
短期秘密鍵漏洩耐性を持つIoT向け耐量子認証鍵交換

石橋　錬1,a) 米山　一樹1,b)

概要：認証鍵交換（AKE）は複数のパーティ間で共通のセッション鍵を共有するための暗号プロトコルであ
る。本研究では，双方のリソースが非対称であるような，IoTデバイスとサーバ間で実行される IoT-oriented

AKEに注目する。Liuらは，perfect forward secrecy (PFS)，key compromise impersonation (KCI)，server
compromise impersonation (SCI) に対して安全なビッグデータを用いた IoT向け AKE (IoT-AKE) の安
全性モデル (LTZモデル)を定式化した。また，彼らは IoT-AKEのフレームワークを提案し，具体的な耐
量子方式を与えた。しかし，LTZモデルは短期秘密鍵漏洩が考慮されていないモデルであり，また彼らの
方式はランダムオラクルモデルを仮定している。本稿では，LTZモデルを短期秘密鍵漏洩を捉えたモデル
へ拡張し，ランダムオラクルモデルと標準モデルにおける IoT-AKEの一般構成をそれぞれ提案する。我々
の一般構成により，初めての標準モデルで安全な耐量子 IoT-AKE方式が得られる。

キーワード：認証鍵交換, IoT-eCK, IoT, SCI, 耐量子

Post-Quantum Authenticated Key Exchange Resilient to Ephemeral
Key Leakage in the Bounded-Retrieval Model for IoT

Ren Ishibashi1,a) Kazuki Yoneyama1,b)

Abstract: Authenticated Key Exchange (AKE) is a cryptographic protocol to share a common session key
among multiple parties. Recently, not only the ordinary PKI-based AKE but also the Internet of Things (IoT)
setting has been studied. We focus on an IoT-oriented AKE (IoT-AKE) where the resources of both parties
are asymmetric, such that the IoT-device runs the protocol to establish a session key with a remote server.
Liu et al. formulated a security model of the IoT-AKE (LTZ model) using big-data in the bounded-retrieval
model, which guarantees perfect forward secrecy (PFS), key compromise impersonation (KCI) and server
compromise impersonation (SCI). Also, they proposed a modular IoT-AKE framework and concrete post-
quantum schemes for IoT-AKE. However, the LTZ model does not consider the compromise of ephemeral
secret keys, and their schemes rely on the random oracle model (ROM). In this paper, we extend the LTZ
model to capture the compromise of ephemeral secret keys, and propose generic constructions of IoT-AKE
in the ROM and in the standard model (StdM), respectively. Our constructions allow us to construct the
first post-quantum IoT-AKE scheme (from isogenies, lattice, etc.) in the StdM.

Keywords: authenticated key exchange, IoT-eCK, Internet of Things, server compromise impersonation
resilience, post-quantum

1. Introduction

Authenticated Key Exchange (AKE) is a cryptographic

protocol to share a common session key among multi-

1 茨城大学
Ibaraki University

a) 21nm706r@vc.ibaraki.ac.jp
b) kazuki.yoneyama.sec@vc.ibaraki.ac.jp

ple parties through an unauthenticated channel such as

the Internet. We focus on the 2-party AKE. In ordinary

PKI-based AKE, each party locally keeps a static secret

key (SSK) and publishes a static public key (SPK) cor-

responding to the SSK. The validity of the SPK is guar-

anteed by a certificate issued by the certification author-

ity. In a key exchange session, each party generates an

Computer Security Symposium 2022
24 - 27 October 2022

© 2022 Information Processing Society of Japan - 612 -

ephemeral secret key (ESK) and sends an ephemeral pub-

lic key (EPK) corresponding to the ESK to the other

party. The session key is derived from these keys and

some key derivation function like a hash function. Ordi-

nary AKE is intended to satisfy session key secrecy and

mutual authentication, and the provable security is for-

mulated by security models such as the eCK model [13].

The basic security properties for AKEs are the known-

key security in which no information about the session

key is revealed if other session keys are revealed, and the

(perfect) forward secrecy in which the adversary cannot

obtain any information of the session key even if SSKs are

revealed. Most existing AKE protocols have only a single

type of authentication factor (e.g. certified secret/public

keys or passwords). Therefore, if the single authentica-

tion factor is compromised, the security of the AKE pro-

tocol will be broken after the compromise. For example

of the classification of the authentication factors, there

are human-memorable passwords, secret keys in a secure

module, biometrics, etc. By using two or multiple factors

in the protocol, we can make the protocols more secure

against the compromise. Also, in ordinary AKE, each

party has the same type of the authentication factor, and

key exchange sessions are performed with almost the same

computational complexity for each party. Therefore, the

protocols often distinguishes parties by the initiator or the

responder.

On the other hand, there are situations where mutual

authentication is performed in an environment in which

the resources of both parties are asymmetric like the

communication between a server and an IoT-device. In

this paper, we focus on the AKE protocols for IoT sys-

tems (IoT-AKE), where an IoT-device and a server run

the protocol to authenticate each other and share a ses-

sion key without human involvement. We suppose that

the IoT-device is standalone and no human user is neces-

sarily present when it is engaged in the protocol execution.

In the IoT environment, the IoT-devices are well known

to be constrained with computation capability, network

bandwidth, and battery life. Thus, lightweight designs are

desirable. Regarding the security requirements for IoT-

AKE, we argue that the following properties are required

in addition to the standard properties described above.

• Key Compromise Impersonation (KCI): Even if an

adversary has compromised one party’s SSK, then it

still cannot impersonate the other party to this party.

• Server Compromise Impersonation (SCI): Even if an

adversary has compromised the server, then it still

cannot impersonate the server to the IoT-device.

These attacks are usually caused in real-world applica-

tions. Regarding the KCI, an IoT-device is very likely to

be compromised and has the stored credentials leaked by

attacks such as side-channel attacks. Regarding the SCI,

the server can be deployed in critical infrastructure, it is

necessary that an adversary should not possibly imperson-

ate the server to the IoT-device even if the adversary has

compromised the server. The ordinary security models of

AKE cannot cover such properties. These properties are

difficult to achieve within the single authentication factor.

Thus, we focus on the AKE based on two or multi-factors.

1.1 Related Work

1.1.1 IoT-AKE

Chan et al. [5] argued that big-data could be a candidate

of the good authentication factor, and proposed a big-data

based unilateral two-factor authentication protocol. Liu

et al. [14] formulated a security model (LTZ model) for

IoT-AKE using big-data in the bounded-retrieval model

(BRM). It means that the server uses big-data as a se-

cret factor and the adversary can only reveal a subset of

big-data. The LTZ model captures the security properties

including KCI and SCI, and they proposed two concrete

schemes based on Diffie-Hellman (DH) KE. Then, Liu et

al. [15] proposed a modular IoT-AKE framework by re-

placing the part of the DH KE in the concrete schemes to

a generic PKE and a passively-secure KE, and showed

post-quantum instantiations in the LTZ model and in

the ROM. However, there are three problems in their

schemes. First, their schemes are proved in the random

oracle model (ROM). Random oracles do not exist in the

real world, and cannot always be instantiated by real hash

functions. Indeed, Canetti et al. [4] show that there are

primitives which are secure in the ROM but insecure if

random oracles are instantiated by real hash functions.

Next, since the LTZ model does not consider the compro-

mise of the ESKs used in the session, their schemes cannot

guarantee the security against the compromise of ESKs.

For example, an ESK can be obtained to the adversary if

a weak pseudo-random number generator is implemented.

Hence, it is desirable to consider not only the leakage of

SSKs but also the leakage of ESKs. Finally, though their

schemes use a message authentication code (MAC) for ex-

plicit authentication, implicit authentication is enough to

satisfy the LTZ model. Thus, removing such a MAC can

make IoT-AKE schemes more simple and efficient.

- 613 -

1.2 Our Contribution

In this paper, we achieve the first post-quantum IoT-

AKE scheme without random oracles. Our contribution

is three fold.

• We introduce the IoT-eCK model by extending the

LTZ model based on the eCK model [13]. Thus, our

model can capture the compromise of ESKs, and it

can guarantee stronger security.

• We propose a generic construction (GC-StdM) in

the IoT-eCK model in the standard model (StdM)

from an IND-CCA secure KEM and an IND-CPA

secure KEM. By instantiating GC-StdM with DH-

based or factoring-based KEM schemes, we can ob-

tain the first IoT-AKE in the StdM. Also, by instan-

tiating GC-StdM with lattice-based or isogeny-based

KEM schemes, we can obtain the first post-quantum

IoT-AKE in the StdM. Moreover, we also propose

a generic construction (GC-ROM) in the IoT-eCK

model in the ROM from an OW-CCA secure KEM

and an OW-CPA secure KEM.

• By omitting the SSK for MAC of both parties and the

seed, our generic constructions are simplified com-

pared to existing IoT-AKE schemes. For more de-

tails, please see Section 3.2.

2. Security Model for IoT-AKE

In this section, we extend the LTZ security model [14]

for IoT-AKE to the IoT-eCK model with SCI and KCI

resistance, based on the eCK model [13] by LaMacchia,

Lauter, and Mityagin.

2.1 System Model and Adversarial Capacity

2.1.1 Notation

• x ∈R X : The element x is sampled uniformly ran-

domly from the set X.

• πi
P : The i-th instance of a party UP .

• pid : The partner identifier, where the server’s identi-
fier is denoted as IDS and the IoT-device’s identifier

is denoted as IDC .

• sid : The session identifier, and each sid should be

unique within the party.

• sk : The session key derived by πi
P at the end of the

protocol execution. It is initialized as ⊥.
• acc : The state of acceptance acc ∈
{accepted, rejected,⊥} which represents the state

of πi
P at the end of the protocol execution. It is

initialized as ⊥, is set as accepted if the instance

successfully completes the protocol execution, and is

set as rejected otherwise.

2.1.2 IoT-AKE Setting

Parties are modeled as probabilistic polynomial-time

Turing machines (PPTM). Each party is activated by re-

ceiving an initialization message and returns a message

defined by the protocol.

IoT-AKE uses the following two authentication factors

in the two-party communication between the server US

and the IoT-device UC .

(1) Secret keys in a secure module such as a static shared

secret key between UC and US and a static certified

secret key of the server.

(2) A dataset D of big-data, which contains a large num-

ber of data items denoted as di (1 ≤ i ≤ m) for some

m. In the setup phase on UC with IDC , US chooses

L data from {di} randomly as a subset of D to be

used in the protocol, generates a tag tIDC ,i for each

di using the secret keys, and stores it in D∗.

US sends a subset of its secret keys to UC as SSKC , and

US keeps some secret keys and D∗ as SSKS . An example

of a dataset D∗ in the case of using n IoT-devices and

big-data which contains m data is shown in the following

Table 1.

表 1 An example of a dataset D∗

di

ID
ID1 ID2 . . . IDn−1 IDn

d1 tID1,1 - . . . tIDn−1,1 -

d2 tID1,2 - . . . - tIDn,2

d3 - tID2,3 . . . tIDn−1,3 -

...

dm−2 - tID2,m−2 . . . - tIDn,m−2

dm−1 tID1,m−1 - . . . - tIDn,m−1

dm - tID2,m . . . tIDn−1,m -

2.1.3 Protocol and sessions

Each execution of the protocol is called a session, and

each session has an instance π assigned to the party, where

each π must be unique within the party. Each instance

is associated with a session state containing intermedi-

ate values, and the i-th instance of π by party UP is

denoted by πi
P . Also, if the instance πi

P completes the

session by computing the session key sk, πi
P is set as

πi
P .acc = accepted.

In addition, we define the matching conversation for the

IoT-device instance πi
C and the server instance πj

S as fol-

lows.

Difinition2.1 (Matching conversation) Two in-

stances πi
C and πj

S are said to be matching if they satisfy

- 614 -

the following conditions.

(1) πi
C .acc = πj

S .acc = accepted

(2) πi
C .sid = πj

S .sid

(3) πi
C .sk = πj

S .sk

(4) πi
C .pid = US ∧ πj

S .pid = UC

2.1.4 Adversary

Let params be a public parameter. The adversary A
is modeled as a PPTM, which takes params as input and

has oracle access to parties UP1 , . . . , UPn . A controls all

communications among users including the session acti-

vation. A can interfere in party UP to execute a specific

action using the following adversary’s queries.

• Send(msg, πi
P) : The adversary sends an arbitrary

message msg to the instance πi
P . πi

P executes the

protocol according to the given message and returns

the response to A. When activating a session, the

adversary queries msg = null.

• SKReveal(πi
P) : When πi

P .acc = accepted, the adver-

sary obtains the session key SK of the instance πi
P .

• ESKReveal(πi
P) : If πi

P .acc ̸= accepted, the adver-

sary obtains the ephemeral secret key ESKi
P of the

instance πi
P .

• CorruptC(IDC) : The adversary obtains the static se-

cret key SSKC of the IoT-device UC with IDC .

• CorruptS(IA, IDS) : The adversary obtains the static

secret key SSKS of the server S, where it allows leak-

age of the dataset (di, (tID1,i, . . . , tIDn,i)) indicated

by the index i ∈ IA in D∗ and secret keys. In the

BRM, IA has a limited size.

2.2 IoT-eCK Security

For defining the IoT-eCK security, we need the notion

of freshness.

Difinition2.2 (Freshness) Let πi
P (P ∈ {UC , US})

and πj
P ′ be instances between an IoT-device UC and a

server US , where πi
P .acc = πj

P ′ .acc = accepted. If there

exists a matching conversation of πi
P , let πj

P ′ be the

matching instance of πi
P . We say that the instance πi

P

is IoT-eCK fresh if none of the following conditions hold:

(1) The adversary issues SKReveal(πi
P), or SKReveal(π

j
P ′)

query if πj
P ′ exists,

(2) The adversaryA issues CorruptS(IA, IDS) query after

issuing Send(πi
P) query.

(3) πj
P ′ exists and the adversary makes either of the fol-

lowing queries

• both CorruptP and ESKReveal(πi
P) query, or

• both CorruptP ′ and ESKReveal(πj
P ′) query,

(4) πj
C does not exist and the adversary makes either of

the following queries

• CorruptC(IDC) query, or

• both CorruptS(IA, IDS) and ESKReveal(πj
S) query,

(5) πj
S does not exist and the adversary makes the fol-

lowing query

• both CorruptC(IDC) and ESKReveal(πi
C) query, or

• both CorruptC(IDC) and CorruptS(IA, IDS) query.

The goal of the adversary A in the IoT-eCK security

game is to distinguish the true session key from a random

key. A can make any sequence of the queries described

above. During the experiment, A makes the following

query.

• Test(πi
P) : Here, πi

P must be IoT-eCK fresh. The

oracle chooses b ∈R {0, 1}. If b = 0, then it returns

πi
P .sk. Otherwise, it returns a random key. This

query can be issued only once.

The adversary A obtains either the session key of πi
P

or a random key with probability 1/2 respectively. After

issuing the Test query, the game continues until A out-

puts b′ as a result of guessing whether the received key is

random or not. If πi
P is IoT-eCK fresh by the end and the

guess of A is correct (i.e., b = b′), then A wins the game.

Difinition2.3 (IoT-eCK security) The advantage

of the adversary A in the above game with the IoT-AKE

protocol Π is defined as follows.

AdvIoT−AKE
Π (A) = |Pr[A win]− 1/2|

Let κ be a security parameter. We say that an IoT-AKE

protocol Π is secure in the IoT-eCK model, if the following

conditions hold:

(1) Correctness : If two parties are complete matching

instances, they both compute the same session key

except with a negligible probability in κ.

(2) Security : For any PPT adversary A,
AdvIoT−eCK

Π,κ (A) is negligible in κ.

Remark1 In comparison to the eCK model [13], the

conditions 2 and 5 of the Definition 2.2 are different. The

condition 2 prevents the trivial attack of A querying the

CorruptS query for I of matching instances. The condi-

tion 5 is less restrictive than the original eCK model to

capture the SCI.

Remark2 In Definition 2.2, PFS by the leakage pat-

tern of both parties’ SSKs in the condition 3, KCI for

impersonating an IoT-device by the leakage pattern of

the server’s SSK in the condition 4, KCI for imperson-

ating a server by the leakage pattern of the IoT-device’s

SSK in the condition 5, and SCI by the leakage pattern

of the server’s SSK and the ESK of πi
C in the condition 5.

In comparison to the LTZ model [14], A can obtain the

- 615 -

ESK of the impersonating server’s peer, thus it captures

stronger SCI than the original one.

3. Our Generic Constructions

In this section, we propose two generic constructions of

IoT-AKE from KEM in the StdM (GC-StdM) and in the

ROM (GC-ROM). GC-StdM is based on IND-CCA secure

KEM and IND-CPA secure KEM, and GC-ROM is based

on OW-CCA secure KEM and OW-CPA secure KEM.

Our constructions are secure in the IoT-eCK model. The

protocol of GC-StdM is shown in Section. 3.3. Since GC-

ROM can be constructed in a similar way as GC-StdM, we

omit the protocol of GC-ROM due to the page limitation.

The proposed protocols contain two factors as SSKs, (i)

the distributed credentials in the setup phase to prove the

data-tag relationship and (2) the decapsulation key of the

CCA secure KEM to prove its knowledge for the server.

3.1 Protocol of LTZ scheme [14]

First, we revisit the protocol of the LTZ scheme [14]

using big-data based on the CDH and SDH assumptions.

Public Parameters : Let κ be a security parameter,

G be the multiplicative group, g be a generator of G, q

be a prime order of G, F : {0, 1}∗ × {0, 1}κ → Zq and

E : {0, 1}κ × {0, 1}κ → {0, 1}κ be pseudo-random func-

tions, H : {0, 1}∗ → Zq be a random oracle, and index

parameter z is determined.

Initialization : The server US generates a pub-

lic/private key pair (pk = gsk, sk) where sk ∈R Zq, and

also generates mk ∈R {0, 1}κ as a static secret shared

key, K ∈R Zq, and generates K ′ ∈R {0, 1}κ for tag gener-

ation and data processing. Suppose US possesses dataset

D which contains L data items di (1 ≤ i ≤ L). For

each data item di ∈ D, the server generates its tag as

ti = K ·H(di) + F(i,K ′). it defines dataset D∗ which con-

tains all tuples (di, ti) (1 ≤ i ≤ L) of a data item and

tag.

Key Exchange :

(1) The IoT-device UC chooses r1 ∈R Z∗
q to compute

a = pkr1 and g′ = gr1 . Then, it chooses r2 ∈R
{0, 1}κ and a random subset IC of z distinct indices

from [1, L], and then sends (g′, r2, IC) and M1 =

H(mk, a, g′, r2, IC) to the server US .

(2) Upon receiving msg1 = (g′, r2, IC ,M1), US com-

putes a∗ = g′sk and verifies whether or not M1 =

H(mk, a∗, g′, r2, IC) holds. If the verification passes,

it chooses a random subset IS of z distinct indices

which should be disjoint from IC . Also, it computes

r′2 = E(r2,mk), X = K ·
∑i

i∈I(H(di) · F(i, r′2)), and
Y =

∑i
i∈I(ti · F(i, r′2), where I = IC ∪ IS . Be-

sides, US chooses r3 ∈R Zq to compute b = pkr3

and dh = a∗r3 . Then US sends (b, IS , X) and M2 =

H(a∗, b, dh, IS , X, Y,msg1) to UC .

(3) Upon receiving msg2 = (b, IS , X,M2), UC com-

putes r′2 = E(r2,mk) and KI =
∑i

i∈I(F(i,K
′) ·

F(i, s′)), where I = IC ∪ IS . Also, it com-

putes Y = X + KI and dh∗ = br1 , and veri-

fies whether or not M2 = H(a, b, dh∗, IS , X, Y,msg1)

holds. If the verification passes, it computes

M3 = H(a, b, dh∗, I, Y,msg1,msg2) and sends it to

US . Finally, it computes a session key SK =

H(mk, a, b, dh∗, Y).

(4) Upon receiving M3, US verifies whether or not

M3 = H(a∗, b, dh, I, Y,msg1,msg2) holds. If the ver-

ification passes, it computes a session key SK =

H(mk, a∗, b, dh, Y).

3.2 Our construction Idea

Here, we give our idea to achieve generic constructions

in the ROM and in the StdM by comparing with the LTZ

scheme.

3.2.1 Implicit authentication

The LTZ scheme provides the explicit authentication of

the server and the IoT-device with the key confirmation

by M1, M2 and M3 as MACs. As discussed in Section 1.1,

the implicit authentication is sufficient to satisfy the secu-

rity in the IoT-eCK model, thus our generic constructions

can omit the MAC authentication. If the explicit authen-

tication is required for an implementation, it is trivial to

be able to add it to our constructions by a similar key

confirmation step.

3.2.2 Replacement of random oracles

Our constructions are also based on big-data operation

as the LTZ scheme. In GC-StdM, by replacing the random

oracle H used in big-data operation with a key derivation

function or pseudo-random function, we can construct a

scheme without ROs. Also, by using the technique [9] of

generating session keys with pseudo-random functions, we

can generate session keys without random oracles.

3.2.3 Omission of static shared secret key

In the LTZ scheme, the static shared secret key mk is

used to compute r′2, and F(i, r′2) is used to compute X, Y ,

and KI. However, since the adversary A cannot obtain K ′

in the event that both parties SSKs are not compromised

from the freshness definition, it can be reduced to the se-

- 616 -

curity of PRF F of F(i,K ′). Thus we can omit mk and the

computation of r′2. Also, in the LTZ scheme, the nonce r2

is used to change Y explicitly per session, however, A can

query the same r2 in a Send query to the server. Thus the

randomization by r2 is redundant in the viewpoint of the

security, and we can omit r2.

3.2.4 Processing big-data

In the LTZ scheme, the size of D∗ is expanded by stor-

ing the L × m pairs of the duplicated data items and

tag into D∗ in the initialization phase, and they call it

big-data. This is a fairly redundant storing method in

terms of the real-world implementation and does not fit

the original meaning of big-data. Therefore, we change

the storing method as follows. In the initialization phase,

the server chooses L data for each device as a subset of

big-data containing m data items, stores the generated

tags in association with the data, and uses the subset in

the protocol. Since D∗ contains distinct data items, our

method captures the original meaning of big-data.

3.3 GC-StdM: IoT-AKE in Standard Model

The protocol in the StdM consists of an IND-CCA se-

cure KEM (KeyGen,EnCap,DeCap) and an IND-CPA se-

cure KEM (wKeyGen,wEnCap,wDeCap) as follows.

3.3.1 Protocol

Public Parameters : Let κ be a security parameter,

F : {0, 1}∗ × FS → Zq and PRF : {0, 1}∗ × FS → {0, 1}κ

be pseudo-random functions, KDF : Salt × D → Zq and

KDF′ : Salt′ ×KS → FS be key derivation functions and

st ∈R Salt and st′ ∈R Salt′ are chosen, TCRFS : Zq →
FS be a target-collision resilience hash function, and in-

dex parameter z is determined, where FS is a key space of

the pseudo-random functions (|FS| = 2κ), KS is a session

key space of KEM, and Salt and Salt′ are salt space of

the key derivation functions. These are provided as part

of the public parameters.

Initialization : The server US chooses randomness

r ∈R RSccaG , computes (ekS , dkS) ← KeyGen(1κ; r), and

for party Uid generates Kid ∈R Zq and K ′
id ∈R FS for

tag generation and data processing. Suppose US pos-

sesses a secret dataset D which contains m data items

di (1 ≤ i ≤ m). US chooses index set Iid which contains

L indices to use a subset of D in the protocol, generates

tag as tid,i = Kid · KDF(st, di) + F(i,K ′
id) for every data

item di (i1 ≤ i ≤ iL), stores tid,i into secret dataset D∗.

US sends K ′
id to the IoT-device Uid secretly and erases

K ′
id. US ’s static secret keys are (dk,Kid,D∗), and Uid’s

static secret keys is K ′
id.

Key Exchange : Let US which has static keys

SSKS := (dk, {Kid}n,D∗), SPKS := (ek, {Iid}n) and an

identifier IDS be a server, and UC which has a static

secret key SSKC := K ′
IDC

and an identifier IDC be a

IoT-device.

(1) UC chooses ephemeral secret keys r1 ∈R RSccaE

and r2 ∈R RScpaG , computes (CTC ,KEC) ←
EnCap(ek; r1) and (ekT , dkT) ← wKeyGen(r2), and

chooses a random subset IC ∈R IIDC
of z distinct

indices for D∗. Then, UC sends (ekT , CTC , IC , IDC)

to US .

(2) Upon receiving (ekT , CTC , IC , IDC), US chooses an

ephemeral secret key r3 ∈R RScpaE , and com-

putes (CTT ,KET) ← wEnCap(ekT ; r3) and KEC ←
DeCap(CTC , dk). Also, US chooses a random sub-

set IS ∈R IIDC
of z distinct indices which should

be disjoint from IC , sets I = IC ∪ IS , com-

putes X = KIDC
·
∑i

i∈I(KDF(st, di)). Then US

sends (CTT , IS , X) to UC . US computes Y =∑i
i∈I(tIDC ,i), KE

′

C ← KDF′(st′,KEC), KE
′

T ←
KDF′(st′,KET), and Y ′ ← TCRFS(Y). Then, US

sets sid = (ekT , CTC , CTT , IC , IS , X) and computes a

session key SK = PRF(sid,KE
′

C)⊕PRF(sid,KE
′

T ⊕
PRF(sid, Y ′)).

(3) Upon receiving (CTT , IS , X), UC sets I = IC ∪
IS , computes KI =

∑i
i∈I(F(i,K

′
IDC

)), Y =

X + KI, KET ← wDeCap(CTT , dkT), KE
′

C ←
KDF′(st′,KEC), KE

′

T ← KDF′(st′,KET), and

Y ′ ← TCRFS(Y). Then, UC sets sid =

(ekT , CTC , CTT , IC , IS , X) and computes a session

key SK = PRF(sid,KE
′

C) ⊕ PRF(sid,KE
′

T ⊕
PRF(sid, Y ′)).

3.3.2 Security

We show the security of the proposed scheme in the

StdM. An intuition of the proof is shown in Section 3.4.

Theorem3.1 If (KeyGen,EnCap,DeCap) is

an IND-CCA secure and κ-min-entropy KEM,

(wKeyGen,wEnCap,wDeCap) is an IND-CPA secure

and κ-min-entropy KEM, F and PRF are pseudo-random

functions, KDF and KDF′ are key derivation functions,

and TCRFS is a target-collision resilience hash function,

GC-StdM is IoT-eCK secure.

We show the proof of Theorem 3.1 in the full version.

3.4 Sketch of proof

The strategies of an adversary A against GC-ROM and

GC-StdM can be categorized from the freshness definition

as shown in the Table 2.

- 617 -

表 2 Strategies of A
strategy matching exist SSKS ESKS SSKC ESKC

ST1 No US ✓ × × -

ST2 No US - ✓ × -

ST3 No UC × - ✓ ×
ST4 No UC ✓ - × ✓
ST5 Yes both ✓ × ✓ ×
ST6 Yes both × ✓ × ✓
ST7 Yes both × ✓ ✓ ×
ST8 Yes both ✓ × × ✓

“Yes” means the tested instance has a peer oracles and

“No” means it has none. “✓” means the secret key is

revealed to the adversary, “×” means the secret key is not

revealed. “-” means the instance state is not defined.

In ST1 and ST8, the adversary A can choose the

ephemeral key or reveal the ESK for the IoT-device UC ,

but cannot reveal K ′
IDC

and all information in D∗. Thus,

A cannot compute Y . In ST2 and ST6, A can choose the

ephemeral key or reveal the ESK for the server UC , but

cannot reveal K ′
IDC

and D∗. Thus, A cannot compute Y .

In ST3 and ST7, A can choose the ephemeral key or reveal

the ESK for the server US , but cannot reveal dk. Thus,

A cannot compute KEC which is the session key of the

CCA secure KEM. In ST4, A can choose the ephemeral

key the ESK for the server US , but cannot reveal K ′
IDC

and all information in D∗. Thus, A cannot compute Y .

In ST5, A can reveal SSKs for both parties, but cannot

reveal ESK. Thus, A cannot compute KET which is the

session key of the CPA secure KEM. Therefore, the pro-

posed constructions satisfy the IoT-eCK security.

4. Instantiations from DH, Factoring

and RSA

A comparison of the efficiency among our DH-based in-

stantiations and the LTZ scheme is shown in Table 3.

4.1 Random Oracle Model

4.1.1 DH-based

We can obtain an IoT-AKE scheme in the ROM by in-

stantiating GC-ROM using the PSEC-KEM [19] which is

an OW-CCA secure KEM, and the ElGamal KEM which

is an OW-CPA secure KEM. The PSEC-KEM and the

ElGamal KEM are obviously κ-min-entropy KEM. Since

these KEM schemes are based on the computational DH

(CDH) assumption, the instantiation is secure under the

CDH assumption though the scheme [14] relies on the

SDH assumption. Also, the communication complexity

is smaller than the LTZ scheme.

4.2 Standard Model

4.2.1 DH-based

We can obtain an IoT-AKE scheme in the StdM by in-

stantiating GC-StdM using CS3 [7] which is an IND-CCA

secure KEM, and the ElGamal KEM which is an IND-

CPA secure KEM. CS3 is obviously κ-min-entropy KEM.

Since these KEM schemes are based on the decisional DH

(DDH) assumption, the instantiation is also secure under

the DDH assumption. This scheme is the first DH-based

IoT-AKE scheme in the StdM. Moreover, the communi-

cation complexity is smaller than the LTZ scheme.

4.2.2 Factoring-based and RSA-based

We can obtain an IoT-AKE scheme based on the hard-

ness of the integer factorization problems in the StdM.

For example, we use the Hofheinz and Kiltz’s PKE [10]

and the Mei et al.’s PKE [16] which are IND-CCA secure

PKE under the factoring assumption. Furthermore, from

[8], by applying the fact [11] that it is also secure under

the CDH assumption if a scheme is secure under the CDH

assumption in Z∗
N , we can obtain more efficient factoring-

based KEM schemes from IND-CCA secure KEM under

the CDH assumption.

Also, we can obtain an IoT-AKE scheme based on the

hardness of RSA inversion in the StdM. For example, we

use the Chevallier-Mames and Joye’s PKE [6] and the

Kiltz et al.’s PKE [12] which are IND-CCA secure PKE

under the instance-independent RSA assumption.

The PKE scheme can be transformed into the KEM

scheme by using internally generated randomness instead

of the plaintext in the PKE. When the plaintext space

in the PKE is larger than a security parameter κ and

plaintexts are uniformly chosen randomness, it is obvious

that such a KEM scheme is κ-min-entropy KEM. These

schemes are the first IoT-AKE scheme under the factor-

ization assumption or the RSA-type assumption in the

StdM.

Remark3 We can construct an IoT-AKE from the

factorization assumptions and the RSA-type assumptions

as described above, however, the key size becomes larger

than the DH-based scheme. Thus, the communication

costs could become a bottleneck for the IoT-device.

5. Instantiations from post-quantum

schemes in Standard Model

5.1 Lattice-based

We can obtain an IoT-AKE scheme based on the worst-

case of the (ring-)LWE problems in the StdM. For exam-

ple, we use PKE [1] which is an IND-CCA secure PKE un-

- 618 -

表 3 Comparison among LTZ scheme and our instantiations

Protocol Model Resource Assumption Exponentiation Exponentiation Communication

(IoT-Device) (Server) complexity

LTZ [14] LTZ ROM SDH 3 3 |ID|+ 6|G|+ κ+ |I|

Ours1 4.1.1 IoT-eCK ROM CDH 4 4 |ID|+ 4|G|+ κ+ |I|
Ours2 4.2.1 IoT-eCK StdM DDH 6.08 4.16 |ID|+ 6|G|+ |I|

For exponentiation costs, we apply the parallel computation technique [18] for two exponentiations using the same base, which

costs 1.33 exponentiations for κ = 128, and Avanzi’s algorithm [3] for multi-exponentiations in the elliptic curve setting, which

costs 1.08 exponentiations for κ = 128. |ID| is the length of IoT-device’s ID, |G| is the size of a group element, and |I| is the size

of the subset I.

der the ring-LWE assumption. The PKE schemes can be

transformed into the KEM scheme in the same way. As for

factoring-based PKE, lattice-based PKE schemes are also

κ-min entropy KEM. This scheme is the first IoT-AKE

scheme in the StdM under the ring-LWE assumption.

Unfortunately, the obtained AKE protocols are ineffi-

cient since these PKE schemes require huge keys, say, the

quadratic or cubic order of the security parameter.

5.2 Isogeny-based

We can obtain a CSIDH-based IoT-AKE scheme in the

StdM by instantiating GC-StdM using the KEM from

smooth projective hashing [2] which is an IND-CCA se-

cure KEM based on the hash proof system under the exis-

tence of weak pseudorandom effective group action (wPR-

EGA) (i.e., a generalization of CSIDH assumptions), and

a hashed CSIDH-KEM. The hashed CSIDH-KEM is a

variant of CSIDH-KEM such that the session key is com-

puted as the output of the entropy-smoothing hash func-

tion H on inputting the result of the group action of the

randomness and the public key (K = H([r] ∗ pk)) or the

secret key and the ciphertext (K = H([s] ∗ C)). As the

same as the hashed ElGamal KEM [20], it is pointed out

that the hashed CSIDH-KEM is IND-CPA secure under

the CSSDDH assumption [17]. This scheme is the first

post-quantum IoT-AKE scheme in the StdM under the

wPR-EGA and the CSSDDH assumption.

参考文献
[1] Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice

(H)IBE in the Standard Model. In: EUROCRYPT 2010.
pp. 553–572 (2010)

[2] Alamati, N., Feo, L.D., Montgomery, H., Patranabis, S.:
Cryptographic group actions and applications. In: ASI-
ACRYPT 2020. pp. 411–439 (2020)

[3] Avanzi, R.M.: The Complexity of Certain Multi-
Exponentiation Techniques in Cryptography. J. Cryptol-
ogy pp. 357–373 (2005)

[4] Canetti, R., Goldreich, O., Halevi, S.: The Random Or-
acle Methodology, Revisited. J. ACM pp. 557–594 (2004)

[5] Chan, A.C., Wong, J.W., Zhou, J., Teo, J.C.M.: Scal-
able Two-Factor Authentication Using Historical Data.

In: ESORICS 2016. pp. 91–110 (2016)

[6] Chevallier-Mames, B., Joye, M.: Chosen-Ciphertext Se-
cure RSA-Type Cryptosystems. In: ProvSec 2009. pp.
32–46 (2009)

[7] Cramer, R., Shoup, V.: Design and Analysis of Practical
Public-key Encryption Schemes Secure against Adaptive
Chosen Ciphertext Attack. SIAM J. Comput pp. 167–
226 (2003)

[8] Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.:
Practical and post-quantum authenticated key exchange
from one-way secure key encapsulation mechanism. In:
AsiaCCS 2013. pp. 83–94 (2013)

[9] Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.:
Strongly secure authenticated key exchange from factor-
ing, codes, and lattices. Designs, Codes and Cryptogra-
phy pp. 469–504 (2015)

[10] Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext
Secure Encryption from Factoring. In: EUROCRYPT
2009. pp. 313–332 (2009)

[11] Hofheinz, D., Kiltz, E.: The Group of Signed Quadratic
Residues and Applications. In: CRYPTO 2009. pp. 637–
653 (2009)

[12] Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive Trapdoor
Functions and Chosen-Ciphertext Security. In: EURO-
CRYPT 2010. pp. 673–692 (2010)

[13] LaMacchia, B., Lauter, K., Mityagin, A.: Stronger se-
curity of authenticated key exchange. In: ProvSec 2007.
pp. 1–16 (2007)

[14] Liu, B., Tang, Q., Zhou, J.: Bigdata-Facilitated Two-
Party Authenticated Key Exchange for IoT. In: ISC
2021. pp. 95–116 (2021)

[15] Liu, B., Tang, Q., Zhou, J.: Modular Framework for
Constructing IoT-Server AKE in Post-Quantum Setting.
IEEE Access 2022 pp. 71598–71611 (2022)

[16] Mei, Q., Li, B., Lu, X., Jia, D.: Chosen Ciphertext Se-
cure Encryption under Factoring Assumption Revisited.
In: PKC 2011. pp. 210–227 (2011)

[17] Moriya, T., Onuki, H., Takagi, T.: Sigamal: A supersin-
gular isogeny-based PKE and its application to a PRF.
In: ASIACRYPT 2020. pp. 551–580 (2020)

[18] M’Ráıhi, D., Naccache, D.: Batch Exponentiation:
A Fast DLP-Based Signature Generation Strategy. In:
ACM CCS 1996. p. 58–61 (1996)

[19] Shoup, V.: A Proposal for an ISO Standard for Public
Key Encryption. IACR Cryptology ePrint Archive, Re-
port 2001/112 (2001)

[20] Shoup, V.: Sequences of games: a tool for taming
complexity in security proofs. IACR Cryptology ePrint
Archive, Report 2004/332 (2004)

- 619 -

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

