
Job Pipeline Mechanism of GPU Node
for Multi-node Edge Computing (MEC) Systems

TAIKI MIYAKAWA†1 LI YANZHI†1
MIDORI SUGAYA†1

Abstract: A Multi-node Edge Computing (MEC) system that integrates hardware with different accelerators, such as GPUs and
FPGAs, has been proposed for high-performance computing applications with low power consumption. Generally, a GPU node
that connects to the MEC system provides a huge computation resource for AI applications. However, the current implementation
of the MEC system executes jobs serially, which causes GPU utilization to decrease when processing multiple jobs. Moreover,
there is a lack of a mutual-execution mechanism that avoids resource competition on the GPU, which causes abnormal program
termination and may result in incorrect processing. To improve the efficiency and reliable execution of the multiple jobs on the
GPU node, we propose a job pipeline mechanism that receives multiple jobs from the requester and executes them as node programs
parallelly cooperate with the CPU. Also, we propose a mechanism that provides mutual exclusion to avoid abnormal termination
of the jobs. In the evaluation, we found the efficient use of the GPUs of the system and avoid abnormal termination despite the
multiple job assignment.

Keywords: GPGPU, Parallel processing, Multi-node

1. Introduction

 Japan's Fifth Science and Technology Basic Plan proposed
Society 5.0 in 2016 [1]. In Society 5.0, servers would process
large amounts of data and make it possible to host applications
that require low-latency and high-capacity computing resources
that can satisfy the advanced AI processing to support various
activities of the human-centric society.
 To satisfy the requirement for the Society 5.0 applications,
multi-node computing systems utilizing high-performance
computing are discussed [2, 3]. As one of the multi-node
computing systems, Multi-node Edge Computing (MEC) system
is highly expected, which integrates high-performance hardware
with different accelerators, such as GPUs and FPGAs, for
utilizing the Society 5.0 applications with low latency. Within the
system, each of the multiple computers (nodes) is equipped with
an accelerator, which performs a large amount of computation by
taking advantage of the accelerator's characteristics. These nodes
are connected through a network and form one extensive system.
The system has high computational power and responsiveness
and is well suited for edge computing, which provides high
processing power as required by Society 5.0 applications [4].

2. Related Studies and Problems

 In this section, we first describe the Graphics Processing Units
(GPUs) containing multiple arithmetic cores with a simple
structure. Then we describe the problems that need to be solved.

2.1 A multiple GPGPU cores servers for the MEC node
 Figure 1 illustrates the multi-node mechanism that integrates

the multiple GPUs and FPGAs, and middleware that Li et al.
developed for the MEC system [5]. In this system, there is a job
allocation server that accepts the job from the client and allocates
the job to the appropriate node that is organized as the GPUs and
FPGAs. Within this node, GPU provides a huge computation
resource that can be executed using high computation jobs such

 †1 Shibaura Institute of Technology

as machine learning.
GPUs were originally developed for image processing.

General-Purpose computing on Graphics Processing Units
(GPGPU) is a technology that applies this technology to general-
purpose computing. The simple structure of GPUs makes them
easier to scale up compared to general-purpose CPUs. Various
applications such as machine learning have been accelerated by
GPGPU. Efforts are also being made to make GPGPU processing
as efficient as possible by optimizing algorithms for parallel data
processing. Moreover, GPU memory (VRAM) uses high-
bandwidth memory, such as GDDR6X and HBM3. Under these
structures, exact instructions are executed for multiple data in
parallel.

Figure 1: Multi-node computing system [5]

2.2 Problems
 As we described above, the multiple GPU provides huge

computing power for the MEC system. However, there are
following two problems to support the MEC system. In this
section, we describe the detail of the problems.

• Inefficient job allocation
 Figure 2 shows the conventional implementation of the GPU
node client program in the MEC system. Inside the GPU node,
the job executor handles the assigned job from the job allocation
server. The job executor selects one of the application programs
to execute according to the job context. The application program

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 56

calls the GPU library to issue a GPU kernel. When the GPU
kernel finishes the calculation, the application program collects
the calculation result and posts it to the job executor. When the
job executor obtains the result from the application program, it
posts it to the job allocation server and waits for the next job
assignment.
 Figure 3 shows the job processing flow of the conventional
implementation of the middleware. In the figure, two jobs are sent
from the client. Through the network, the required data of Job 1
is downloaded to the GPU and executed, then the result of the job
is uploaded to the client. The execution of the network proceeded
on the CPU.
 As shown in Figure 3, there is an idle time in GPU activity after
Job 1’s execution is finished and until the next, Job 2, is
downloaded from the network. During the execution on the
network, the GPU node is idle and does not use the GPU resource
efficiently.

Figure 2: The implementation of the GPGPU node in the MEC

system

Figure 3: Conventional job processing flow

• Abnormal termination during parallel execution
 Another problem is that the GPU does not have a mutual-
exclusion mechanism, which causes abnormal program
termination and may result in incorrect processing. For example,
when programs are being executed in parallel, VRAM may run
out and no more space can be allocated for new programs. In such
cases, the program may terminate abnormally [6].

3. Proposed Design and Implementation

 To solve the problems described in the previous section, we
propose an efficient job allocation mechanism for GPU for
MEC Systems. To achieve this, we firstly propose a mechanism
to pipeline the jobs to improve the processing efficiency on GPU.
Second, we propose a mechanism to suppress abnormal
termination.

3.1 Improvement of processing efficiency
 There is idle time on GPU after the execution and waiting for
the next job. We consider that the pipeline mechanism is suitable
to solve the problem that can execute the second job suspension
on the CPU and download it quickly after the execution on the
GPU. We illustrate the pipeline mechanism to the GPU node in
Figure 4. It shows the pipeline job processing flow that deletes
the idle time on the GPU. To support the download of the job
suspension mechanism, it is possible to achieve the purpose.

Figure 4: Proposed job processing flow

In this study, we developed the spawn and suspension
mechanism on the CPU that makes it possible to execute the jobs
on GPU parallelly. To achieve this, we use the fork() and
waitpid() system calls in the implementation. Figure 4 illustrates
that the execution of each program reduces the unused time on
the GPU and improves utilization efficiency.

3.2 Suppression of abnormal termination
 We propose a mechanism to avoid abnormal termination. Wang
et al. mentioned the problem that conflicting demands for GPU
resources (like VRAM) can cause applications to crash. We had
the same problem that executing multiple applications parallelly
without any kind of resource managing mechanisms caused the
application's abnormal termination [6]. To solve the problem, we
implemented an exclusive lock on the GPU using flock (file lock).
It guarantees only one execution to the GPU. This makes it
possible to suspend the execution of the process which has a lock
until the process has finished and released the exclusive lock.
When the exclusion lock is released, execution resumes.

Figure 5: Proposed implementation of GPU node

in multi-node computing systems

4. Evaluation experiment
 We set up the evaluation experiment to compare the
conventional system that assigns only one job at a time and the
proposed system that applies the proposed design described in
Section 3.
 Table 1 shows the configuration of the system used in the
experiment. NVIDIA® Jetson Xavier NX™ Development Kit was
used in this experiment. The small size and low power
consumption make it ideal as an edge device, and it can run
programs written in CUDA, OpenCL, and other languages.

Table 1: Experimental system configuration
Component Specification
CPU NVIDIA Carmet ARM®v8.2, 6 Cores
GPU NVIDIA Volta™ architecture
Main memory 8GB LPDDR4X
OS NVIDIA Jetson Linux 32.7.1 (Jetpack 4.6.1)
Ethernet 1000BASE-T Ethernet

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 57

 To evaluate the system in this experiment, we performed two
experiments for two types of tasks.

4.1 Experiment 1: Image processing task
 In Experiment 1, we used an image super-resolution program
based on a convolutional neural network. The super-resolution
program takes image data as input, performs super-resolution
processing, and outputs the resulting image data.
 In the evaluation, the five jobs were allocated consecutively for
each experiment and measured the time from issuing the first job
to all the results returned. We performed ten experiments and
obtained the average and maximum values. We performed this
experiment using images of different resolutions and compared
the results between the conventional and proposed systems.

Figure 6: Experiment 1 results

 Figure 6 shows the experimental results. The results show that
the proposed system reduced the average execution time by
approximately 1 - 7% and the maximum by approximately 2 -
23% compared to the conventional system. Moreover, because no
abnormal termination of the program occurred during the
experiment, it is considered that the suppression of abnormal
termination proposed in 3.2 above is effective.

4.2 Experiment 2: Video processing task
 In Experiment 2, to clarify the relationship between the file
size of the job and the performance of the proposed method, we
measured the time of video transcoding of FFmpeg. The video
processing task requires transferring the video file, which takes
longer than the image processing task performed above due to the
size of the files. We thought that the performance of the video
processing task can be improved much more by the proposed
system.
 Five jobs were issued consecutively per experiment. Time
measurements and statistical methods are the same as in
Experiment 1. This experiment was performed using videos of
different resolutions and compared the conventional and the
proposed systems.

Figure 7 shows the experimental results. The results show that
the proposed system reduced the average execution time by
approximately 6 - 24% and the maximum by 4 - 54% compared

to the conventional system. The percentage of improvement
tended to be higher at lower resolutions.
 In some areas of the results, such as the maximum value of 640
x 360 pixels, significant differences were observed. In the current
system, there is sometimes a delay in job allocation. In the
conventional system, there was a period with no processing
between the time a job was finished and the time a new job was
allocated. On the other hand, the proposed system processed other
jobs during the delay in job assignment, mitigating the delay.

Figure 7: Experiment 2 results

5. Conclusion

 We proposed to improve the utilization efficiency of GPU
nodes in a multi-node computing system by parallel processing.
Evaluation experiments have shown that parallel processing can
reduce the time required to complete a job and improve utilization
efficiency.
 However, the proposed method has several problems to be
addressed. The first is to improve the method. The current system
has a fixed number of parallel executions. We would like to
develop a method to dynamically change these limitations and
improve the system to process applications more efficiently.
 Another problem is that we need to perform additional
evaluations of the system using other indicators. We would like
to evaluate the system using multiple indicators, such as the
average response time of each job or power consumption.
 After these efforts, some problems need to be addressed to
develop the system into a platform. In the current system, only
the processing efficiency of individual nodes was considered. We
would like to propose a method to increase the processing
efficiency of the entire system by scheduling according to the
conditions of other nodes.
 We would also like to propose methods to improve processing
efficiency in systems that include accelerators other than GPUs,
such as FPGAs, ASICs, and SmartNICs (including DPUs and
IPUs), by taking advantage of the characteristics of each
accelerator.

 Acknowledgments This research was supported by JST,
CREST, and JPMJCR19K1.

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 58

References
[1] Society 5.0, Science and Technology Policy, Cabinet Office, Japan,

https://www8.cao.go.jp/cstp/society5_0/ (July 24, 2022.)
[2] Zhe Fan, Feng Qiu, A. Kaufman and S. Yoakum-Stover, "GPU

Cluster for High Performance Computing," SC '04: Proceedings of
the 2004 ACM/IEEE Conference on Supercomputing, 2004, pp. 47-
47, doi: 10.1109/SC.20 04.26.

[3] Miho Yamakura, Ryousei Takano, Akram Ben Ahmed, Midori
Sugaya, Hideharu Amano "A Multi-tenant Re-source Management
System for Multi-FPGA Systems", IEICE Trans. Information and
Systems, Vol.E104-D, No.12, Dec. 2021.

[4] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang and W. Zhao, "A Survey
on Internet of Things: Architecture, Enabling Technologies,
Security and Privacy, and Applications," in IEEE Internet of Things
Journal, vol. 4, no. 5, pp. 1125-1142, Oct. 2017, doi:
10.1109/JIOT.2017.2683200.

[5] Li Yanzhi and Midori Sugaya, "Resource management system for
mixed multi-FPGA and GPGPU environments" in SWoPP2022, Jul.
2022.

[6] Kaibo Wang, Xiaoning Ding, Rubao Lee, Shinpei Kato, Xiaodong
Zhang, GDM: device memory management for gpgpu computing,
ACM SIGMETRICS Performance Evaluation Review, Volume 42,
Issue 1, June 2014.

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 59

