VI MU =7 IH 46 —6
(1986 2 6)

LOGICAL PROGRAMMING
FOR
THE TELEGRAM ANALYSIS PROBLEM

EBRER, &
(KERK%)
Abstract
The telegram analysis problem posed by
P.Henderson and R.A.Snowdon has been
repeatedly taken intc account. This paper
adds yet another contribution to this problem.

We propose rigorous specification methods, and
describe how programs can be derived from BNF
to Definite Clause Grammar in Prolog in two
different methods. One of them is especially
useful for a large scale problem, which has
been applied to file manipulation, and the
other is for a simple problem.

The rigorous methods to obtain a correct
program are still central concerns in Software
Engineering. Focusing on the telegram analysis
problem (1,2,3,4,5,6], we have investigated
several specification and design methods.

In this paper we propose rigorous specifi-
cation methods and show how programs can be
derived from a specification through a clear
process. These rigorous approaches are syste-
matic programming methods for obtaining a cor-
rect program. The usage of the telegram
analysis problem as an example in this paper
has no special meaning other than that this
example is widely known for more than 14 years.

In Section 2, we describe the definition
of the Definite Clause Grammar(abbreviated as
DCG) in Prolog.

In Section 3, we restate to clarify the
telegram analysis problem.

In Section 4, we propose two rigorous
methods for transforming a problem specifica-
tion in Backus-Naur Form (abbreviated BNF) into
a Prolog program through DCG which can be
translated into Prolog [71. The first method
starts with writing the input and output data
structures in BNF. As is well known, an input
into DCG is automatically transformed into a
syntax analysis tree. Therefore there is no
need to analyse the input explicitly. Further,
explicit syntactical generation of the output
data structure is net needed. The method is one
of the easiest ways for rapid prototyping,
since it 1is suffice to consider the non-
terminal symbols in CFG for the syntactical
parts. As to the semantic parts the attributes
which easily lead to the construction of DCG,
relating to each non-terminal, can be derived
from the output BNF.[9] We have applied this
method to file manipulation. The second method
is basically same as the first one except the
introduction of the intermediate file, the
output data structure and the usage of the
attribute grammar for the input's BNF.

L, BUWHRZ, ° HRFE

(BE2=onRy»)

When we consider the specification in BNF
as in [6], we can propose a natural way to
derive a Prolog program using DCG. A DCG is a
natural extension of CFG. It provides not only
a description of a language, but also an
effective means for analyzing strings of that
language, since DCG is an executable program of
the programming language Prolog. Using a
standard Prolog compiler, DCG can be compiled
into Prolog, making it feasible to implement
practical language analysers directly as
DCGs(7,81.

DCG is defined in [71 as follows.

A grammar rule in DCG takes
form:

the general

LHS --> RHS.

meaning "a possible form for LHS is RHS". Both
RHS and LHS are sequences of one or more items
linked by the conjunction operator et

The DCGs extend
the following ways:

context-free grammars in

(1) The left-hand side of a grammar rule con-
sists of a non-terminal, optionally
followed by a sequence of terminals.

(2) The right-hand side of a grammar rule con-

sists of a sequence of non-terminals or
terminals,
(3) A non-terminal symbol may be any Prolog

term (other than a variable or integer).

(4) A terminal symbol may be any Prolog
To distinguish
terminals,

term.
terminals from non-
a sequence of one or more
terminal symbole is written within a
grammar rule as a Prolog list., If the
terminal symbols are ASCII character codes,
such lists can be written as strings. An

empty sgequence is written as the empty
list, [1 or "m.
(6) Extra conditions, in the form of Prolog

procedure calls, may be included in the
right-hand sidé of a grammar rule. Such
procedure calls are written enclosed in ()
brackets.
(6) Alternatives

may be stated explicitly in

the right-hand side of a grammar rule,
using the disjunction operator ';' as in
Prolog.

3. The Telegram Analysis Problem

problem
[Hend721

The original telegram analysis
posed by P.Henderson and R.A.Snowdon
tells:

A program is required
stream of telegrams. This

to process a
stream is

available as a sequence of letters, digits
and blanks on some device and can be
transferred in sections of predetermined

size 1into a buffer area where it is to be
processed. The words in the telegrams are
separated by sequences of blanks and each
telegram is delimited by the word "ZZZZ".
The stream is terminated by the occurrence
of the empty telegram, that is a telegram
with no words. Each telegram is to be
processed to determine the number of
chargeable words and to check for occurren-
ces of overlength words. The words "ZZZZ"
and "STOP" are not chargeable and words of
more than twelve letters are considered
overlength. The result oi the processing is
{{to be a neat listing of the telegrams,
each accompanied by}) the word count and a
message indicating the occurrences of an
overlength word.

When we try to analyse this problem, there
are many difficulties from the outset. The
above intuitive description has several
ambiguities. Since we prefer to analyse the
problem under the same environment, we have
fixed the problem into a standard in the
following manner:

(S1) The phrase in {{...}} is deleted.

(82) The *“STOP" word is dealt with as a
special word, i.e., it is not counted as
a chargeable word.

(S3) An overlength word is counted as one
word, but it is not necessary to count
the number of their occurrence.

(S4) The telegram number is the serial number
of the telegram in the telegram sequence.

Therefore, for example, the output of this
problem has a form described as follows:

Telegrams Analysis

Telegram 1. Charge count is 15, overlength occurred.

Telegram 2. Charge count is 146, no overlength.

End Analysis

From the informal specification, an input

file is read into a buffer of predetermined
size. Jackson [2] used this example where the
input is read into a buffer by a read_block

instruction. He showed how to solve such a
problem caused by the differeces between the
boundary of bolcks and the boundary of
telegrams. His purpose was to show how these
problems of "strcuture clashes" in his words,
can be solved by introducing an intermediate
file and through a program inversion technique.
But as he mentioned, there is another solution

which is to read the whole input into a buffer
or main memory of any finite length.

Concerning the discribing notations, let
us use regular expressions and BNF. The opera-
tions in regular expressions are " ", "{", and
"x" for concatenation, alternation and repeti-
tion including null string, respectively. "+"
operation 1is also used for repetition without
null string.

For the regular expressions with repeti-
tive oprations "x" and "+", we can rewrite each
rule into some rules without repetitive opera-
tions in the following manner.

For the rule with "+" operation where S1
and $2 are any symbols and L and X are non-
terminal symbols,

<L> 1= (81> <X>+ <82>

can be transformed into the

rules:

following two
<L> 1= <81> <X+> <82>
K> = X (ZX+> | <null>)

For the "%'" operation,
<L> ti= K81 <Ko% (52>

is transformed into the followaing two rules:

KL> 1= (81> <Xx> (82>
KXk> 1= (KX> ZX#>) 1 <null>

in both cases <null> means an empty string or a
string without any symbol.

For the case of the most Prolog implemen-
tation, input data is supposed to be a list
consisting of character strings. So the input

file is to be read into a form of a list of
characters, though we do not implement the
buffer of predetermined size faithfullly as

described in the informal specification.
Therefore, we assume the input data will read
line by line until the end of file character
from the specified file. The data structure of
the input file in BNF can be described as in
Fig.1. Here <(eof> 1is a special end-of-file
character and <cr_lf> is a special new
line character (See Appendix).

<input_file> ::= <linex>
<linex> ti= (Kline> <line*>) | <null>
{line> 1:= (ch*x>
<ch#> = (<ch> <ch%x>) |
<null>
<ch> ::= <blank> | (letter>
<digit> | <er_1f> | Ceof>
<{blank> tom MM
{letter> T L O A
"A" = . : "Z"
<digit> ti= gt 1o
<pull> sz M

Fig.1l BNF of Input File

4. Derivation of DCG

Ve will show two programming methods, one
of which is useful for a large scale problen,
and the other is for a simple problem. The
former is based on the BNF for both input and
output data structures, introducing an inter-
mediate data structure. Specifically we will
use a BNF description of the output report,

from which terms and extra conditions in DCG
can be derived.
The latter is based on a form of an

attribute grammar[161, i.e. a CFG grammar with
attributes attached to non-terminal symbois.

4.1 DCG derivation for a large scale program

The following is the overall
obtain the DCG from BNF.

process to

(1) Represent the syntax rules of the input
and output data of a problem in BNF., (Here

the left recursive grammar rule is not
allowed).

(2) Extract the data in the output which
depends on the input data.

(3) For the extracted data in (2), define
attributes and arguments related to them

(in order to construct a term in Prolog)
from the informal problem specification.

(4) Let the intermediate text consist of the
data necessary for generating the output
data.

(5) Transform the BNFs into DCGs while consi-
dering what the arguments of DCG's terms
and extra conditions should be.

(6) To execute the input DCG and output DCG
under the Prolog environment, prepare the
following processes:

(a) Driver process which controls the input
DCG, the output DCG and the input
process.

(b) Input process which reads the input data
from the specified file and generates a
list that is one of the basic data struc-
tures of Prolog.

By using this method, we can replace the
processes for input data analysis and for

output data generation by writing DCGs derived
from BNFs. Writing an output BNF and a DCG
sometimes has another advantage: there is no

need to discriminate between parsing and
generation. We can generate the output data
based on the output BNF as if we parse the
output.

In the above procedure, an intermediate
text is introduced to link the data for the
input and output. The intermediate text will
serve as a parse tree obtained from the input,
from which the output data is derived. There
may be a case where the ouiput data stiructure

is so simple or so similar to the input data
struture that we can derive the output data
directly from the input, where the parse tree
is treated implicitly. On the contrary there
may be another case where we must transform the
parse tree in order %to be more easily used to
give an output. We use an intermediate text to
show clearly the general procedure in this
method. The method discussed in Section 4.2 is
also without introducing an intermediate text.

We derive a program of the
analysis problem using the
above.

telegram
method described

(1) The data structure of the input data in
BNF and the BNF describing the analysis report
of the problem can be described as in Fig.2 and
Fig.3, respectively.

(telegram_stream> ::= <blankx> <{telegramx>

<empty_telegram>
= (<blank> <{blank*>) | <null>

s (Ctelegram) <telegramk>) |

<{null>

1= Lzvord>

<non_zword+> <zword>

<non_zword)> <non_zword+)>

<non_zword> <null>

<word> <blank+>

<blank*> 1M
{telegram#)> :

(null_telegramd>
(telegram> HH
<non_zword+> ::
{non_zword+> ::
<non_zword>

<blank+> <blank> <blank#>
{zword> <word> <blank+>
{word> {char+>
{char+> <{char> <{char+>
{char+> {char> <null>
{char> <letter> i

<digit>

Fig.2 BNF of Input Text

{report> ::= <heading_msg>

(telegram_msg#>
<ending_msg>
(telegram_msgx> ::= (<telegram_msg>
(telegram_msg>) |
<{null>
<heading_msg> si= 'Telegrams Analysis'
<{nevw_line>
{telegram_msg> ti= (tele_id_msg>
{charge_msg>
{overlength_msg>
<new_line>

{ending_msg> ::= 'End Analysis'
<{new_line>

<nev_line> stz Ler_tED

<tele_id_msg> 1:= 'Telegram '

(Telegram_No> '.’'

{charge_msg> = ‘Charge count is '
{Charge_Count> ',"
(overlength_msg> ::= ' overlength occured.’ |

' no overlength.'
<Telegram_No> si= (integer>
{Charge_Count> 1= <integer>

Fig.3 BNF of Report

(2) We must define other requirements which
are not described in these BNFs. According to
the problem specification of the report, it is
clear that the output report requires the
following information for each telegram:

* Telegram number,

% Chargeable Word Count in a telegram and

% Flag of the occurrence of the overlength
word in a telegram.

(3) We have to define the meanings of the

following three: Telegram Number (or TN),
Chargeable Word Count (or CWe) and
OverLengthFlag <(or OLF), which depend on the

input data.

From the requirement of the problem, the
chargeable word is neither "ZZZZ" nor "STOP"
and the overlength word has a length which is
more than twelve characters. Therefore, the
following attributes become necessary for
Chargeable Word Count and OverLengthFlag:

check a vword image and incre-
ment Chargeable Word Count if

% chargeable :

it is neither "“ZZZZ" nor
"STOP".

% overlength : check a word length and set
OverLengthFlag if it is more

than twelve,

Each of these attributes is used as a functor
of a term which needs the following twe data
items included in the argument respectively:

* WD_Img : the image which means the charac-
ter string constructing of a word,
%* WD_Len : the length of the word.

To obtain the WD_Img, we use a character
string and the following built-in procedure of
Prolog:

* name(¥D_Img,Ch_Img) : generates an identi-
fier into the variable WD_Img from
a list Ch_Img.

no special attribute
following term will

For Telegram Number,
is necessary, and the
suffice:

* update_telegram_number increase the
telegram number by one.

(4) Let the intermediate text, IT, consist of
data depending on the input data which has the
list structure of the triple used for genera-
ting the output data. That can be represented
in Prolog notation as follows:

[[TN1,CWC1,0LF11, , [TNn,CWCn,OLFn] 1

(5) We use the DCG to add the necessary attri-
butes to the specifications of the input text
and the output report described in BNF.

We must determine those arguments, only
which can be used for passing information, in
each term. In our case, the information which
is to be obtained as a result is three data
items, TN, CWC and OLF, as described above.
They should be computed from an initial value
through intermediate values, until the result
is obtained. Due to the characteristic of the
Prolog which 1is one assignement rule for a

variable, we will use arguments with labels
prefixed with Old_ and New_ for data passing
from the source to the target. For example,

01d_CWC and New_CWC are used for the CWC.

information from the
embedded into DCG as

Now each of the
specification can be
follows:

(a) A data item is used as an argument.
(b) An attribute is used to construct a term,
which is embedded in an extra condition.

The attribute update_telegram_number needs
TN and New_TN. The following is the definition:

update_telegram_number (TN,New_TN) :-
New_TN is TN + 1.

The built-in procedure,"is", of Prolog means

that the Jleft-hand side variable are instan-
tiated by an evaluated value of the right-hand
side expression.

The attribute "chargeable” needs WD_Img,
01d_CWC and New_CWC as arguments. And alsoc the
attribute "overlength" needs WD_Len, Old_OLF

and New_OLF as arguments.

The followings are the definition:

chargeable(WD_Img,0ld_CWC,New_CWC) :-
(WD_Img \== 'ZZZZ',
WD_Img \== 'STOP',
New_CWC is 01d_CWC + 1) ;
New_CWC is 0ld_CWC.
overlength(WD_Len,0ld_OLF,New_OLF) :-
(WD_Len > 12, New_OLF = true) ;
New_OLF = Old_OLF.

Fig.4 shows the DCG form of the input text
which includes the attributes of the telegrams.
The definitions of attributes are described as
Prolog procedures. We use arguments Lo pass the
information between non-terminal symbolis. When
the argument needs the variable information, we
use the concept of the logical variable in
Prolog (which begins with a capital letter).

Fig.5 shows the DCG form of the reporting.
We use the write function as an extra condition
instead of generating the list of the report.

telegram_stream(IT) -->
blank_star, telegram_star(l,IT),
empty_telegram.
blank_star --> (blank, blank_star) ;
null.
telegram_star (TN, [[TN,CWC,OLF1iTs1) -->
telegram(TN,CWC,OLF),
{ update_telegram_number (TN,New_TN) },
telegram_star (New_TN,Ts).
telegram_star(TN,{1) ~-> null.
empty_telegram --> zword.
telegram(TN,CWC,OLF) ~-->
non_zword_pls(CWC,OLF), zword.
non_zword_pls(New_CWC,New_OLF) -->
non_zvord (¥D_Img,¥D_Len),
non_zvord_pls(0Old_CWC,0ld_OLF),
{ chargeable(¥WD_Img,0ld_CWC,New_CHWC),
overlength(WD_Len,0ld_OLF,New_OLF) }.
non_zword_pls (New_CWC,New_OLF) -->
non_zword (WD_Img,¥WD_Len), null,
{ chargeable(WD_Img,d,New_CWC),
overlength(WD_Len, false,New_OLF) }.
non_zword(WD_Img,WD_Len) ~->
word (WD_Img,WD_Len), blank_pls,
{ WD_Img \== 'ZZZZ', WD_Len > 0 }.
word (WD_Img,¥D_Len) =-->
char_pls(Ch_Img,Ch_Len),
{ name(¥WD_Img,Ch_Img), ¥W_Len = Ch_Len }.
zword --> word(WD_Img,¥WD_Len), blank_pls,
{ WD_Img = 'ZZZZ', WD_Len = 4 }.
blank_pls --> blank, blank_star.
char_pls(Ch_Img,Ch_Len) -->
char(C), char_pls(Sub_Img,Sub_Len),
{ Ch_Img = [CiSub_Imgl,
Ch_Len is 1 + Sub_Len }.
char_pls(Ch_img,Ch_Len) --> char(C), null,
{ Ch_Img = [C], Ch_Len is 1 }.
char(C) --> letter(C) ;
digit(C).

Fig.4 The DCG Form of Input Analysis of
Telegram

report(IT) --> heading_msg,
telegram_msg_star(IT),
ending_msg.
telegram_msg_star([XiY]) -->
telegram_msg(X), telegram_msg_star(Y).
telegram_msg_star([1) -=> null.
heading_msg -->{ write('Telegrams Analysis') },
new_line.
telegram_msg([TN,CWC,OLF1) -->
tele_id_msg(TN), charge_msg(CWC),
overlength_msg(OLF), new_line.
ending _msg --> { write('End Analysis') },
new_line.
new_line --> { nl }.
tele_id_msg(TN) --> { write('Telegram '),
write(TN), write('.') }.
charge_msg(CWC) -->
{ write(' Charge count is '), write(CWC),
write('.') }.
overlength_msg(OLF) -->
{(OLF=true,write(' overlength occured.'));
(OLF=false,write(' no overlength.')) }.

Fig.5 The DCG Form of Telegram Reporting

(6) Fig.6 shows the Prolog program for the

main control of the telegram analysis. Fig.7
shows the input file program for the input data
from the specific file. This program can be
derived from BNF of Input File, Fig.l. To
obtain characters from the specified file, we
use the following built-in procedures of
Prolog.

* get@(X) : gets the next character from the
current input stream into the
variable X.

* see(X) : opens file X as the current input
stream.

* seen : closes the current input stream.

telegram_analysis(File_Name) :-
input_file(File_Name,Character_String,[1),
input_text(IT,Character_String,[1),
report (IT,Temp,[1).

Fig.6 Prolog Form of Driver Process

input_file(File_Name) -->

{see(File_Name)}, line_star(}OF), {seen}.

line_star (EOF) -->

({ EOF \== eof },
line(EQOF), line_star(EOF)) ;
null.

line(EOF) ~--> ch_star(CR_LF,EOF).
ch_star(CR_LF,EQOF) -->

({ CR_LF \== on, EOF \== on },
ch (CR_LF,EOF), ch_star(CR_LF,EOF)) ;

null.
ch(CR_LF,EQF) -->
{ getd(xX) 3}, /% =% %/
(¢ { X=2321}, blank) § /% =082 %/
letter(X) H
digit(X) ;
(£ X =311}, cr_1£f(CR_LF)) ;/% =>%3 %/

C{X =261, ef(EOF)))., /% =>%4 %/

blank -—> ",
letter(C) --> [CI,{(("a"

uou

<C, C=<"z2")
C"A" =C C, C =C"Z")).

digit(C) --> [CI, { "@" =C C, C =C "9" },
er _1£(CR_LF) -~> { CR_LF = on }.

eof (EOF)
null -~ ",

-~> { EOF = on }

Fig. 7 DCG Form of Input File

Remark *1 : gets a character into X from the

file specified File_Name.
#2 ¢ X = 32 means that X is ASCII
blank.
%3 : X = 31 means that X is a special
.end of line character.
X = 26 means that X is a special
end of file character.

4

Two extra arguments are added to
input_file, input_text and report. They are
necessary for a Prolog term which communicates
with a DCG term. One argument is analysed and
the other is the termination list for
terminating the analysis of the input data. The
input_text(IT,Character_String,[1) analyses the
list in the variable "Character_String"” until
arriving at the empty list, "[1", and generates
the result into the variable IT. The
report(IT,Temp,[1) uses the list in the
variable IT and generates the output data into
the variable "Temp".

4.2 DCG derivation for a simple problem

Someone may consider the method described
in Section 4.1 too complicated for deriving the
telegram analysis program. There may be no
needs to introduce an intermidiate data
structure where the output data structure is so
simple or so similar to the input data
structure, since the output data can be derived
directly from the input. Thus in this Section
we will show a simple and straightforward
derivation method from the input data structure
directly.

In [6]1 an attribute grammar for the
telegram analysis problem has been shown. He
tryied to derive a procedural program like
PL/I, although it 1is not easy to derive a
program from the attribute grammar.

Let us define two kinds of attributes for
each BNF in the following manner:

LHS -> RHS
[when]: {C}
fresultl:{R}

LHS in a non-terminal symbol and RHS is a term
of regualer expressions, of the form of CFG's
rewriting rules. C, called "conditional
attribute”, is a set of conditions, 1i.e. when
all of the elements of the set C are satisfied,
the rule can be applied. The other attribute R
called "resulting attribute", is a set of
actions, i.e. after the rule is applied, all of
the actions in this set should be done.

For example, the input is a stream of
telegrams which can be written as

(telegram_stream> ::=
<blank>% <(telegram>* <null_telegram>
[resultl: {(heading_msg and ending_msg}

The attributed version of BNF is showed in
Fig.8. The attributes such as TN, CWC, OLF,
WD_Img, WD_Len, Ch_Img, Ch_Len are the same
ones used in Section 4.1. 8o we don't discuss
them here. The resulting attiributes,
heading_msg, ending_msg and telegram_msg, are
almost same as ones used in Fig.3. So we don't
discuss them too.

(telegram_stream)> ::=
<blank#> <(telegram¥> <null_telegram>
{resultl: { heading_msg and ending_msg)
<blank%> ::= (<blank> <(blank*>) |

<null>
(telegrams> ::= (<telegram> <(telegram>) |
<nulid>

<(null_telegram> ::= <zword>
(telegram> ::= <(non_zword+> <{zword>
[result]:{ telegram_msg([TN,CWC,OLF]) }
<non_zword+> ::= <non_zword> <non_zword+>
[whenl:{ WD_Img \== 'ZZZZ' }
[resultl:{ if WD_Img \== 'STOP'
then New_CWC := Old_CWC + 1
else New_CWC := Old_CWC
if WD_Len > 12
then New_OLF := true
else New_OLF := Old_OLF }
{non_zword+> ::= <non_zword> <null)>
[whenl:{ WD_Img \== 'ZZZZ')}
[result):{if WD_Img \== 'STOP'
then New_CWC := 1
else New CWC := 0§
if WD_Len > 12
then New_OLF := true
else New OLF := false }
<non_zword> ::= <word> <blank+>
[whenl:{WD_Img \== 'ZZZZ' and ¥D_Len > ¢}
<blank+> ::= <blank> <blankx>
<zword> ::= <{word> <blank+>
{whenl:{ WD_Img = 'ZZZZ' and WD_Len = 4 }
{word> ::= <{char+>
[resultl:{ WD_Img := Ch_Img and
WD_Len := Ch_Len }
{char+> ::= <{(char> <{char+> :
[resultl:{ Ch_Img := C & Sub_Img and
Ch_Len := 1 + Sub_Len)
<char+> ::= <char> <null>
[resultl:{ Ch_Img := C and Ch_Len := 1}
<char> ::= (letter>
Kdigit>

Fig.8 BNF with attributes for Telegram Stream

Fig.9 shows the DCG Form and
program derived from BNF in Fig.8.

the Prolog

telegram_stream ~-> { heading _msg },
blank_star, telegram_star(l),
empty_telegram,
{ ending_msg }.
blank_siar --> (blank, blank_star) ;
null.
telegram_star(TN) -->
(telegram(TN), { New_TN is TN + 1},
telegram_star(New_TN)) ;
null.
empty_telegram --> zword.
telegram(TN) --> non_zword_pls(CWC,OLF), zword,
{ telegram_msg(TN,CWC,0LF) }.
non_zword_pls (New_CWC,New_OLF) -->
non_zword (WD_Img,WD_Len),
non_zword_pls(01d_CWC,01d_OLF),
{ WD_Img \== 'ZZZZ',
((WD_Img \== 'STOP',
New_CWC is 0ld_CWC + 1) ;
New_CHWC is 01d_CWC),
((WD_Len > 12, New_OLF = true) ;
New_OLF = Old_OLF) }.
non_zword_pls(New_CWC,New_OLF) -->
non_zword{(WD_Img,¥D_Len), null,
{ WD_Img \== 'ZZZZ',
((WD_Img \== 'STOP', New_CWC is 1) ;
New_CWC is &),
((WDb_Len > 12, New_OLF = true) ;
New_OLF = false) Y.
non_zword (WD_Img,WD_Len) -->
word (WD_Img,WD_Len), blank_pls,
{ WD_Img \== '2ZZZ', WD_len > @ }.
blank_pls --> blank, blank_star.
word (WD_Img,WD_Len) -->
char_pls(Ch_Img,Ch_Len),
{ name(WD_Img,Ch_Img), WD_Len = Ch_Len }.
char_pis(Ch_Img,Ch_Len) -->
char{(C), char_pls(Sub_Img,Sub_Len),
{ Ch_Img = [CiSub_Imgl,
Ch_Len ig 1 + Sub_Len }.
char_pls(Ch_Img,Ch_Len) --> char(C), null,
{ Ch_Img = [C], Ch_Len is 1 }.
zword --> word(W_Img,¥W_Len), blank_pls,
{ W._Img = 'ZZZZ' }.
char(C) --> letter(C) ;
digit(C).
heading_msg :- write('Telegrams Analysis'), nl.
telegram_msg(TN,CWC,OLF) :~-
tele_id_msg(TN), charge_msg(CWC),
overlength_msg(OLF), nl.
tele_id_msg(TN) :~ write('Telegram '),
write(TN), write('.').
charge_msg(CWC) ;- write(' Charge count is '),
write(CWC), write('.").
overlength_msg(OLF) :-
(OLF=true, write(' overlength occured.'));
(OLF=false, write(' no overlength.')).
ending_msg :- write('End Analysis’'), nl.
telegram_analysis(File_Name) :-
input_file(File_name,Char_String,[1),
telegram_stream(Char_String,[1).

Fig.9 DCG and Prolog Form of Telegram Analysis

We have described,
rigorous methods for obtaining correct
programs. These two methods are to derive DCG
grammar from BNF rules of input/output data
structures. The first introduces an interme-
diate file which is useful for the case when
the input and output data structures are not
similar. We have applied this method to a file
manipulation problem without difficulty. We
have obtained a hint as to the necessity or
convenience of introducing an intermediate file
from Jackson [2]. His method to solve the
structure clashes can be used straightforward-
ly. Therefore, the applicable domain of this
method will at least be the domain of Jackson's
book. The second method is simpler than the
first, since it does not use an intermediate
file. This method is usefull when there is no
substantial differences between the
input/output data structures.

Each method of using the Definite Clause
Grammar in Prolog for text processing problems,
as discussed in Section 4, is one of the
easiest ways for rapid prototyping. Because if
the input data structures changes, it is enough
to rewrite the input BNF rules. And if the
output data structure changes or more sophisti-
cated process is needed, rewriting the output
BNF rules or the attributes for rules can
accomplish the object of changes. If we can
develop a faster Prolog processor in terms of
speed of execution, this approach should be
practical. In order to increase the speed of
execution "Cut" operation can be used as in the
usual Prolog program, which restricts the
automatic backtracking.

¥hat we plan to improve from now on are
the removal of left recursive constraints
coming from Prolog's top down parsing by
modifying the Prolog processors, and an
automatic translation in the second method from
BNF with attributes to Prolog programs.

in this paper, two

References

1. Henderson,P. and Snowdon,R., An Experiment
in Structured Programming, BIT, Vol.12, 38-
53 (1972).

2. Jackson,M.A., Principles of
Design, Academic Press (1975).

3. Jones,C.B., Software Development : A

Programs

Rigorous Approach, Prentice-Hall, 325-332
(198%).
4, Ledgard,H.F., The Case for Structured

Programming, BIT, Vol.12, 45-57 (1973).

5. Mckeag,R.M. and Milligan,P., An Experiment
in Parallel Program Design, Sofiware-
Practice and Experience, Vol.1#, 687-696
(198%).

6. Noonan,R.E., Siructured Programming and
Formal Specification, IEEE Trans. on
Software Engineering, Vol.SE-1, No.4, 421-
423(1978).

7. Pereira,L., Pereira,F. and Warren,D.,
User's Guide to DECsystem-18 Prolog, Div,
de Infomatica, LMEC, Lisbon and Dept. of
Al, University of Edinburgh(1978).

8. Pereira,F. and Warren,D., Definite Clause
Grammars for Language Analysis, Artificial
Intelligence 13, 231-278(198%).

9. Torii,K., Morisawa,Y., Sugiyama,Y. and
Kasami,T., A Functional Pregramming and
Logical Programming for the Telegram
Analysis Problem, Proceeding of the 8th
ICSE, 463-472(1984).

19. Knuth,D.E., Semantics of Context-Free
Languages, Math. Syst. Th., Vol.2, No.2,
127-145(1968).

Appendix:

When we implement the buffer of predeter-
mined size fathfully as described in the
informal specification, Fig.l and Fig.7 are
replaced by Fig.1d and Fig.11 respectively. The
program in Fig.11l assumes the buffer size is 88
characters.

<input_file> ::= <(block*>

<block*> := (<block> <block*>) !
<null>

<block> 1= <ch_in_blk%>

<ch_in_blk*> ::= (<(ch_in_blk> <ch_in_blk%>) !
{null>

<ch_in_blk> ::= <blank> | <letter> | digit>
<er_lf> 1 Ceof>

<{blank> =

<letter> iz tat oo, HEAA AN
wAn §ongn

<digit> A A HENE A

<null> IR

Fig.19 BNF of Input File

input_file(Fname) -->

{see(Fname)}, block_star(88,E0F),
block_star(BS,EQF) -->

({ EOF \== eof },

block(BS,EOF), block_star(BS,EOF)) ;

null.
block(BS,EOF) --> ch_in_blk_star(l,BS,EOF).
ch_in_blk_star(Pointer,BS,EOF) -->

{ EOF \== eof , Pointer =< BS },

ch_in_blk(EOF),

{ New_Pointer is Pointer + 1 },

ch_in_blk_star(New_Pointer,BS,EOF).
ch_in_blk_star(Pointer,BS,EOF) -->

{ (EOF \== eof, Pointer > BS) ;

(EOF = eof, Pointer < BS) }.
ch_in_blk(EOF) -->
{ EOF \== eof, getd(X) },
C({X=232), blank) H
letter(X) 5
digit(X) H
({ X =311}, ch_in_block(EOF)) ;
({ EOF = eof}, blank)).
blank -—> o,

letter(C) --> [CI,{(("a" =< C, C =¢ "z") ;
C "A" =C C, C =< "Z")

digit(C) { "g" =< C, C =< "g" },

null

--> [C1,

_—

Fig.11 DCG Form of Input File

{seen}.

D).

