

Proposal of an edge serverless computing platform with an

asynchronous communication model

LI YANZHI1 MIDORI Sugaya1

Abstract: In recent years, the number of IoT devices that access to the networks is growing rapidly. The outrageous

number of network connections and large amount of data transmission generated by these devices bring new chal-

lenges to cloud computing. Edge computing has received much attention as one of the solutions to the data

transmission bottleneck in cloud computing networks. Currently, edge computing, represented by content delivery

networks, has achieved great success in static data distribution and has started to provide computing services in edge

computing nodes in a serverless computing paradigm. However, the synchronous computing model used in existing

Edge serverless computing platforms has the problem of difficulty in running time-consuming computational proce-

dures such as AI inference. To address this problem, we propose an edge serverless computing platform based on an

asynchronous computing model. This study decouples the computational process from the communication process

through asynchronous computing, which increases the flexibility of computational resource scheduling, and in turn

permits more efficient use of edge computing resources. Also, the serverless computing model and the global compu-

ting library introduced in this study can be used to hide hardware differences, which allows different hardware to be

deployed in the edge site to improve the computing performance. Finally, we discuss the approach to deploying com-

putational programs on this platform, which validates the possibility of using asynchronous computing techniques to

deploy computational programs on this platform.

Keywords: Edge computing, Serverless, Function as a Service, IoT, Heterogeneous computing

1. Introduction

In recent years, the number of devices connected to the network

has increased with the spread of IoT devices and mobile phones.

The large number of connections to cloud servers increases the

pressure on cloud servers to handle connections and data transfers.

In order to solve the bottleneck of connection and data transfer on

the cloud server side, edge computing has been attracting more and

more attention[1]. Contents Delivery Network is a kind of edge

computing, and many service providers already offer services. In

addition to the static content caching that comes standard with

CDNs, companies such as Cloudflare[2] are providing additional

computing services on edge nodes in Serverless Computing[4].

However, these computing services are usually based on an event-

driven synchronous compute model, which limits the maximum

compute time allowed to prevent a single client from taking up

compute resources for a long time, leading to service outages. Such

limitations prevent Serverless Computing platforms from running

time-consuming computational procedures such as AI inference.

This research aims to allow computations of longer duration to be

performed in edge computing in the form of serverless computing.

To achieve this objective, we designed a serverless computing plat-

form based on an asynchronous computing model. The remaining

part of this research is: In Section 2, we introduced the related work,

and in Section 3, we pointed out the problem in previous work and

gave our proposal. In Section 4, we introduce the design of our

platform, and in Section 5, we give two examples of using this

platform. Finally, Section 6 gives this research's conclusion and

feature work.

 1 Shibaura Institute of Technology

 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan

2. Related Works

As one kind of edge computing, CDNs have successfully reduced

the traffic and connection loads on cloud servers. CDN providers

such as Cloudflare are now trying to provide edge computing ser-

vices using their infrastructure in the model on the left side of Fig

1. In this model, when a client (Requester) issues a request, the

context is forwarded synchronously to the backend (Worker) for

processing. This model performs well for short-time tasks. How-

ever, when dealing with long execution time tasks, the unstable

network connection may cause failures[5]. Also, the unpredictable

execution time may break the load balancing across nodes.

Workload managers such as Slrum[3] provide a solution to deal

with tasks with the long execution times by using an asynchronous

forwarding model, as shown on the right side of Fig. 1. In this

model, after a client issues a request, the context is asynchronously

forwarded to the backend for processing. The client no longer

needs to keep a network connection active to wait for the result.

Furthermore, it gives extra flexibility for management tasks with

long execution times.

Figure 1 Synchronous (left) and Asynchronous model(right)

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 75

3. Problem and Proposal

The existing serverless edge computing platforms usually use the

synchronous forwarding model. This model has problems with

long-time computing, such as AI inference. In this research, we

propose a serverless edge computing platform with an asynchro-

nous computing model to satisfy the needs of computing tasks with

a long execution time. Our proposal suggests using an asynchro-

nous computing interface as Slrum and providing serverless

computing functions as an existing edge computing system to hide

the hardware differences.

4. System Design

The Fig 2 shows the overview of our proposed system. There are

four prominent roles in this system: The Requester is the role that

requests the use of compactional resources, and the Worker is the

role that offers the compactional resources. The Developer is the

role that will develop the computing program called by the Re-

quester and run on the Worker. The Manager is the central role of

this system. It has three main tasks: 1) Handle the job contents sent

by the Requester, schedule and forward the job contents to the

Worker asynchronously. 2) Offers extra functions for computing,

such as data storage for computing contents, including input and

output. 3) Distribute the program developed by the Developer to

the Worker and neighbour Edge Node. 4) Fetching data from

neighbor Edge Node when Requester requests.

4.1 System Objects

We suggest these objects be implemented for creating a server-

less computing platform with a permission system.

1. User: The Developer's information, such as password.

2. Project: The organization of several Developers they can

create functions together

3. Function: The script that will be executed on the Worker

4. Job: A running function instance issued by the Requester.

5. Worker: The workers connected to this node.

6. BLOB Data: Binary data that can be used as input or output

of the function also can be used to share data between Jobs.

7. KV: The Key-Value store namespace for each Function,

Project and User.

Also, we create some rules for the object federation between

Edge Nodes. We suggested that User, Project, and Function will be

distributed to federation nodes activity when modified, and the

Data and Job will only be Fetched from federation nodes when

needed. The Worker will only serve resources for the Manager con-

nected, so the Worker object will never be transferred. For KV

storage, we suggested having Global KV distributed to other nodes

activity and Local KV only available in the same Edge Node.

4.2 API Design

We designed an object-oriented HTTP API for this system. The

API design was shown in Table 1. The classes are described in Sec-

tion 4.1, and the object_id is an ID based on SnowFlake ID.

GET /:class Get object list

POST /:class Create new object

GET /:class/:object_id Get object attributes

POST /:class/:object_id Set object attribute

DELETE /:class/:object_id Delete an object

POST /:class/:object_id/:method Call instance methods

Table 1 API design

5. Application Example

To discuss if this system can achieve our goal, we discuss some

application examples here.

5.1 AI inference

One example is offloading AI inference computing to the Edge.

The fine-tuning AI model can be saved as blob data. Since the data

ID may be changed, we suggested saving the data ID in the KV

store with the Developer decided key. The function will first fetch

the model blob data ID from the KV store, then fetch the model

blob by data ID, run the inference, and return the result to the Man-

ager.

5.2 Data Pre-Processing

Another example is running pre-processing before the data is

uploaded to the cloud. For example, when trying to detect some

object from the camera, Requester can upload the picture to Edge

and call the function that will detect the object from the picture.

The function will be executed starting to detect the object. Once

the object has been detected, the function will start to upload the

information to the cloud, and the picture without the information

can just be deleted.

6. Conclusion

This study proposed a serverless edge computing that can han-

dle computes that request for a long execution time. The proposed

system uses an asynchronous computing interface to satisfy the

long-duration execution and uses a serverless computing model to

hide the difference in hardware. Finally, we give two examples of

using this platform for running long-duration computing and fed-

eration with cloud computing. Future research is considered in 1)

Implement this platform as a distribution system for each edge

node. 2) Discussion about the library function that the system will

offer. 3) The proposed system is a large-scale system which still

needs further discussion about quantitatively evaluate this system.

Acknowledgements This work was supported by JST, CREST

Grant Number JPMJCR19K1, Japan.

References
[1] Ju Ren, Deyu Zhang, Shiwen He, Yaoxue Zhang, and Tao Li. 2019. A Survey

on End-Edge-Cloud Orchestrated Network Computing Paradigms: Transparent

Computing, Mobile Edge Computing, Fog Computing, and Cloudlet. ACM Comput.

Surv. 52, 6, Article 125 (November 2020), 36 pages.

https://doi.org/10.1145/3362031

[2] Cloudflare Workers. https://workers.cloudflare.com/.

[3] SlurmMD. https://www.schedmd.com/

[4] Y. Li, Y. Lin, Y. Wang, K. Ye and C. Xu, "Serverless Computing: State-of-the-

Art, Challenges and Opportunities," in IEEE Transactions on Services Computing,

vol. 16, no. 2, pp. 1522-1539, 1 March-April 2023, doi: 10.1109/TSC.2022.3166553.

[5] T. Lynn, P. Rosati, A. Lejeune and V. Emeakaroha, "A Preliminary Review of

Enterprise Serverless Cloud Computing (Function-as-a-Service) Platforms," 2017

IEEE International Conference on Cloud Computing Technology and Science (Cloud-

Com), Hong Kong, China, 2017, pp. 162-169, doi: 10.1109/CloudCom.2017.15.

Figure 2 System Overview

Asia Pacific Conference on Robot IoT System Development and Platform 2023 (APRIS2023)

ⓒ 2023 Information Processing Society of Japan 76

