1FHRAIEF 2

RRBE

SWXEE 7077329 Vol.i6 No.1 19 (Jan. 2023)

AR 7 0 2T X v USROG & R

S RELY) ERTHE fdP)
2022%7R28 A%

AR, WV F a7 CPUNRERE > TCED, HEFROSIEI Y Y 7V a 7B EROEMCICER S
7WH% {, WHIFEATZ2AT > TEMEERE DA L 24T 7201213 % S OBA TN 7 4 77 1) R L5
ZUI Y, EHIIEHIFATITR S ElE v R 2., :@7»%:7®ﬂﬁ%$#¢tb,%%&%t&
THEFNFEFTEHREE LTT) 70 s3I v 755 [Coal 2R L. BETA IO T3V 7 E5E Coa
X, BHFETEZEEE T 525, BICORQICEHNIFETZIT) ET5LT7—F L—AREDEL A, ZORE
TS D20, CPUDT Y b - F 7 - = FEFDT— & MOMKGEEARE RIS 20 & FEC, ZEOMK
FREREABKRL L, 77 L —APAE LWL) ICHBIMICFATIER L EFIE L HE T2, 2070
WNEBCAEFNFAT AT VDD b4 6 BARBVIZBERIAT L AR E 2 1), 7077 AOEMS 2R &7
IZCFATHE A L TE 5. T/, WHEBAI/NS CERFETOF — NNy FOREWEEICZ, T
W EIRBETNIERRETENLEEDLDD L. CoaDA ¥ —7)%id Go TEPLPNTBY, CoaT
Eoahsov —Aa— FiE, goroutine x HHWTA ¥ ¥ — 7)) ¥NTHHNETSND, BT, EAWHE,
B L, Sthall, BEERL EOEARNLEREND), FizzBuzz MERTEHRA) v ¥y 7 OREE % fFj
TELEEOSHERETERELTVD, MRERE LT, 3774 V0¥ 70— ey V7 oEs
ERRTHIOOF ALY, BXRUM LTI -CHEIT L. ZNENOFETRER & o — FITBE L,
Coal3a— FOBMS 2332 & 7% (EFIFAT L TRISEE DS 1255 2 L 2R L7z, A%EETIE, Coa
DALAA L5, A HROME LT 5.

Presentation Abstract

Design and Implementation of a Parallel-native Programming Language

KEN SHIBATA'®) SHINYA TAKAMAEDAZ:P)
Presented: July 28, 2022

Although multi-core CPUs have become mainstream in recent years, many of the current mainstream
languages were designed when single-core CPUs were the mainstream, and often require special libraries and
syntax to improve execution speed through parallel execution, making parallel execution not easy to achieve.
We developed a parallel-oriented programming language, named Coa, which makes parallel execution the
default. To avoid data races, it automatically detects variable dependencies and executes programs in par-
allel, just as out-of-order execution of CPUs detects dependencies among data. Therefore, although parallel
execution is performed internally, the behavior seen from the outside is the same as sequential execution, and
execution speed can be improved without increasing the complexity of the program. It also has a function
that enables sequential execution, in case the processing unit is small and the overhead of sequential execu-
tion is large. The interpreter itself is written in Go, and source code written in Coa is executed in parallel in
the interpreter using goroutine. Currently, language functions for solving FizzBuzz problems and informa-
tion and opinion problems are being implemented. As a comparison experiment, downloading 13 files and
computing to display the Mandelbrot set were executed in sequential and parallel processing. The execution
time and number of lines of code for each were compared, and it was confirmed that Coa improves processing
speed through parallel execution without increasing the complexity of the code. In this presentation, we will
discuss the mechanisms and features of Coa.

This is the abstract of an unrefereed presentation, and it
should not preclude subsequent publication.
L g T LT T Ry EER
William Lyon Mackenzie Collegiate Institute, Toronto, On-
tario, Canada M4G2S1
2 PR R AR LR TR 2 v ¥ e — & BRI

Department of Computer Science, Graduate School of Infor-

mation Science and Technology, The University of Tokyo, @) kenxshibata@gmail.com

Bunkyo,

Tokyo 113—0033, Japan b) shinya@is.s.u-tokyo.ac.jp

© 2023 Information Processing Society of Japan

19

