

Implementation of a Fine-Grained Logging System

for ROS2 Applications

GAI NAGAHASHI†1 MASATO FUKUI†2

MIKIKO SATO†1 TAKESHI OHKAWA†1 MIDORI SUGAYA†2

Abstract: Currently, ROS is widely used as a framework for robot software development. When using ROS to realize complex

cooperative behavior among robots, strict execution time logging such as node execution time and communication time is needed

to analyze ROS nodes that communicate asynchronously. Although hCT (high precision Callback Tracer) has been proposed as

one of the logging methods to obtain the execution time of ROS nodes, it is not supported in ROS2. This paper presents the

porting of hCT performed on the Python platform in ROS2 and the performance measurement method that is planned to be

developed in the future.

Keywords: ROS, execution time, measurement, performance evaluation

1. Introduction

 In recent years, ROS (Robot Operating System) has become

popular as a framework for robot software development. ROS is

a set of software libraries and tools for building robot

applications. Collecting data from a running system such as

program execution time and communication time is necessary

for debugging and performance improvement of robotic systems.

To obtain node behavior information, logging systems and

analysis tools[1][2] are needed.

 Some logging systems and analysis tools available in ROS

may support only ROS1 or ROS2. Allowing the same logging

system and analysis tools to be used in ROS1 and ROS2 would

be useful in terms of measuring and evaluating robot

applications developed in ROS in the same environment.

 The hCT (high-resolution Callback Tracer) [3] has been

proposed as one of the logging methods to obtain ROS node

execution time. hCT is a tool for ROS1 that can measure node

execution time at a fine granularity without modifying the user

application. However, hCT does not support ROS2. Therefore,

in this study, we describe the design and implementation of

ported hCT to ROS2 platform. Additionally, this paper

introduces a performance measurement method of the robot

system that is planned to be developed.

2. hCT in ROS2

2.1 Overview of hCT

 hCT is implemented by extending roscpp, a C++

implementation of ROS1. hCT has the feature that logging can

be performed without modifying the user application. Figure 1

shows the design and process flow of hCT. hCT acquires the

time before and after calling the callback function (①, ②) and

calculates the time difference (③). This is how the node

execution time is calculated. In ROS, functions to be provided

to nodes are generally implemented as callback functions.

Therefore, callback execution time equals node execution time.

 †1 Tokai University

 †2 Shibaura Institute of Technology

Figure 1 Design and process flow of hCT

2.2 Implementation of hCT in ROS2

 hCT in ROS2 (referred to below as "hCT2") is an extended

"rclpy" that is an implementation for Python in ROS2. We

ported hCT2 in Python because Python was fewer porting steps

than C++ and wanted to confirm that the hCT design can be

implemented in Python. Figure 2 shows the design and process

flow of hCT2. hCT2 is realized with only 7 lines of modification

to rclpy in ROS2. Similar to hCT, hCT2 acquires the time before

and after calling the callback function (①, ②) and calculates

the time difference (③). The execution time of the node is

output to the "/rosout" topic along with the callback function

name (④). rosout is the name of the console log reporting

mechanism in ROS, and "/rosout" topic is one of the

components provided by rosout. Therefore, we implemented an

"hct node" that saves the execution time of a node output to the

"/rosout" topic to a file. The hct node gets node name that

invoked the callback function, callback function name, and node

execution time from the messages flowing to the "/rosout" topic.

The acquired information is automatically saved in a csv file.

Figure 2 Design and process flow of hCT2

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 32

3. Example of logging Pub/Sub communication

 An example of hCT2 usage is shown using the py_pubsub

program [4], which sends/receives strings using Pub/Sub

communication. Figure 3 shows the connections of nodes and

topics. Also, Table 1 shows the implementation environment.

Table 1 Porting and testing environment

Host OS Windows 11 Home

CPU(Host OS) 11th Gen Intel(R) Core(TM) i7-1195G7

RAM(Host OS) 16GB

Virtualizer Oracle VM Virtual Box (ver. 6.1.30)

Guest OS Ubuntu 20.04.4 LTS

ROS2 distributions Foxy Fitzroy

Figure 3 Connections of nodes and topics

 The hct node gets node name that invoked the callback

function, callback function name, and node execution time from

the messages flowing to the "/rosout" topic (Figure 4). The hct

node outputs the acquired information to the "/rosout" topic. For

example, the center of Figure 4 shows that the listener_callback

function is called by the minimal_subscriber node and the

execution time of the node is 0.001838 seconds. Also, the hct

node gets and saves acquired information from the messages

flowing to the "/rosout" topic to csv file (Figure 5). For example,

the third line of Figure 5 shows that the timer_callback function

is called by the minimal_publisher node and the execution time

of the node is 0.002041 seconds. Generation and saving of the

csv file is done automatically by the hct node.

Figure 4 Terminal screen of hct node

Figure 5 Node execution time recorded by hCT node(csv file)

4. Performance measurement methods planned

for development

 Performance measurement and evaluation using logging

systems and analysis tools are necessary to confirm the

operational stability of a robot system and how much heavy load

processing is possible. Especially for large-scale systems or

systems that require complex cooperative behavior among

robots, it is important to guarantee the operational stability and

to know the how much heavy load processing is possible.

 Figure 6 shows the performance measurement method for the

robot system. This proposed system measures and visualizes the

robot system performance in real time and detect robot

applications' error or bottleneck. For example, our proposed

system can quickly resolve sudden failures by monitoring a

robot system used at disaster sites.

Figure 6 Measurement and visualization system when using

hCT/hCT2 logging system

5. Conclusion

 In this paper, we devised a method for porting the hCT

(high-resolution Callback Tracer) proposed in ROS1, which can

measure node execution time at a fine granularity, to ROS2 and

implemented a prototype. Also, we introduced a performance

measurement method of the robot system that is planned to be

developed. In the future, we will be conducting detailed

operational testing of hCT2 and defining requirements for a

performance measurement method of the robot system that is

planned to be developed.

Reference
[1] Christophe Bédard, "Tracing ROS 2 with ros2_tracing", ROSCon

2021, 2021-10-20

[2] "Chain-Aware ROS Evaluation Tool (CARET)",

https://tier4.github.io/CARET_doc/latest/, (accessed 2022-09-17)

[3] Masato Fukui, Yoichi Ishiwata, Takeshi Ohkawa, Midori Sugaya,

"Preliminary Implementation of Measurement Method for ROS1

Callback Execution Time", APRIS, 2022-01-28,

http://id.nii.ac.jp/1001/00216093/, (accessed 2022-09-17)

[4] "Writing a simple publisher and subscriber (Python)",

https://docs.ros.org/en/foxy/Tutorials/Beginner-Client-Libraries/W

riting-A-Simple-Py-Publisher-And-Subscriber.html, (accessed

2022-09-17)

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 33

