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Locally Defined Independence Systems on Graphs

Yuki Amano1,a)

Abstract: The maximization for the independence systems defined on graphs is a generalization of combinatorial
optimization problems such as the maximum b-matching, the unweighted MAX-SAT, the matchoid, and the maxi-
mum timed matching problems. In this paper, we consider the problem under the local oracle model to investigate
the global approximability of the problem by using the local approximability. We first analyze two simple algorithms
FixedOrder and Greedy for the maximization under the model, which shows that they have no constant approxi-
mation ratio. Here algorithms FixedOrder and Greedy apply local oracles with fixed and greedy orders of vertices,
respectively. We then propose two approximation algorithms for the k-degenerate graphs, whose approximation ratios
are α + 2k − 2 and αk, where α is the approximation ratio of local oracles. The second one can be generalized to
the hypergraph setting. We also propose an (α + k)-approximation algorithm for bipartite graphs, in which the local
independence systems in the one-side of vertices are k-systems with independence oracles.

1. Introduction
The maximization for independence system is one of the most

fundamental combinatorial optimization problems [4], [16], [17].
An independence system is a pair (E,I) of a finite set E and a
family I ⊆ 2E that satisfies

I contains empty set, i.e., ∅ ∈ I, and (1)

J ∈ I implies I ∈ I for any I ⊆ J ⊆ E. (2)

Here a member I in I is called an independent set. Property (2)
means that I is downward closed. The maximization problem
for an independence system is to find an independent set with
the maximum cardinality. This problem includes, as a special
case, the maximum independent set of a graph, the maximum
matching, the maximum set packing and the matroid (intersec-
tion) problems [14], [16], [17].

In this paper, we consider the following independence systems
defined on graphs. Let G = (V, E) be a graph with a vertex set V
and an edge set E. For a vertex v in V , let Ev denote the set of
edges incident to v. In our problem setting, each vertex v has a lo-
cal independence system (Ev,Iv), i.e., Iv ⊆ 2Ev , and we consider
the independence system (E,I) defined by

I = {I ⊆ E | I ∩ Ev ∈ Iv for all v ∈ V}. (3)

Namely, (E,I) is obtained by concatenating local independence
systems (Ev,Iv), and is called an independence system defined
on a graph G. We assume without loss of generality that {e} ∈ I
holds for any e ∈ E, since otherwise the underlying graph G can
be replaced by G′ = (V, E \ {e}). In this paper, we consider the
maximization problem for it, i.e., for a given graph G = (V, E)
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with local independence systems (Ev,Iv), our problem is de-
scribed as

maximize |I|

subject to I ∩ Ev ∈ Iv for all v ∈ V

I ⊆ E.

(4)

Note that any independence system (E,I) is viewed as an inde-
pendence system defined on a star. As an example of problem
(4), for b : V → Z+, let Iv = {I ⊆ Ev | |I| ≤ b(v)}, i.e., Iv
is b(v)-bounded for every v in V . Then (3) denotes the family
of b-matchings in G. In particular, if b ≡ 1, it corresponds to the
family of matchings in G [15]. More generally, if (Ev,Iv) is a ma-
troid for every v in V , then the family (3) is a so-called matchoid
[7].

The maximum b-matching and matchoid problems are well-
studied combinatorial optimization problems [7], [15]. It is
known that the maximum matchoid problem is NP-hard [11] and
it is 3/2-approximable [6], [9].

The unweighted maximum satisfiability problem (MAX-SAT)
is another example of problem (4). The unweighted MAX-SAT
is the problem to find a variable assignment that maximizes the
number of the satisfied clauses in a given conjunctive normal
form (CNF). For a variable set X, let φ =

∧
c∈C c be a CNF, where

C denotes a set of clauses with variables in X. Define a bipar-
tite graph G = (V = X ∪ C, E) and local independence systems
(Ev,Iv) by

E = {(x, c) ∈ X ×C | x is contained in c}

Iv =

 {I ⊆ Ev | either I ⊆ C+(v) or I ⊆ C−(v)} if v ∈ X

{I ⊆ Ev | |I| ≤ 1} if v ∈ C,

where, for a variable x ∈ X, C+(x) and C−(x) respectively denote
the sets of clauses in C that contain literals x and x. Therefore the
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unweighted MAX-SAT is an example of problem (4). As is well-
known, the unweighted MAX-SAT is NP-hard and approximable
in ratio 1.255 [2].

(Edge-)temporal graphs [8] were introduced to model dynamic
network topologies where the edge set vary with time. Namely,
a temporal graph is a graph G = (V, E) with given time labels
Le ⊆ T for all e in E, where T is a given finite set of time la-
bels. For a temporal graph, a subset M of E is a timed match-
ing if Le and L f are disjoint for any adjacent pair of edges e
and f in M. By defining local independence systems (Ev,Iv) by
Iv = {I ⊆ Ev | Le ∩ L f = ∅ for all e, f ∈ I}, the maximum timed
matching can be formulated as problem (4). It is known that the
maximum timed matching problem is NP-hard even if the given
graph G is bipartite, while it is solvable in polynomial time if G is
a tree and every Le is represented as an interval for a given order
of time labels [12].

In this paper, we consider problem (4) by making use of local
oracles Av for each v in V . For an independence system (E,I)
and a subset F ⊆ E, I[F] denotes the family of independent sets
of I restricted to F, i.e., I[F] = {I ∩ F | I ∈ I}. For a vertex
v ∈ V and a subset F ⊆ Ev, Av(F) is an α-approximate indepen-
dent set of the maximization for (F,Iv[F]). That is, the oracle
Av : 2Ev → 2Ev satisfies

Av(F) ∈ Iv[F] (5)

α |Av(F)| ≥ max
J∈Iv[F]

|J|. (6)

We call Av an α-approximation local oracle. It is also called
an exact local oracle if α = 1. In this paper, we assume the
monotonicity of Av, i.e., |Av(S )| ≤ |Av(T )| holds for the sub-
sets S ⊆ T ⊆ Ev, which is a natural assumption on the oracle
since it deals with independence system. We study this oracle
model to investigate the global approximability of problem (4)
by using the local approximability. The oracle model was used in
[3] for the maximum coverage problem with group constraints,
where the oracle model is regarded as a generalization of greedy
algorithms. It is shown that the maximum coverage problem is
(α+ 1)-approximable in this oracle model. We remark here that a
greedy algorithm for the maximum cardinality matching problem
can be viewed as a 2-approximation algorithm under the exact
local oracle model.

For the above reductions of the maximum matchoid problem
and the unweighted MAX-SAT, their local maximization prob-
lems for (Ev,Iv) can be solved exactly, while their global max-
imization problems are NP-hard. This means that problem (4)
seems to be intractable, even if exact local oracles are given.

In this paper, we first propose two natural algorithms for prob-
lem (4), where the first one applies local oracles Av in the order
of the vertices v that is fixed in advance, while the second one ap-
plies local oracles in the greedy order of vertices v1, . . . , vn, where
n = |V | and

vi ∈ arg max
v∈V\{v1 ,...,vi−1}

|Av(Ev ∩ F(i))| for i = 1, . . . , n.

Here the subset F(i) ⊆ E is a set of available edges during the i-th
iteration.

We show that the first algorithm guarantees an approximation
ratio (α+ n− 2), and the second algorithm guarantees an approx-
imation ratio ρ(α, n), where ρ is the function of α and n defined
as

ρ(α, n) =


α + 2α−1

2α (n − 1) − 1
2 if (α − 1)(n − 1) ≥ α(α + 1)

α + α
α+1 (n − 1) if α ≤ (α − 1)(n − 1) < α(α + 1)

n
2 if (α − 1)(n − 1) < α.

We also show that both of approximation ratios are almost tight
for these algorithms.

We then consider two subclasses of problem (4). We provide
two approximation algorithms for the k-degenerate graphs, whose
approximation ratios are α + 2k − 2 and αk. Here, a graph is k-
degenerate if any subgraph has a vertex of degree at most k. This
implies for example that the algorithms find an α-approximate
independent set for the problem if a given graph is a tree. This
is best possible, because the local maximization is not approx-
imable with c (< α). We also show that the second algorithm can
be generalized to the hypergraph setting.

We next provide an (α + k)-approximation algorithm for the
problem when a given graph is bipartite and local independence
systems for one side are all k-systems with independence oracles.
Here an independence system (E,I) is called a k-system if for
any subset F ⊆ E, any two maximal independent sets I and J in
I[F] satisfy k|I| ≥ |J|, and its independence oracle is to decide if
a given subset J ⊆ E belongs to I or not.

The rest of the paper is organized as follows. In Section 2,
we describe two natural algorithms for problem (4) and analyze
their approximation ratios. Section 3 provides approximation al-
gorithms for the problem in which a given graph G has bounded
degeneracy. Section 4 also provides an approximation algorithm
for the problem in which a given graph G is bipartite, and all
the local independence systems of the one side of vertices are
k-systems. Section 5 defines independence systems defined on
hypergraphs and generalizes algorithms to the hypergraph case.

Due to space constraints, most of the proofs are omitted in this
paper, which can be found in [1].

2. Local subpartitions and greedy algorithms
In this section, we first define local subpartitions of edges and

analyze two natural algorithms for problem (4). Local subparti-
tions of edges are used for constructing and analyzing approxi-
mation algorithms for the problem.

2.1 Local subpartitions
Definition 1. For a graph G = (V, E) and subsets Pv ⊆ Ev for all
v ∈ V, the collection P = {Pv | v ∈ V} is called a local subparti-
tion if Pu ∩ Pv = ∅ for all distinct pairs u and v of vertices. The
set R = E \ (

⋃
P∈P P) is called the residual edge set of P.

By definition, for a local subpartition P = {Pv | v ∈ V}, the set
Pv may be empty for some v in V .

Let P = {Pv | v ∈ V} be a local subpartition of E, and for
every v ∈ V , let Iv ∈ Iv[Pv] be a subset of Pv which is inde-
pendent in Iv. Then the union I =

⋃
v∈V Iv may not be an inde-

pendent set of I. For example, let G = (V, E) be a graph with
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V = {1, 2, 3} and E = {e1 = (1, 2), e2 = (2, 3)}, and for each
i = 1, 2, 3, let Ii = {I ⊆ E | |I| ≤ 1}, then for a local partition
P = {P1 = {e1}, P2 = ∅, P3 = {e2}} of E, I1 = {e1}, I2 = ∅,
and I3 = {e2} satisfy Ii ∈ Ii[Pi] for all i = 1, 2, 3, while the
union I1 ∪ I2 ∪ I3 < I. If the union is independent, we have the
following lemma, where we recall that Av (v ∈ V) denotes an
α-approximate local oracle.
Lemma 2. For a local subpartition P = {Pv | v ∈ V}, let R be the
residual edge set ofP. If I =

⋃
v∈V Av(Pv) is an independent set in

I, then it guarantees an approximate ratio of α+maxJ∈I[R] |J|/|I|
for problem (4).

Proof. For an independent set K ∈ I, the set I =
⋃
v∈V Av(Pv)

satisfies the following inequalities:

α |I| = α
∑
v∈V

|Av(Pv)| ≥
∑
v∈V

|K ∩ Pv| = |K| − |K ∩ R|.

This implies

|K| ≤ (α + |K ∩ R|/|I|) |I| ≤ (α + max
J∈I[R]

|J|/|I|) |I|,

which completes the proof. □

All the algorithms proposed in this paper construct local sub-
partitions of edges, and Lemma 2 is used to analyze their approx-
imation ratio.

Let us then see the following two simple algorithms which can-
not guarantee any constant approximation ratio, even if exact lo-
cal oracles are available.

2.2 Algorithm FixedOrder
Our first algorithm called FixedOrder makes use of local or-

acles Av in the order of the vertices v ∈ V that is fixed in ad-
vance. Algorithm FixedOrder constructs a local subpartition

Algorithm FixedOrder
/* (v1, . . . , vn) is a given vertex order. */
F := E.

for v = v1, . . . , vn do
Pv := Ev ∩ F.

Rv :=
((⋃

u∈V:
(u,v)∈Av(Pv)

Eu

)
\ Pv

)
∩ F.

F := F \ (Pv ∪ Rv).

end for
I :=

⋃
v∈V Av(Pv).

R :=
⋃
v∈V Rv.

Output I and halt.

P = {Pv | v ∈ V} and the residual edge set R of P, which
will be proven in the next theorem. In order to ensure that
I =

⋃
v∈V Av(Pv) is independent in Lemma 2, the algorithm main-

tains F as a candidate edge set during the iteration. The following
theorem provides the approximation ratio of the algorithm, which
is almost tight for the algorithm. In fact, it is tight if α is an inte-
ger.
Theorem 3. Algorithm FixedOrder computes an (α + n − 2)-
approximate solution for the maximization for problem (4) under
the approximate local oracle model, and the approximation ratio
of the algorithm is at least ⌊α⌋ + n − 2.

2.3 Algorithm Greedy
Our second algorithm called Greedy makes use of local ora-

clesAv in a greedy order of vertices v1, . . . , vn, where

vi ∈ arg max
v∈V\{v1 ,...,vi−1}

|Av(Ev ∩ F(i))| for i = 1, . . . , n.

Here the subset F(i) ⊆ E is the candidate edge set in the i-th round
of Greedy. For the analysis of Greedy, we use the following

Algorithm Greedy
F := E.

W := V .

while W , ∅ do
v ∈ arg maxw∈W |Aw(Ew ∩ F)|.

W := W \ {v}.

Pv := Ev ∩ F.

Rv :=
((⋃

u∈V:
(u,v)∈Av(Pv)

Eu

)
\ Pv

)
∩ F.

F := F \ (Pv ∪ Rv).

end while
I :=

⋃
v∈V Av(Pv)

R :=
⋃
v∈V Rv.

Output I and halt.

lemma which is slightly different from Lemma 2.
Lemma 4. Let P = {Pv | v ∈ V} be a local subpartition of E, and
for the residual R of P, let {Rv | v ∈ V} be a partition of R that
satisfies Rv = ∅ for all vertices v with Pv = ∅. If I =

⋃
v∈V Av(Pv)

is an independent set in I, then it guarantees approximation ratio
β for problem (4), where

β = max
v∈V:Pv,∅

max
J∈I[Pv∪Rv]

|J|
|Av(Pv)|

.

The following theorem provides the approximation ratio of
Greedy, which is almost tight for the algorithm. In fact, it is
tight if (α − 1)(n − 1) < α.
Theorem 5. Algorithm Greedy computes a ρ(α, n)-approximate
solution for problem (4), where ρ is the function of α and n de-
fined as

ρ(α, n) =


α + 2α−1

2α (n − 1) − 1
2 if (α − 1)(n − 1) ≥ α(α + 1)

α + α
α+1 (n − 1) if α ≤ (α − 1)(n − 1) < α(α + 1)

n
2 if (α − 1)(n − 1) < α.

Moreover, the approximation ratio is at least

φ(α, n) =


ρ(α, n) − α2 if (α − 1)(n − 1) ≥ α(α + 1)

ρ(α, n) −
(

3
2α −

1
2

)
if α ≤ (α − 1)(n − 1) < α(α + 1)

ρ(α, n) if (α − 1)(n − 1) < α.

3. Approximation algorithms based on local
oracles

In the previous section, we analyzed two simple algorithms
FixedOrder and Greedy for problem (4). In this section, we
focus on the degeneracy of the given graph, and develop approx-
imation algorithms for problem (4). Our first algorithm called
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OrderedApprox makes use of a linear order ≺ of vertices V .
Different from FixedOrder and Greedy in Section 2, the algo-
rithm tries to minimize the size of R. In fact, we have R = ∅
if G is a tree. More precisely, for each v ∈ V , we initialize
Pv = Dv, where Dv is the set of downward edges of v, i.e.,
Dv = {(u, v) ∈ Ev | u ≺ v}, and compute Av(Pv) and Av(Pv ∪ {e})
for each e ∈ Uv, where Uv is the set of upward edges of v, i.e.,
Uv = {(u, v) ∈ Ev | v ≺ u}. Based on these outputs of local or-
acle and their values, we consider four cases, each of which we
update Pv and construct Iv = Av(Pv) and Rv accordingly. Here
Pv and R =

⋃
v∈V Rv correspond to those in Lemma 2. We then

modify Pw for vertices w with v ≺ w, in such a way that the set
I = Aw(Pw) ∪

⋃
u∈V:u⪯v Iv is an independent set in I. The second

algorithm first decomposes edge set E into forests E1, . . . , Eγ, for
each forest Ei, applies OrderedApprox to compute an indepen-
dent set Ii, and chooses a maximum independent set among them.

We first define the upward and downward edge sets with re-
spect to a linear order.
Definition 6. For a graph G = (V, E), let ≺ be a linear order of
vertices V. For a vertex v, let Uv = {(v, w) ∈ Ev | v ≺ w} and
Dv = {(v, w) ∈ Ev | w ≺ v} be the sets of upward and downward
edges incident to v, respectively. We define the width of G (with
respect to a linear order ≺) as maxv∈V |Uv|.

The minimum width of the graph G = (V, E) among all lin-
ear order of vertices V is called the degeneracy of G, and G
is called k-degenerate if k is at least the minimum width of G
[5], [10], [13]. Note that a linear order of vertices V certifying
that G is k-degenerate can be obtained by repeatedly choosing
vertices with minimum degree in the remaining graph, i.e.,

vi ∈ arg min
v∈V\{v1 ,...,vi−1}

degG[V\{v1 ,...,vi−1}](v) for i = 1, . . . , n,

where degH(v) denotes the degree of vertex v in the graph H and
G[W] denotes the subgraph of G induced by a vertex subset W.
Therefore, such a liner order can be computed in linear time. It
is also known that the degeneracy of a graph is at most its tree-
width.

Algorithm OrderedApprox first initializes Pv = Dv for all
v ∈ V and for each i-th iteration of the for-loop, computes an
edge set Bvi ⊆ Uvi by

Bvi := {e ∈ Uvi | e ∈ Avi (Pvi ∪ {e}), |Avi (Pvi ∪ {e})| > |Avi (Pvi )|}.

It separately treats the following four cases as in the description
of the algorithm.

Case 1: Uvi = ∅

Case 2: Uvi , ∅, Pvi , ∅, and Bvi = ∅

Case 3: Uvi , ∅, Pvi , ∅, and Bvi , ∅

Case 4: Uvi , ∅ and Pvi = ∅

For all the cases, we show the following two lemmas.
Lemma 7. Algorithm OrderedApprox satisfies the following
three conditions

Algorithm OrderedApprox(G,I,≺)
Input: An independence system (E,I) defined on a graph G = (V, E) and a

linear order v1 ≺ v2 ≺ . . . ≺ vn of vertices V .
Output: An independent set in I.

1: X := ∅.
2: Pv := Dv for v ∈ V .
3: for i = 1, . . . , n do
4: Bvi := {e ∈ Uvi | e ∈ Avi (Pvi ∪ {e}), |Avi (Pvi ∪ {e})| > |Avi (Pvi )|}.
5: if Uvi = ∅ then
6: Ivi := Avi (Pvi ).
7: Rvi := ∅.
8: else if Uvi , ∅, Pvi , ∅, and Bvi = ∅ then
9: Choose an edge e = (vi, v j) ∈ Uvi arbitrarily.

10: if e < Avi (Pvi ∪ {e}) then
11: Ivi := Avi (Pvi ∪ {e}).
12: else (i.e., |Avi (Pvi ∪ {e})| = |Avi (Pvi )|)
13: Ivi := Avi (Pvi ). /* |Ivi | = |Avi (Pvi ∪ {e})| */
14: end if
15: Pvi := Pvi ∪ {e}.
16: Rvi := Uvi \ {e}.
17: Pv j := Pv j \ {e}.
18: else if Uvi , ∅, Pvi , ∅, and Bvi , ∅ then
19: Choose an edge b ∈ Bvi arbitrarily.
20: Ivi := Avi (Pvi ∪ {b}) \ {b}. /* Ivi ⊆ Pvi and |Ivi | = |Avi (Pvi )| */
21: Rvi := Uvi \ {b}.
22: else (i.e., Uvi , ∅ and Pvi = ∅)
23: Ivi := ∅.
24: Rvi := ∅. /* Rvi might be updated in line 29 */
25: X := X ∪ {vi}.
26: end if
27: for (vl, vi) ∈ Ivi do
28: if vl ∈ X then
29: Rvl := {(vl, v j) ∈ Uvl | j > i}.
30: X := X \ {vl}.
31: end if
32: end for
33: for j = i + 1, . . . , n do
34: Pv j := Pv j \ (

⋃
l≤i Rvl ).

35: end for
36: end for
37: Output I =

⋃
v∈V Iv and halt.

(i) Iv j ⊆ Pv j ⊆ Ev j with |Iv j | = |Av j (Pv j )| for all j ≤ i,

(ii) Rv j ⊆ Uv j for all j ≤ i, and

(iii) P = {Pv | v ∈ V} is a local subpartition of E

with residual R =
⋃
j≤i

Rv j

at the end of the i-th iteration of the for-loop.

Proof. Since Iv j and Pv j are never modified after the j-th it-
eration of the for-loop in Line 3, it is enough to show that
Ivi ⊆ Pvi ⊆ Evi and |Ivi | = |Avi (Pvi )| at the end of the i-th itera-
tion of the for-loop to prove Condition (i). We can see that Pvi is
initialized to Dvi , and Pvi is modified in Lines 15, 17, and 34. In
Lines 17 and 34, no edge is added to Pvi , and in Line 15, some
edge e ∈ Uvi is added to Pvi . These show that Pvi ⊆ Evi . More-
over, since Ivi is constructed in Lines 6, 11, 13, 20, and 23, we
have Ivi ⊆ Pvi and |Ivi | = |Avi (Pvi )|, which implies Condition (i).

Since Rv j is never modified after the j-th iteration for all the
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cases except for Case 4, Condition (ii) is satisfied if Case 4 is not
satisfied in the j-th iteration of the for-loop. On the other hand,
if Case 4 is satisfied in the j-th iteration of the for-loop, then Rv j

might be updated in Line 29, which again satisfies Rv j ⊆ Uv j . This
implies Condition (ii).

Let us finally show Condition (iii). Before the first iteration of
the for-loop, P = {Pv = Dv | v ∈ V} is a local subpartition of E
with the residual R = ∅. Assuming that Condition (iii) is satisfied
in the beginning of the i-th iteration, we show that Condition (iii)
is satisfied at the end of the i-th iteration. Note that Pvi is modified
in Lines 15, 17, and 34. In Lines 17 and 34, no edge is added to
Pv j for any j. If some edge e = (vi, v j) ∈ Uvi is added to Pvi in Line
15, e is removed from Pv j . These imply that P = {Pv | v ∈ V} is a
subpartition of E. Moreover, in any iteration, no edge is added to⋃

Pv∈P Pv, and when Rv is constructed in Lines 7, 16, 21, 24, and
29, all the edges in such an Rv are deleted from the corresponding
Pv j in Line 34. Thus Condition (iii) is satisfied at the end of the
i-th iteration, which completes the proof of the lemma. □

Lemma 8. Algorithm OrderedApprox satisfies that

I ∪
⋃
j<i

Iv j ∈ I for any independent set I ∈ I[Pvi ] (7)

in the beginning of the i-th iteration of the for-loop.

Proof. For an index j, consider the end of the j-th iteration
of the for-loop in Line 3. We have Iv j ∪ {e} ∈ Iv j for any
e ∈ Uv j \ (Pv j ∪ Rv j ). If the j-th iteration of the for-loop falls
into Cases 1, 2, or 3, then Uv j ∩ (

⋃
k> j Pvk ) = Uv j \ (Pv j ∪ Rv j )

contains at most one edge. Otherwise (i.e., Case 4), we have
Uv j ⊆

⋃
k> j Pvk , and Rv j will be updated to {(v j, vl) ∈ Uv j | l > k}

once (v j, vk) ∈ Uv j is chosen by Ivk in the k-th iteration for some
k > j. Therefore, (7) is satisfied in the beginning of the i-th itera-
tion of the for-loop. □

Theorem 9. Algorithm OrderedApprox computes an (α + 2γ −
2)-approximate independent set I in I in polynomial time, where
γ is the width of a given graph G with respect to a given linear
order of vertices V.

Proof. For any v in V , let Iv, Pv, and Rv be the sets obtained by
Algorithm OrderedApprox. By Lemma 8, I =

⋃
v∈V Iv is an in-

dependent set in I. Let us first consider the size of Rvi . If the i-th
iteration of the for-loop falls into Case 1, then we have Rvi = ∅. If
it falls into Cases 2 or 3, then we have |Rvi | = |Uvi | − 1 ≤ γ− 1 and
Ivi , ∅, which implies |Rvi | ≤ (γ − 1)|Ivi |. In Case 4, vi is added
to X and Rvi is set to Rvi = ∅ at the end of the i-th iteration. Note
that Rvi might be updated to {(vi, vk) ∈ Uvk | k > j} if (vi, v j) ∈ Uvi
is chosen by Iv j in the j-th iteration for some j > i. In either case,
we have |Rvi | ≤ γ−1, and there exists an edge (vi, v j) in Uvi ∩ Iv j if
Rvi , ∅. For p = 1, 2, 3, and 4, let Vp denote the set of vertices vi
such that the i-th iteration of the for-loop falls into Case p. Then
we have

∑
v∈V1

|Rv| = 0,∑
v∈V2∪V3

|Rv| ≤ (γ − 1)
∑
v∈V2∪V3

|Iv| ≤ (γ − 1)|I|, and∑
v∈V4

|Rv| ≤ (γ − 1)|I|.

Therefore, we obtain the following inequality

|R| =
∑
v∈V

|Rv| ≤ 2(γ − 1)|I|.

By Lemma 7, P = {Pv | v ∈ V} is a local subpartition of E with
the residual R =

⋃
v∈V Rv. Thus, by applying Lemma 2 to this I,

we can see that I is an (α + 2γ − 2)-approximate independent set
in I. □

Since a linear order ≺ of vertices V representing the degener-
acy of G = (V, E) can be computed in linear time, we have the
following corollary.
Corollary 10. Algorithm OrderedApprox computes an (α+2k−
2)-approximate independent set I in I in polynomial time, if a
given graph G is k-degenerate.

For a graph G = (V, E) with the width γ, the second algo-
rithm, called DecomApprox, first decomposes edge set E into
forests E1, . . . , Eγ, for each Ei, applies OrderedApprox to com-
pute an independent set Ii, and chooses a maximum independent
set among them.

Algorithm DecomApprox(G,I,≺)
Input: An independence system (E,I) defined on a graph G = (V, E) and a

linear order v1 ≺ v2 ≺ · · · ≺ vn of vertices V , where γ is the width of graph
G with respect to ≺.

Output: An independent set in I.

for i = 1, . . . , γ do
Ei := ∅.

end for
for each v in V do

for each ei in Uv = {e1, e2, . . . , e|Uv |} do
Ei := Ei ∪ {ei}.

end for
end for
for i = 1, . . . , γ do

Ii = OrderedApprox(G[Ei],I[Ei],≺).
end for
I ∈ arg max{|Ii | | i = 1, . . . , γ}.
Output I and halt.

Note that Gi = (V, Ei) is 1-degenerate for any i = 1, . . . , γ.
Thus we have the following theorem.
Theorem 11. Algorithm DecomApprox computes an αγ-
approximate independent set I in I in polynomial time, where
γ is the width of a given graph G with respect to a given linear
order of vertices V.

Note that α < 2 if and only if αγ < α + 2γ − 2. Therefore,
an independent set I provided by Algorithm DecomApprox has
approximation guarantee better than the one provided by Algo-
rithm OrderedApprox when α < 2. By applying Theorem 11 to
graphs with degeneracy k, we have the following corollary.
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Corollary 12. Algorithm DecomApprox computes an αk-
approximate independent set I in I in polynomial time if a given
graph G is k-degenerate.

4. Approximation for bipartite graph
We note that Algorithms OrderedApprox and DecomApprox

do not provide an independent set with small approximation ratio
if a given graph has no small degeneracy. Such examples include
complete graphs and complete bipartite graphs.

In this section, we consider an approximation algorithm for
problem (4) where the input graph is bipartite and its degeneracy
might not be bounded, and analyze the approximation ratio of the
algorithm if all the local independence systems in the one-side of
vertices are k-systems with independence oracles. Here an inde-
pendence oracle of an independence system (E,I) answers either
”I ∈ I” or ”I < I” for a given I ⊆ E. Namely, let (E,I) be an in-
dependence system defined on a bipartite graph G = (V1∪V2, E).
We consider the case, where every v ∈ V2 satisfies that (Ev,Iv) is
a k-system.
Definition 13. For a positive k ∈ R, an independence system
(E,I) is called a k-system if any subset F ⊆ E satisfies

k|I| ≥ |J| for any two maximal independent sets I and J in I[F].
(8)

Note that any independence system (E,I) is a |E|-system and
that an independence system is a 1-system if and only if it is a
matroid. By definition, matchoids are independence systems such
that local independence systems are all 1-systems, and hence the
families of b-matchings are also the ones satisfying that local in-
dependence systems are all 1-systems. Moreover, the families of
timed matchings are independence systems such that local inde-
pendence systems (Ev,Iv) are all k-systems if any time label Le

with e ∈ Ev is disjoint from L f with f ∈ Ev except for at most
k edges in Ev. Our algorithm called BipartiteApprox can be

Algorithm BipartiteApprox(G,I)
Input: An independence system (E,I) defined on a bipartite graph G =

(V1 ∪ V2, E), where V1 = {v1, . . . , vn1 } and (Ev,Iv) is a k-system with
an independence oracle for every v ∈ V2.

Output: An independent set in I.

1: Pv := Ev for v ∈ V1.
2: Rv := ∅ and Jv := ∅ for v ∈ V2.
3: for i = 1, . . . , n1(= |V1 |) do
4: Ivi := Avi (Pvi ).
5: for (w, vi) ∈ Ivi do
6: Jw := Jw ∪ {(w, vi)}
7: Rw := Rw ∪ {(w, v j) ∈ Ew | j > i and Jw ∪ {(w, v j)} < Iw}.
8: end for
9: for j = i + 1, . . . , n1 do

10: Pv j = Pv j \ (
⋃
v∈V2

Rv).
11: end for
12: end for
13: R =

⋃
v∈V2

Rv.
14: Output I =

⋃
v∈V1

Iv and halt.

regarded as variant of Algorithm OrderedApprox with a linear
order ≺ such that w ≺ v hold for any v ∈ V1 and w ∈ V2. Note that

in this order all the vertices w ∈ V2 fall into Case 4 at the for-loop
in Line 3 in OrderedApprox, and hence X = V2 holds after the
iteration of the last vertex in V2. Different from OrderedApprox,
Algorithm BipartiteApprox updates Rw for w ∈ V2 (= X) more
carefully.

Algorithm BipartiteApprox calls local oracles Av in an ar-
bitrary order of v ∈ V1. More precisely, for each v ∈ V1 and
w ∈ V2, we initialize Pv = Ev and Rw = ∅, update Pv and Rw ac-
cordingly, and compute Iv = Av(Pv). Here Pv and R =

⋃
w∈V2

Rv
correspond to those in Lemma 2.
Lemma 14. Algorithm BipartiteApprox satisfies the follow-
ing five conditions at the end of the i-th iteration of the for-loop
in Line 3:

(i) Pv j ⊆ Ev j with Iv j = Av j (Pv j ) for all v j ∈ V1 with j ≤ i,

(ii) Rv ⊆ Ev for all v ∈ V2,

(iii) {Jv ⊆ Ev | v ∈ V2} is a partition of
⋃
j≤i

Iv j ,

(iv) Jv is a maximal independent set in I[Jv ∪ Rv]

for all v ∈ V2, and

(v) P = {Pv | v ∈ V1} ∪ {Pw = ∅ | w ∈ V2}

is a local subpartition of E with residual R =
⋃
v∈V2

Rv.

Lemma 15. Algorithm BipartiteApprox satisfies that⋃
j<i Iv j ∈ I in the beginning of the i-th iteration of the for-loop

in Line 3.
Theorem 16. Let (E,I) be an independence system defined on a
bipartite graph G = (V1 ∪ V2, E) such that (Ev,Iv) is a k-system
with an independence oracle for every v ∈ V2. Then Algorithm
BipartiteApprox computes an (α + k)-approximate indepen-
dent set I in I in polynomial time.

Before concluding this section, we remark that independence
systems on graphs are 2k-systems if all local independence sys-
tems are k-systems, which is shown in the following lemma.
Since the maximization for k-systems (E,I) are approximable
with ratio k by computing a maximal independent set in I, Al-
gorithm BipartiteApprox improves the ratio 2k to (α + k)
for independence systems on graph bipartite graphs G = (V1 ∪

V2, E) if the all local independence systems are k-systems and
α-approximation local oracles in V1 are given for α with α < k.
Lemma 17. An independence system (E,I) on graph G = (V, E)
is a 2k-system if all local independence systems (Ev,Iv) are k-
systems.

5. Hypergraph generalization of the probslem
In this section we consider independence systems defined on

hypergraphs and present two algorithms. The first algorithm cor-
responds to Algorithm OrderedApprox for problem (4) whose
input graph is a forest, and the second algorithm corresponds to
Algorithm DecomApprox for problem (4).
Definition 18. Let G = (V, E) be a hypergraph with a ver-
tex set V and a hyperedge set E ⊆ 2V . For each vertex v in
V, let (Ev,Iv) be an independence system on the set Ev of hy-
peredges incident to v, i.e., Ev = {e ∈ E | v ∈ e}, and let
I = {I ⊆ E | I ∩ Ev ∈ Iv for all v ∈ V}. We say that (E,I)

6ⓒ 2023 Information Processing Society of Japan

Vol.2023-AL-191 No.5
2023/1/20



IPSJ SIG Technical Report

is an independence system defined on a hypergraph G.
The generalization contains the maximum matching problem

for hypergraphs. Similarly to the graph case, we make use of
local oracles Av for each v in V , which satisfy (5) and (6). In
order to generalize the idea of Algorithm OrderedApprox to the
hypergraph case, we define the upward and downward edge sets
with respect to a linear order of vertices V .
Definition 19. For a hypergraph G = (V, E), let ≺ be a linear
order of vertices V. For a vertex v, let Uv = {e ∈ Ev | v ≺
w for some w ∈ e} and Dv = {e ∈ Ev | w ≺ v for all w ∈ e} be the
sets of upward and downward edges incident to v, respectively.
We define the width of G (with respect to a linear order ≺) as
maxv∈V |Uv|.

For a hypergraph G = (V, E) and a vertex set W ⊆ V , let
G[W] = (W, E[W]), where E[W] = {e ∩W | e ∈ E, |e ∩W | ≥ 2}.
Note that for W ⊆ V , G[W] is the subgraph of G induced by W
if G is a graph. Similarly to the graph case, a hypergraph G of
width k satisfies that G[W] has a vertex of degree at most k for all
W ⊆ V . Therefore, a linear order certifying that a hypergraph G
has width k can be computed in linear time.

Algorithm OrderedApprox∗ for hypergraphs works simi-
larly to Algorithm OrderedApprox. Different from Algorithm
OrderedApprox, the algorithm updates Pv and Rv based on the
fact that G is a hypergraph. Note that such differences appear in
Lines 4, 14, and 28 in the description of the algorithm. For each
vi ∈ V , define a set Bvi ⊆ Uvi as follows

Bvi =

e ∈ Uvi \

⋃
l<i

Rvl


∣∣∣∣∣∣∣∣

e ∈ Avi (Pvi ∪ {e}) and

|Avi (Pvi ∪ {e})| > |Avi (Pvi )|

 .
It separately treats the following four cases as in the description
of the algorithm.

Case 1: Uvi = ∅

Case 2: Uvi , ∅, Pvi , ∅, and Bvi = ∅

Case 3: Uvi , ∅, Pvi , ∅, and Bvi , ∅

Case 4: Uvi , ∅ and Pvi = ∅

We show the following two lemmas, which respectively corre-
spond to Lemmas 7 and 8 for the graph case.
Lemma 20. Algorithm OrderedApprox∗ satisfies the following
three conditions

(i) Iv j ⊆ Pv j ⊆ Ev j with |Iv j | = |Av j (Pv j )| for all j ≤ i,

(ii) Rv j ⊆ Uv j for all j ≤ i, and

(iii) P = {Pv | v ∈ V} is a local subpartition of E

with residual R =
⋃
j≤i

Rv j

at the end of the i-th iteration of the for-loop.
Different from the graph case, the following lemma requires

that v ∈ V e ∩ f = {v} holds for e, f ∈ Pv, i.e, Av(Pv) ∈ I. Note
that if maxe∈E |e| ≤ 2, the required condition is satisfied.
Lemma 21. Algorithm OrderedApprox∗ satisfies that in the be-
ginning of the i-th iteration of the for-loop,

I ∪
⋃
j<i

Iv j ∈ I for any independent set I ∈ I[Pvi ] (9)

Algorithm OrderedApprox∗(G,I,≺)
Input: An independence system (E,I) defined on a hypergraph G = (V, E)

and a linear order v1 ≺ v2 ≺ . . . ≺ vn of vertices V .
Output: An independent set in I.

1: X := ∅.
2: Pv := Dv for v ∈ V .
3: for i = 1, . . . , n do

4: Bvi =

e ∈ Uvi \
(⋃

l<i Rvl
)∣∣∣∣∣∣∣ e ∈ Avi (Pvi ∪ {e}) and

|Avi (Pvi ∪ {e})| > |Avi (Pvi )|

 .
5: if Uvi = ∅ then
6: Ivi := Avi (Pvi ).
7: Rvi := ∅.
8: else if Uvi , ∅, Pvi , ∅, and Bvi = ∅ then
9: Choose an edge e ∈ Uvi arbitrarily.

10: if e < Avi (Pvi ∪ {e}) then
11: Ivi := Avi (Pvi ∪ {e}).
12: else (i.e., |Avi (Pvi ∪ {e})| = |Avi (Pvi )|)
13: Ivi := Avi (Pvi ). /* |Ivi | = |Avi (Pvi ∪ {e})| */
14: end if
15: Pvi := Pvi ∪ {e}.
16: Rvi := Uvi \ {e}.
17: for v j ∈ e \ {vi} do
18: Pv j := Pv j \ {e}.
19: end for
20: else if Uvi , ∅, Pvi , ∅, and Bvi , ∅ then
21: Choose an edge b ∈ Bvi arbitrarily.
22: Ivi := Avi (Pvi ∪ {b}) \ {b}. /* Ivi ⊆ Pvi and |Ivi | = |Avi (Pvi )| */
23: Rvi := Uvi \ {b}.
24: else (i.e., Uvi , ∅ and Pvi = ∅)
25: Ivi := ∅.
26: Rvi := ∅. /* Rvi might be updated in line 32 */
27: X := X ∪ {vi}.
28: end if
29: for e ∈ Ivi do
30: for v j ∈ e \ {vi} do
31: if v j ∈ X then
32: Rv j := {e ∈ Uv j \ (

⋃
l<i Rvl ) | vi ≺ u for some u ∈ e}.

33: X := X \ {v j}.
34: end if
35: end for
36: end for
37: for j = i + 1, . . . , n do
38: Pv j := Pv j \ (

⋃
l≤i Rvl ).

39: end for
40: end for
41: R =

⋃
v∈V Rv.

42: Output I =
⋃
v∈V Iv and halt.

if e ∩ f = {v j} holds for j ≤ i and for e, f ∈ Pv j .
Lemma 22. Algorithm OrderedApprox∗ computes an (α+δ(γ−
1))-approximate independent set I in I in polynomial time if a
given hypergraph G satisfies that for v ∈ V, e ∩ f = {v} for
e, f ∈ Dv with respect to a given linear order ≺ of vertices V,
where γ is the width of G with respect to ≺, and δ = maxe∈E |e|.

We have the following corollary.
Corollary 23. Algorithm OrderedApprox∗ computes an α-
approximate independent set I in I in polynomial time if G is
a hypergraph of width 1.

We can also show that Algorithm DecomApprox can be gen-
eralized for the hypergraph case. Namely, for a hypergraph
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G = (V, E) of width γ, Algorithm DecomApprox∗ first decom-
poses edge set E into E1, . . . , Eγ, where Gi = (V, Ei) is a hyper-
graph of width 1, for each Ei, applies OrderedApprox∗ to com-
pute an independent set Ii, and chooses a maximum independent
set among them.

Algorithm DecomApprox∗(G,I,≺)
Input: An independence system (E,I) defined on a hypergraph G = (V, E)

and a linear order v1 ≺ v2 ≺ · · · ≺ vn of vertices V , where γ is the width
of hypergraph G with respect to ≺.

Output: An independent set in I

1: Q := ∅
2: for i = 1, . . . , n do
3: U′vi := {e ∈ Uvi | vi ≺ v for all v ∈ e \ {vi}}.
4: for each e ∈ U′vi do
5: u := maxv∈e v.
6: Qe := {Q′ ∈ Q | Q′ ∩ Uv = ∅ for all v ∈ e \ {u}}.
7: if Qe , ∅ then
8: Q ∈ Qe

9: else
10: Q := ∅.
11: Q := Q ∪ {Q}.
12: end if
13: Q := Q ∪ {e}.
14: end for
15: end for
16: for Q ∈ Q do
17: IQ := dOrderedApprox∗(G[Q],I[Q],≺).
18: end for
19: I ∈ arg max{|IQ | | Q ∈ Q}.
20: Output I and halt.

Thus we have the following theorem.
Theorem 24. Algorithm DecomApprox∗ computes an (α+ α(δ−
1)(k − 1))-approximate independent set I in I in polynomial time
if G is a hypergraph of width k, where δ = maxe∈E |e|.

Note that Theorem 24 is regarded as a generalization of Corol-
lary 12.
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