. 8).

(3) Conformance Suite

(a)　 Test Configuration: UK Open Banking has two test

patterns: UK-OB Adv. OP w/ MTLS and UK-OB Adv.

OP w/ Private Key. Therefore, we created fapi-uk-ob-

mtls-PS256-PS256-automated.json and fapi-uk-ob-

private-key-PS256-PS256- automated.json as configu-

ration files for each test pattern, and stored them in

fapi-conformance-suite-configs directory (C in Fig. 8).

(b)　 Conformance Suite: We modified the script for auto-

matic test execution (run-tests.sh) (D in Fig. 8) to read

the newly added configuration files for each test pat-

tern and run the conformance tests for each test pat-

tern if the value of the Docker environment variable

TEST_PLAN was set to --fapi-uk-ob-all.

(4) Test execution: We executed the conformance tests of each

test pattern automatically by setting the value of the Docker

environment variable TEST_PLAN to --fapi-uk-ob-all (set

up in Step 3.2) and setting KEYCLOAK_REALM_IM-

PORT_FILENAME to realm-fapi-uk-ob.json (created in

Step 1.1).

By reviewing the log of the conformance test shown in Fig. 9,

we confirmed that Keycloak passed the UK Open Banking con-

formance test.

The number to the left of the log indicates the line number of

the log file. This is an addition to the original log to make it easi-

er to read. Furthermore, logs with long lines were wrapped.

Line 32693 of the log indicates the conformance test of the

UK Open Banking security profile has started.

Fig. 8　Added/modified files to the conformance test execution platform.

*22 https://github.com/keycloak/keycloak/blob/23.0.3/.github/workflows/
ci.yml#L86-L123

©  2025 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.33

The UK Open Banking security profile has two test patterns:

UK-OB Adv. OP w/ Private Key and UK-OB Adv. OP w/

MTLS.

Line 47828 of the log indicates that the test pattern for UK-

OB Adv. OP w/ Private Key has been completed, and line 47874

of the log indicates that the number of failed tests (shown by

failures) is zero, implying that Keycloak passed the conformance

test of this test pattern.

Line 47880 of the log indicates that the test pattern for UK-

OB Adv. OP w/ MTLS has been completed, and line 47919 of

the log indicates that the number of failed tests (shown by fail-

ures) is zero, implying that Keycloak passed the conformance

test of this test pattern.

Considering these points, we confirmed that Keycloak passed

the conformance test of UK Open Banking, implying that Key-

cloak complies with the specification of UK Open Banking and

the conformance test execution platform satisfies requirement

(1) Execute New Security Profile’s Conformance Test of Section

2.2.

To execute UK OpenBanking security profile, a developer

needs to create Resource Server (written in Go, E in Fig. 6), API

Gateway (written in Lua, M in Fig. 6), and Client Key Hosting

Server (written in Go and shell script, K in Fig. 6) whose lines of

code are 169, 217, and 459, respectively. Therefore, the develop-

er needs to create them whose lines of code is about 845 in total

if they do not use the conformance test execution platform.

On the other hand, if the developer uses the conformance test

execution platform to execute UK OpenBanking security profile,

they need to modify Resource Server to meet the requirements

of UK OpenBanking security profile, which cost them to modify

121 lines of code *23. Therefore, lines of code of programs the

developer needs to write was reduced by 85.7% by using the

conformance test execution platform, which implies that the

conformance test execution platform satisfies requirement (2)

Reduced Effort of New Conformance Test of Section 2.2.

5.3　 Issue 3: Parallelization

As described in Section 4.3, we did not implement a mecha-

nism to execute multiple conformance tests in parallel on the

conformance test execution platform used in this study. Instead,

we used the GitHub Actions *24 workflow.

We performed conformance tests on the GitHub Actions

workflow definition file run-conformance-tests.yml, which de-

fines nine jobs for executing the conformance tests of each of the

nine security profiles and standard specifications, and one job

that aggregates the results of these conformance test executions

(Fig. 10).

The number to the left of the log indicates the line number of

the log file. This is an addition to the original log to enhance

readability. Furthermore, logs with long lines were wrapped.

In line 6, a job that executes the conformance test is referred

to as the name run-conformance-test. As shown in line 11, by us-

ing Matrix Strategy, we save the effort of writing each job to ex-

ecute conformance tests of the nine security profiles and stan-

dard specifications individually. By setting the value of the

profile in line 12 to the value of the Docker environment vari-

ables TEST_PLAN and KEYCLOAK_REALM_IMPORT_

FILENAME, a job in which a conformance test of the security

profile or standard specification is indicated by this value is au-

tomatically generated. (Table 3).

Starting from line 50, a job that aggregates the execution re-

sults of the nine conformance tests is referred to as the evalu-

ate-test-results. As shown in line 51, this job begins its execution

after all nine jobs were completed. This job reads the execution

result log for each conformance test, prints the name of the test

that failed to pass, as shown in line 88, and makes it available for

download from the browser as an artifact, as shown in lines 89 to

92.

This workflow has been published as a branch of one of the

Fig. 9　Log of the conformance test (partial excerpt).

*23 https://github.com/keycloak/kc-sig-fapi/pull/346/files#diff-5c29cf98a
783fab59889e0c8d2c879d2c2a7a3c871abdd7c275ce671ab02675e

*24 https://docs.github.com/en/actions

Electronic Preprint for Journal of Information Processing　Vol.33

©  2025 Information Processing Society of Japan

authors’ GitHub repository *25.

The results of executing this workflow are shown in the

GitHub’s console (Fig. 11).

The workflow took 1 hour 30 minutes and 57 seconds to com-

plete. Among the nine conformance tests, there were some tests

that cannot be automatically executed due to the nature of the

tests, and the tests could not complete after waiting for an execu-

tion timeout. Due to this execution timeout wait, it took a long

time for the workflow to complete. These tests we found were

written on the manual this conformance test execution platform

in the GitHub repository and we added notes showing that these

tests must be executed manually *26.

Considering the result of the workflow, we confirmed that all

nine conformance tests were executed in parallel, implying that

the conformance test execution platform satisfies requirement

(1) Test Parallelization of Section 2.3.

We ran the workflow ten times and found the average comple-

tion time of the workflow and calculated the average completion

time of each nine conformance tests. Moreover, we estimated the

completion time if all nine conformance tests are executed in

tandem by summing completion time of each nine conformance

tests and averaging them.

The average completion time of the workflow for test paral-

lelization was 79 minutes 35 seconds with 14 seconds of its

standard error. The estimation of the completion time if all nine

conformance tests are executed in tandem was 211 minutes and

24 seconds with 20 seconds of standard error. The former was

shorter than the latter and decreased by 62.4% compared with

the latter, which means that the completion time of nine confor-

mance tests were reduced by 62.4% by this test parallelization.

Therefore, the conformance test execution platform satisfies re-

quirement (2) Reduced Time of Test Parallelization of Section

2.3.

We compared the average completion time of the workflow

Fig. 10　Workflow definition file (partial excerpt).

Table 3　GitHub Action’s jobs created by Matrix Profile.

Fig. 11　Parallel execution of nine conformance tests and their test results.

*25 https://github.com/tnorimat/keycloak-fapi/blob/test-env-baseline/.
github/workflows/run-conformance-tests.yml

*26 h t t p s :// g i t h u b . c o m/ k e y c l o a k/ k c- s i g- f a p i/ t r e e/ m a i n/
conformance-tests-env#not-passed-tests-automatically

©  2025 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.33

with the average completion time of Keycloak’s CI calculated in

Section 5.1. The former was 79 minutes 35 seconds with 14 sec-

onds of its standard error while the latter was 79 minutes 12 sec-

onds with 380 seconds of its standard error. Therefore, the aver-

age completion time of the workflow was almost the same as the

average completion time of Keycloak’s CI, which implies that

the conformance test execution platform satisfies requirement

(3) Test Applicability to CI of Section 2.3.

6.　 Discussion

Based on the evaluation results presented in Section 5, we

confirmed that the conformance test execution platform resolved

the three issues presented in Section 2.

In Section 5.1, we cloned the conformance test execution plat-

form published in the GitHub repository, and confirmed that it is

possible to execute a conformance test using the conformance

test execution platform on both OSes of Windows and Linux

(Ubuntu). We also confirmed that the completion time of the

conformance test was reduced by 56.8% by this test automation.

In Section 5.2, we attempt to perform a new conformance test

for UK Open Banking security profile and confirm that it is pos-

sible by following the procedures formulated in Section 4.2,

without having to spend time on trial and error. We also con-

firmed that lines of code of programs the developer needs to

write without the conformance test execution platform was re-

duced by 85.7% by using the conformance test execution plat-

form.

In Section 5.3, we confirmed that the nine conformance test

types can be automatically executed in parallel using the confor-

mance test execution platform with GitHub Actions. We also

confirmed that the completion time of nine conformance tests

was reduced by 62.4% by this test parallelization.

6.1　 Applicability to an Authorization Server or OP other

than Keycloak

According to the design policies in Section 3, the confor-

mance test execution platform is divided into one that does not

depend on the test target (test-target independent) and one that

depends on the test target (test-target dependent). Therefore, we

believe that it is possible to perform a conformance test by fol-

lowing the following five procedures.

 ・ Adding a Test Target: We must prepare a Dockerfile that

runs the test target in a container under the test target direc-

tory (I in Fig. 6).

 ・ Adding Test Target Configuration: We must prepare a con-

figuration file for the test target for each security profile un-

der the test target directory (G in Fig. 6).

 ・ Adding a Target Specific Entity: We must prepare a Dock-

erfile and other files for an entity required by the test target

(J in Fig. 6).

 ・ Changing Test Configuration: We must change each config-

uration file for automatic conformance test execution in

conformance-suite/fapi-conformance-suite-config directory

such that an authorization server or OP other than Keycloak

is the test target (C in Fig. 6).

 ・ Starting the Test Target and Test Specific Entity in a con-

tainer: We must modify the docker-compose.yml file, such

that the test target and test-specific entity software run in

containers and connect to the Docker network (P in Fig. 6).

6.2　 Applicability to Quality Assurance of Keycloak

The conformance test execution platform can also be used as

part of Keycloak regression testing. Every time a new version of

Keycloak was released, we executed conformance tests as part

of Keycloak regression testing to ensure that the new version

was compliant with the security profiles supported by previous

versions. The results are published on the OAuth SIG’s web-

site *27.

7.　 Related Work

To execute conformance tests of specifications in Table 2, a

conformance test execution platform needs to do the task of gen-

erating and sending HTTP request from a browser to an authori-

zation or OP, and receiving and reading a HTTP response from

the authorization or OP to the browser.

We investigated works for automatically and flexibly execut-

ing several types of conformance tests or vulnerability tests to

find the methods of doing the task. Next, we compared the meth-

ods by the works with the one by the developed conformance

test execution platform in this research.

7.1　 Works for Automatic Execution of Conformance Tests

and Vulnerability Test

OAuch, a system that semi-automatically executes confor-

mance tests for OAuth 2.0, and its related security specifications

against an authorization server, was developed in [19]. OAuth

was published as OSS *28 and Web Services *29. OAuch simulates

a browser and client, and automatically sends a request to an au-

thorization server being tested and determines whether its re-

sponse meets the requirements of OAuth 2.0 and its related secu-

rity specifications. OAuch requires its user to manually input

data into the browser while [11] that is included in the confor-

*27 https://github.com/keycloak/kc-sig-fapi?tab=readme-ov-file#passed-
conformance-tests-per-keycloak-version

*28 https://github.com/DistriNet/OAuch
*29 https://oauch.io

Electronic Preprint for Journal of Information Processing　Vol.33

©  2025 Information Processing Society of Japan

mance test execution platform developed in this study can per-

form this operation automatically.

Whether an RP that uses Facebook, Google, or PayPal as an

IdP has vulnerabilities was studied in [20]. The contents of the

messages exchanged between the RP and IdP were automatically

analyzed, and the results of the analysis were manually investi-

gated to determine whether the RP had vulnerabilities.

SSOScan, a system that automatically executes a vulnerability

diagnosis for an RP using Facebook as the IdP, was developed

in [21]. SSOScan was published as OSS *30 and Web Services *31.

SSOScan creates an RP as the attacker and registers it on Face-

book. Using an attacker’s RP, SSOScan automatically determines

whether the RP being tested has known vulnerabilities.

OAuthTester, a system that automatically executes vulnerabil-

ity diagnosis for an RP using an IdP supporting an OAuth

2.0-based protocol, such as Facebook, was developed in [22].

OAuthTester uses a customized browser plugin to intercept mes-

sages exchanged between the RP and IdP. By investigating the

contents of the messages, OAuthTester automatically constructs

a finite-state machine describing the RP and IdP, and determines

whether the RP has known and unknown vulnerabilities.

WPSE, a Chrome browser plugin that automatically executes

vulnerability diagnoses for an RP that uses an IdP supporting an

OAuth 2.0-based protocol or OIDC, was developed and released

as OSS *32 in [23]. The WPSE not only determines whether the

RP has vulnerabilities but also prevents attacks that exploit vul-

nerabilities.

The vulnerabilities of an RP that uses an IdP supporting an

OAuth 2.0-based protocol, such as Facebook, or OIDC, such as

Google, were studied in [24], [25], [26]. By investigating the

contents of the messages exchanged between the RP and the IdP,

the study automatically determined whether the RP has unknown

vulnerabilities that could lead to spoofing.

7.2　 Comparing the Works with the Conformance Test Exe-

cution Platform

Selenium WebDriver. For doing the task of generating and

sending HTTP request from a browser to an authorization or OP,

and receiving and reading a HTTP response from the authoriza-

tion or OP to the browser, the developed conformance test exe-

cution platform uses Selenium WebDriver *33 and runs scripts to

handle a browser automatically. The method for the task is ap-

propriate for executing conformance tests in CI because the

method can run tests automatically and it does not require addi-

tional setup and configuration for browser so it does not increase

completion time of executing conformance tests in CI.

Manual. In [19], the task was done by handling a browser by

a tester manually. This method for the task is not appropriate for

executing conformance tests in CI because the method dose not

execute conformance tests in CI automatically without human

intervention.

Proxy and plugin. In [20], [24], the task was done by a

plugin installed in a browser and a proxy installed a machine on

which the browser run. This method for the task is not appropri-

ate for executing conformance tests in CI because the method

need to install and set up the plugin to the browser, and install

and set up the proxy on the machine on which the browser runs

whenever executing conformance tests, which cause additional

overhead and increase completion time of executing confor-

mance tests in CI. Moreover, a tester needs to modify the plugin

and proxy if the tester executes conformance tests for a new

specification, which requires additional amount of man-hours.

Plugin. In [22], [23], [25], [26], the task was done by a plugin

installed in a browser. This method for the task is not appropriate

for executing conformance tests in CI because the method need

to install and set up a plugin to the browser whenever when exe-

cuting conformance tests, which causes additional overhead and

increases completion time of executing conformance tests in CI.

Moreover, a tester needs to modify the plugin if the tester exe-

cutes conformance tests for a new specification, which requires

additional amount of man-hours.

Web scraping. In [21], the task was done by web scraping.

This method for the task is not appropriate for executing confor-

mance tests in CI because the method dose not execute confor-

mance tests because a tester need to develop scraping scripts if

the tester execute conformance tests for a new specification or

executing conformance test against a new authorization server or

OP, which requires additional amount of man-hours.

8.　 Conclusion

Many authorization servers or OP software products support

multiple FAPI security profiles developed by the OIDF and

Open Banking security profiles that are based on FAPI security

profiles. However, creating programs other than the authoriza-

tion server or OP software to execute their conformance tests,

providing support for execution of a new conformance test if re-

quired by a new security profile for their product, and automati-

cally executing multiple conformance tests is man-hour inten-

sive.

To resolve these issues, we designed and developed a confor-

mance test execution platform together with the OSS community

OAuth SIG, assuming Keycloak as a specific test target for con-

*30 https://github.com/Treeeater/vulCheckerFirefox
*31 http://ssoscan.org/
*32 https://sites.google.com/site/wpseproject/
*33 https://www.selenium.dev/documentation/webdriver/

©  2025 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.33

formance tests. By evaluating the platform, we confirmed that

these issues were resolved.

We implemented FAPI security profiles and Open Banking se-

curity profiles based on the FAPI security profiles in Keycloak.

Using our conformance test execution platform, we confirmed

that Keycloak passed the conformance tests of these security

profiles, suggesting that it complies with the specifications of the

security profiles.

In addition, based on the conformance test results obtained

from our platform, members of the Keycloak community other

than the authors obtained certification from the OIDF, demon-

strating that Keycloak complies with the specifications of the se-

curity profiles. Currently, Keycloak can be used as an OIDF-cer-

tified OP/Authorization server because it is an OSS.

For the quality assurance of Keycloak, owe executed confor-

mance tests against Keycloak by using the platform as part of re-

gression tests every time a new version of Keycloak was re-

leased. Consequently, we confirmed that the new version of

Keycloak still complies with security profiles already supported

by the existing version of Keycloak. To ensure easy accessibility,

we have published these conformance test results and the con-

formance test execution platform developed in this study as a

Keycloak sub-project in the OAuth SIG’s GitHub repository.

In the future, we will improve the workflow of the GitHub

Actions described in Section 4.3 and integrate the conformance

test execution platform with Keycloak’s CI/CD pipeline. This is

to ensure that the new version of Keycloak can be released in

compliance with security profiles and standards already support-

ed by the existing version of Keycloak.

Acknowledgments　The initial foundation of the confor-

mance test execution platform was created by Hiroyuki Wada of

Nomura Research Institute, Brendan Rothwell and Daniel Huffer

of Integral in Australia, and Arun Ganesh Alagappan of Maver-

ick Systems in India. Subsequently, Keycloak maintainer Marek

Posolda of Red Hat in the Czech Republic, Keycloak maintainer

Thomas Darimont of codecentric AG in Germany, Raphael

Abreu of Red Hat in Brazil, and Shane Boulden of Red Hat in

Australia have contributed to improving the platform. We would

like to express our gratitude to them.

References

[1] OpenID Foundation: FAPI Working Group - Specifications
(online), available from 〈https://openid.net/wg/fapi/
specifications〉(accessed 2023–12–30).

[2] IETF: RFC 6749 The OAuth 2.0 Authorization Framework
(online), available from 〈https://datatracker.ietf.org/doc/html/
rfc6749〉(accessed 2023–12–30).

[3] OpenID Foundation: OpenID Connect Core 1.0 incorporating
errata set 2 (online), available from 〈https://openid.net/specs/
openid-connect-core-1_0.html〉(accessed 2023–12–30).

[4] The Open Banking Implementation Entity: Open Banking Se-
curity Profiles (online), available from 〈https://standards.
openbanking.org.uk/security-profiles〉(accessed 2023–12–30).

[5] OpenID Foundation: Financial-grade API - Part 2: Read and
Write API Security Profile (online), available from 〈https://
openid.net/specs/openid-financial-api-part-2-wd-06.html〉(ac-
cessed 2023–12–30).

[6] The Data Standards Body: Consumer Data Right Security Pro-
file (online), available from 〈https://consumerdatastandards
australia.github.io/standards/#security-profile〉(accessed
2023–12–30).

[7] OpenID Foundation: Financial-grade API Security Profile 1.0 -
Part 2: Advanced (online), available from 〈https://openid.net/
specs/openid-financial-api-part-2-1_0.html〉(accessed 2023–
12–30).

[8] Banco Central do Brasil: Open Finance Brasil Financial-grade
API Security Profile 1.0 Implementers Draft 3 (online), avail-
able from 〈https://openfinancebrasil.atlassian.net/wiki/spaces/
DraftOF/pages/76283925/EN+Open+Finance+Brasil+
F i n a n c i a l- g r a d e + A P I + S e c u r i t y + P r o f i l e + 1 . 0 +
Implementers+Draft+3〉(accessed 2023–12–30).

[9] OpenID Foundation: Financial-grade API Security Profile 1.0 -
Part 1: Baseline (online), available from 〈https://openid.net/
specs/openid-financial-api-part-1-1_0.html〉(accessed 2023–
12–30).

[10] Banfico, Ltd.: IBM API Connect in Saudi Open Banking Im-
plementation (online), available from 〈https://www.banfico.
com/ibm-api-connect-in-saudi-open-banking〉(accessed
2023–12–30).

[11] OpenID Foundation: About the Conformance Suite (online),
available from 〈https://openid.net/certification/about-
conformance-suite〉(accessed 2023–12–30).

[12] OpenID Foundation: OpenID Certification (online), available
from 〈https://openid.net/certification〉(accessed 2023–12–30).

[13] Norimatsu, T. and Nakamura, Y.: Flexible Way for Realizing
OAuth 2.0 Based Security Profiles on Keycloak, Proc. Com-
puter Security Symposium 2020, Online, IPSJ, pp.853–858
(2020). (in Japanese).

[14] Norimatsu, T. and Nakamura, Y.: Flexible Way for Realizing
OAuth 2.0 Based Security Profiles on Keycloak (part 2), Proc.
Computer Security Symposium 2021, Online, IPSJ, pp.639–646
(2021). (in Japanese).

[15] Norimatsu, T., Nakamura, Y. and Yamauchi, T.: Flexible Meth-
od for Supporting OAuth 2.0 Based Security Profiles in Key-
cloak, Lecture Notes in Informatics (LNI) Proc. Open Identity
Summit 2022, Lyngby, Denmark, Gesellschaft für Informatik
e.V., Vol.P-325, pp.87–98, DOI: 〈https://doi.org/10.18420/
OID2022_07〉 (2022).

[16] Norimatsu, T., Nakamura, Y. and Yamauchi, T.: Policy-Based
Method for Applying OAuth 2.0-Based Security Profiles, IE-
ICE Transactions on Information and Systems, Vol.E106-D,
No.9, pp.1364–1379, DOI: 〈https://doi .org/10.1587/
transinf.2022icp0004〉 (2023).

[17] OpenID Foundation: OpenID Connect Client-Initiated Back-
channel Authentication Flow - Core 1.0 (online), available
from 〈https://openid.net/specs/openid-client-initiated-
backchannel-authentication-core-1_0-final.html〉(accessed
2023–12–30).

[18] The Open Banking Implementation Entity: The Open Banking
API Specifications: Account and Transaction API Profile -
v3.1.10 (online), available from 〈https://openbankinguk.github.
io/ read-wri te-api-s i te3/v3.1 .10/profi les/account-and-
transaction-api-profile〉(accessed 2023–12–30).

[19] Philippaerts, P., Preuveneers, D. and Joosen, W.: OAuch: Ex-
ploring Security Compliance in the OAuth 2.0 Ecosystem,

Electronic Preprint for Journal of Information Processing　Vol.33

©  2025 Information Processing Society of Japan

Proc. the 25th International Symposium on Research in At-
tacks, Intrusions and Defense, pp.460–481 (2022).

[20] Wang, R, Chen, S. and Wang, X.: Signing Me onto Your Ac-
counts through Facebook and Google: A Traffic-Guided Secu-
rity Study of Commercially Deployed Single-Sign-On Web
Services, Proc. 2012 IEEE Symposium on Security and Priva-
cy, pp.365–379 (2012).

[21] Zhou, Y. and Evans, D.: SSOScan: Automated Testing of Web
Applications for Single Sign-On Vulnerabilities, Proc. the 23rd
USENIX Security Symposium (USENIX Security 14), pp.495–
510 (2014).

[22] Yang, R., Li, G., et al.: Model-based Security Testing: An Em-
pirical Study on OAuth 2.0 Implementations, Proc. the 11th
ACM on Asia Conference on Computer and Communications
Security, pp.651–662 (2016).

[23] Calzavara, S., Focardi, R., et al.: WPSE: Fortifying Web Proto-
cols via Browser-Side Security Monitoring, Proc. the 27th
USENIX Conference on Security Symposium, pp.1493–1510
(2018).

[24] Wang, H., Zhan, Y., et al.: The Achilles heel of OAuth: a
multi-platform study of OAuth-based authentication, Proc. the
32nd Annual Conference on Computer Security Applications,
pp.167–176 (2016).

[25] Sun, S. and Beznosov, K.: The devil is in the (implementation)
details: an empirical analysis of OAuth SSO systems, Proc. the
2012 ACM Conference on Computer and Communications Se-
curity, pp.378–390 (2012).

[26] Bai, G., Lei, J., et al.: AUTHSCAN: Automatic Extraction of
Web Authentication Protocols from Implementations, Proc. the
20th Annual Network and Distributed System Security Sympo-
sium (NDSS), (2013).

Appendix

A.1　 Evidence of Our Contribution to the Con-
formance Test Execution Platform as Key-
cloak’s Sub-project

The following list includes the pull-requests sent by us and

merged to the conformance test execution platform as Keycloak’s

sub-project.

https://github.com/keycloak/kc-sig-fapi/pull/35, 36, 37, 38,

112, 123, 142, 150, 162, 170, 187, 188, 191, 199, 204, 213, 223,

224, 229, 230, 237, 241, 249, 258, 259, 260, 261, 262, 263, 264,

267, 270, 273, 275, 278, 280, 282, 284, 286, 293, 295, 299, 300,

303, 306, 307, 310, 312, 313, 314, 315, 328, 336, 338, 344, 346,

352, 354, 356, 364, 370, 377, 381, 384, 388, 395, 398, 412, 414,

416, 428, 431, 434, 436, 437, 442, 445, 458, 459, 461, 475, 477,

479, 482.

A.2　 Data Source of Keycloak’s CI Run Results
used for the Evaluation

The following list includes the web pages for Keycloak’s CI

run results used to be evaluate the conformance test execution

platform in Section 5.1 and 5.3. These CI runs had been execut-

ed when pull-request to Keycloak had been sent before Keycloak

23.0.3 was released, which is the version of Keycloak used for

the evaluation of the conformance test execution platform in

Section 5.

h t tps ://g i thub.com/keycloak/keycloak/ac t ions/ runs/

7132499576, 7139728398, 7032155981, 7074907017,

7139832428, 7046221921, 7122667381, 7098487569,

7060027388, 7038104417.

A.3　 Data Source of Conformance Tests Execu-
tion on the GitHub Actions Workflow used
for the Evaluation

The following list includes the results of conformance tests

execution on the GitHub Actions workflow. The results of con-

formance tests execution were used to evaluate the conformance

test execution platform in Section 5.3.

https://github.com/tnorimat/keycloak-fapi/actions/runs/

9728965818, 9729388199, 9729784644, 9730283579,

9730726378, 9731181993, 9731638566, 9732617966,

9734024826, 9734738933.

Takashi Norimatsu received his B.S. degree

in science from National Institution for Aca-

demic Degrees and Quality Enhancement of

Higher Education and M.S. degree in mathe-

matical engineering from University of Tsuku-

ba in 2001. He has been working for Hitachi,

Ltd. since 2001, and is also studying at Okayama University to

obtain a Ph.D. degree. He is a member of IPSJ.

Yuichi Nakamura received his B.S. and M.S.

degrees in physics from University of Tokyo in

1999 and 2001, M.S. degree in computer sci-

ence from The George Washington University

in 2006, and Ph.D. degree in computer science

from Okayama University in 2016. He worked

for Hitachi Solutions over 2001–2015 and has been working for

Hitachi, Ltd. since 2016. He is a member of IPSJ.

©  2025 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.33

Toshihiro Yamauchi received B.E., M.E. and

Ph.D. degrees in computer science from Ky-

ushu University, Japan in 1998, 2000 and 2002,

respectively. In 2001, he became a Research

Fellow of the Japan Society for the Promotion

of Science. In 2002, he became a Research As-

sociate in Faculty of Information Science and Electrical Engi-

neering at Kyushu University. He has served as associate profes-

sor of Graduate School of Natural Science and Technology at

Okayama University since 2005, and has been serving as profes-

sor of Graduate School of Natural Science and Technology at

Okayama University since 2021. His research interests include

operating systems and computer security. He is a member of

IPSJ, IEICE, ACM, USENIX, and IEEE.

Electronic Preprint for Journal of Information Processing　Vol.33

©  2025 Information Processing Society of Japan

