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Abstract: New threats to operating systems include side-channel attacks (e.g., Meltdown and Foreshadow) that com-
bine the speculative execution of the central processing unit (CPU) and cache manipulation to facilitate inference of
the kernel code and kernel data stored in CPU caches. Side-channel attacks mitigation strategies require kernel mem-
ory isolation mechanisms that modify kernel design, such as the kernel page table isolation that separates the kernel
memory space for the kernel and user modes to mitigate the Meltdown, and the address space isolation that segre-
gates the virtualization features from the kernel memory space for Foreshadow mitigation. However, user processes
still share the remaining kernel feature on the same kernel memory space. The speculative execution of the CPU in
a side-channel attack using Foreshadow allows the adversary to refer to the kernel data of the targeted user process
with kernel features. This paper presents a dedicated kernel memory mechanism (DKMM), which controls the mem-
ory space allocation method for each user process with kernel features. It mitigates Foreshadow side-channel attack
(e.g., Foreshadow-OS) with speculative execution. Furthermore, it enables each user process to use its dedicated ker-
nel memory space and suppresses the reference to the kernel data of kernel feature used by the attacked user process
attacked by Foreshadow side-channel. We implemented the DKMM on Linux and evaluated its security capability to
protect the kernel data of container features against side-channel attack by the Foreshadow proof of concept code. The
performance evaluation was reasonable, as the maximum system call overhead was 7.864 µs, the web client program
ranged from 0.55% to 0.77% for the 100,000 Hypertext Transfer Protocol sessions, and the benchmark score was
1.06% overhead.
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1. Introduction

A novel threat to operating systems (OS) includes an adver-
sary’s user process that refers to data from another user pro-
cess through the various caches of the central processing unit
(CPU) and memory management unit (MMU) by a combination
of CPU speculative execution and cache operations (hereafter,
“side-channel attacks”) [1], [2], [3], [4], [5]. Countermeasures
against side-channel attacks are urgently necessary as multiple
users share hardware and kernels, which are environments where
multiple computing resources are realized by a single computer
using virtual machines (VM) or containers (hereafter, “multi-
tenant environment”).

Side-channel Attacks and Countermeasures. Meltdown en-
ables the adversary’s user process to directly refer to the kernel
memory space [1]. As a countermeasure against Meltdown, ker-
nel page table isolation (KPTI) divides the kernel memory space
into the user and kernel modes [6]. Foreshadow is a form of
side-channel attack utilizing the CPU speculative execution of
Intel processors [3]. Foreshadow enables the adversary to refer
secret information on the computer device without administra-
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tor privileges [4], [5]. Foreshadow has several variants, which
are named based on the attack targets, such as the CPU se-
curity feature, OS kernel, or the VM on the multi-tenant en-
vironment (e.g., Foreshadow-SGX [7], Foreshadow-OS [8], and
Foreshadow-VMM [9], [10]; the details are given in Section 2.2).
More specifically, the adversary’s user processes or VM can
access the kernel data through the CPU L1 cache using Fore-
shadow which evades existing CPU, OS, or virtual machine mon-
itor (VMM) security mechanisms [4], [5]. As a countermeasure
against Foreshadow at the VMM, the VMM initializes the CPU
L1 cache at the time of VM switching [11], [12], and the address
space isolation (ASI), which isolates the virtualization feature
from the kernel memory space [13] before applying the entire
prevention mechanisms of side-channel attack. These software
countermeasure approaches are important for quick mitigation.
Due to the mitigation strategy of software countermeasures on
the multi-tenant environment, it is necessary to support a more
general design and safe running of user processes and the kernel.

Problem with Existing Software Cache Defense. All the
user processes share the same kernel memory space to reduce the
performance cost. ASI ensures the segregation of kernel mem-
ory for each user process of executing the VM to protect the
kernel data of VM on the VMM from the adversary’s user pro-
cess using Foreshadow-VMM. However, because ASI only iso-
lates the virtualization feature of the kernel, the other kernel fea-
tures (i.e., container) remain on the kernel memory space. This
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ensure that the data of the kernel features, excluding the virtu-
alization feature, continues to be shared among the user pro-
cesses on the kernel. Therefore, the user process utilizes ker-
nel features that have the kernel data, which cannot be protected
against Foreshadow-OS side-channel attack from the adversary’s
user processes. It becomes necessary to provide countermeasures
against the Foreshadow-OS side-channel attack to all user pro-
cesses with kernel features at the kernel layer.

Research Goals. To address these problems, this paper de-
scribes the characteristics of a novel security mechanism called
the dedicated kernel memory mechanism (DKMM) to allocate
and control the kernel memory space for each user process with
kernel features, so that the user process with kernel features can
protect its kernel data against Foreshadow-OS side-channel at-
tack (hereafter “Foreshadow side-channel attack”). The proposed
mechanism is as follows:

Dedicated kernel memory mechanism. The DKMM pro-
vides a dedicated as well as a shared kernel memory space for
the user processes. Additionally, the DKMM forcefully unmaps
the protected kernel data from the shared kernel memory space.
The kernel feature determines that the kernel data to be protected
are available on the dedicated kernel memory space when the user
process is executing the kernel via a system call. The DKMM de-
sign is effective for the following two reasons:
( 1 ) The dedicated kernel memory space is the unit of CPU L1

cache sharing. The DKMM focuses on the CPU L1 cache
flushing at the kernel memory switching (e.g., CR3 updat-
ing) after a privilege transition into kernel mode. It reduces
the range of the CPU L1 cache sharing time during kernel
execution for the user processes. The DKMM handles the
kernel memory switching at the system call invocation be-
cause the Foreshadow side-channel attack is executed from
the user process. After successful CPU L1 cache flushing,
the kernel cannot refer to any kernel data in the CPU L1
cache except for the system call-related kernel data of the
adversary’s user process.

( 2 ) The unmapping of protected kernel data from the shared
kernel memory space prevents unintentional access to un-
mapping sensitive data and the moving of protected data
into the CPU L1 cache by the adversary.

For the identification of which kernel code access which kernel
data, it is difficult to make whole of kernel code control flow
and data definition and use relationships. Because the kernel has
many pointers (e.g., function pointer and data pointer) are mod-
ified variable of its pointer value. Additionally, the kernel has
many lines of source code (e.g., Linux kernel is around 27.8 mil-
lion lines [14]).

Moreover, the kernel with DKMM can handle access of pro-
tected kernel data as the page fault. The DKMM can determine
whether the page fault occurred owing to malicious behavior be-
cause the Foreshadow side-channel attack requires many page
faults by one user process.

The naive method covers Foreshadow-OS side-channel coun-
termeasure in the kernel [12]. It induces the initialization of the
CPU L1 cache at each user process and kernel task switching.
Furthermore, it forcefully applies performance overhead because

the CPU L1 cache flush command is issued for every context
switching. Therefore, it is necessary to customize the counter-
measure against the Foreshadow side-channel attack. DKMM
provides the protection target option for the user process using
the kernel features based on the administrator’s configuration.

Research Contributions. We proposed the DKMM on Linux
and evaluated its effectiveness. The results indicated the effec-
tiveness of the DKMM in preventing a Foreshadow side-channel
attack on user processes using the container feature, and demon-
strated its reasonable performance. The novelty of the DKMM
lies in that, it can support a wide range of environments because
it focuses on software countermeasures at the kernel layer with-
out additional hardware. Moreover, DKMM serves as the general
mitigation approach for kernel memory space isolation. The main
contributions and results obtained in this study are as follows:
( 1 ) As a countermeasure against a Foreshadow side-channel at-

tack in a kernel, we propose a security mechanism known
as the DKMM to protect kernel data by allocating a dedi-
cated kernel memory space to each user process with kernel
features. The implementation supports container features
of the user process to improve the security of kernel opera-
tions.

( 2 ) We implemented the DKMM on Linux with KPTI and eval-
uated the effectiveness of kernel data protection for user
processes of the container feature against a Foreshadow
side-channel attack. Additionally, we evaluated the perfor-
mance of our method with a Linux kernel wherein the max-
imum overhead was 7.864 µs for system call processing,
web access overhead was between 0.55% and 0.77% for
100,000 Hypertext Transfer Protocol (HTTP) downloads,
and the benchmark score was 1.06% overhead for kernel
processing performance.

2. Background

2.1 Software Side-channel Attacks
Software side-channel attacks employ a combination of spec-

ulative CPU execution and cache manipulation of the CPU and
MMU [1], [4], [5]. These attacks force an adversary’s user pro-
cess to refer the data held by other user processes or a kernel.
Generally, CPU or OS security mechanisms are not allowed to
access such data.

Figure 1 depicts an overview of the side channel attack requir-
ing the sharing of CPU caches between the adversary’s user pro-
cess and attack target user process, on the CPU and MMU [15].
The overview before a side-channel attack involves several steps.
First, the adversary’s user process ensures the target cache block
has been removed or fulfilled from the cache of a target region,
and then it waits until the attack target user process accesses these

Fig. 1 The target of side-channel attacks.
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Fig. 2 Steps of FLUSH+RELOAD attack.

Fig. 3 Overview of Foreshadow attack.

data. Next, the adversary’s user process tries to get the cache state
by loading or flushing the target cache. Finally, the adversary’s
user process acquires the attack target data from the cache state.
2.1.1 FLUSH+RELOAD Attack

For the case of side-channel attacks using FLUSH+RELOAD,
Fig. 2 depicts the attacked data that are placed in the cache by the
speculative execution after the cache is cleared, and the data that
are accessed by the reference speed. The speculative execution is
a function that executes software instructions ahead of time in the
CPU to increase the performance. Further, when data exists in
the CPU cache, the reference speed to the data increases, and the
difference in the reference speed is used to determine whether the
target data exist in the cache. The data in the cache can therefore
be estimated using cache operation commands.

2.2 Foreshadow Attack
Foreshadow is a side-channel attack on the CPU L1 cache. It

has several variants and they are named according to the attack
target as follows:
( 1 ) Foreshadow-SGX: It targets Intel SGX technology. It is

formally denoted CVE-2018-3615 [7].
( 2 ) Foreshadow-OS: It adopts unprivileged applications to ac-

cess kernel memory. It is formally denoted CVE-2018-
3620 [8].

( 3 ) Foreshadow-VMM: It adopts malicious guest VMs to ac-
cess memory belonging to the hypervisor and other guest
machines. It is formally denoted CVE-2018-3646 [9], [10].

The proof of concept (PoC) code for Foreshadow-VMM,
which allows user processes on the guest VM to attack the hy-
pervisor [16], Fig. 3 outlines a Foreshadow side-channel attack.

First, the adversary’s user process searches a page table en-
try for the magic physical address (e.g., MAGIC_PHY_ADDR in
PoC [16]) from kernel memory (e.g., /dev/mem of Linux kernel)

Fig. 4 Successful case of a Foreshadow side channel attack.

and overwrites the PTE value that points to the target physical ad-
dress. Second, a speculative execution is performed in the CPU,
if the target data are in a CPU L1 cache for the virtual address
specified in the PTE. Third, the corresponding physical address
value is obtained via the PTE.
2.2.1 Foreshadow Attack Case

As shown in Fig. 4, the modified PoC code indicates the log of
a successful Foreshadow side-channel attack (e.g., Foreshadow-
OS) on the kernel with the DKMM. The original PoC code [16]
executes the adversary’s user process on the VM to cause a page
fault at the extended page table walk that targets the VMM (e.g.,
Foreshadow-VMM). However, the modified PoC code executes
the adversary’s user process in the kernel to cause the page fault at
the page table walk that targets the kernel (e.g., Foreshadow-OS).
More specifically, the modified PoC code was ported with its at-
tack flows to the kernel and the DKMM disables its protection
mechanism for the comparison of security capability evaluation
(see Sections 6.3.2 and 6.4).

The physical address 0x2b8c3a8 in lines 1 to 9 is the virtual
address where the kernel data cpt_data are used by the target
user process to be attacked. Before executing the target user pro-
cess to be attacked, we executed the modified Foreshadow PoC
code as the adversary’s user process to refer to the physical ad-
dress of the attack target. Notably, no value could be obtained in
line 16.

In line 18, we launched the target user process to be attacked.
The kernel stored the virtual address value to cpt_data through
the kmalloc function. From line 24, we confirmed that the value
stored in cpt_data was 0xffff88847646f500.

In line 26, the adversary’s user process again executed the mod-
ified Foreshadow PoC code and attacked the physical address
0x2b8c3a8 of cpt_data. The kernel data cpt_data was suc-
cessfully referenced in line 30.

Therefore, using Foreshadow, we were able to refer to the ker-
nel data values. In a multi-tenant environment, the adversary’s
user process can refer to the values stored in the kernel data of
other user processes.

3. Threat Model

The assumed environment of the threat model attempted a
Foreshadow side-channel attack on the adversary’s user process
using a PoC code. Subsequently, the adversary referenced the
kernel data on the target user process in the kernel memory space.
The environment assumed for deployment was similar to a pro-
duction environment, in terms of the adversary and kernel capa-
bility, and can be described as follows:
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• Adversary: An adversary uses a normal user account and
PoC code that exploits a Foreshadow side-channel attack.

• Kernel: A kernel does not contain any countermeasures for
a Foreshadow side-channel attack, which are directly used
by the PoC codes. (see Sections 2.2.1 and 6.4)

• Attack target: It contains the secret information of the ker-
nel data or the parts of kernel code for another user’s pro-
cesses or running kernel.

3.1 Attack Scenario
In the assumed attack scenario, the approach is for the access

of the secret information. The adversary’s attack flow is described
below.
( 1 ) The adversary executed Foreshadow PoC code as a user

process.
( 2 ) The adversary’s user process launched a Foreshadow side-

channel attack that targets specified kernel data.
( 3 ) The adversary’s user process waited for the targeted user

process to run.
( 4 ) The adversary’s user process continued side channeling to

the specified kernel data.
( 5 ) The adversary’s user process obtained the specified kernel

data to access the secret information.

3.2 Limitation of Proposed Methodology
To mitigate a Foreshadow side-channel attack from any user

process, DKMM restricts all user processes on the running ker-
nel. For reducing the performance overhead for the user process,
DKMM requires the manual configuration of the administrator.
The administrator manually sets the group tag (e.g., cgroups of
Linux) for user processes to support a multi-tenant environment
and avoid the performance overhead.

Fig. 5 Overview of the dedicated kernel memory mechanism (DKMM).

4. Design

4.1 Design Requirement
The DKMM is proposed to control the allocation of the kernel

memory space for each user process with kernel features. The
goal of this approach is to prevent a Foreshadow side-channel
attack from referencing the kernel data to be protected in each
user process with kernel features. The requirements for mitigat-
ing such attack using the DKMM can be described as follows.
• Requirement: A traditional kernel memory space is shared

by various user processes. When an adversary’s user pro-
cess attempts a Foreshadow side-channel attack, it refers to
arbitrary kernel data via speculative execution to bypass the
CPU and kernel security mechanisms. Further protection
against a Foreshadow side-channel attack requires the place-
ment of the kernel data in a different kernel memory space
from that of the adversary’s user process and a suitable point
of the CPU cache handling. These make it difficult for the
adversary’s user process to refer to the kernel data during
such an attack.

4.2 The Overall Design Overview
The configuration of the DKMM before and after the intro-

duction of the shared and dedicated kernel memory spaces were
illustrated on Fig. 5. Conventionally, the adversary’s user pro-
cess shared the kernel memory space with the attack target user
process, and all the kernel codes and kernel data were referenced
during the speculative execution of a Foreshadow side-channel
attack. After applying the DKMM, the adversary’s user process
and attack target user process shared only a shared kernel mem-
ory space.

The dedicated kernel memory space is the unit of CPU cache
sharing. The DKMM handles the CPU cache flushing during ker-
nel memory switching. It limits the range of the CPU cache shar-
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ing time during kernel execution of the adversary’s user process.
Additionally, the DKMM unmaps protected kernel data from the
shared kernel memory space. It prevents the unintentional access
of protected kernel data into the CPU cache by the adversary’s
user process. The adversary’s user process cannot reference the
kernel data located in the kernel memory space dedicated to other
user processes with kernel features.

Accessing protected kernel data results in a page fault. The
DKMM can determine whether page faults are caused by a ma-
licious behavior. Because the Foreshadow side-channel attack
results in numerous page faults by the adversary’s user process,
DKMM provides two kernel memory spaces and additional ker-
nel data and kernel memory controlling processes of the design
are follows.
• Types of kernel memory: DKMM provides a shared kernel

memory space per OS and a dedicated kernel memory space
per a user process.

• Protected kernel data management: DKMM supports the
protected kernel data for each kernel feature.

• User process creation: DKMM requires the provision of the
dedicated kernel memory space during user process creation

• User process handling: DKMM requires a kernel memory
switching sequence for the accessing of protected kernel
data.

4.3 Types of Kernel Memory
In the DKMM, we introduced a shared and a dedicated kernel

memory space for all the user processes to meet the requirements.
• Shared kernel memory space: The kernel code and kernel

data required for kernel operation were placed and used.
• Dedicated kernel memory space: The kernel data to be

protected were placed in each user process with kernel fea-
tures and used.

Conventionally, the adversary’s user process shared the kernel
memory space with the attack target user process, and all the ker-
nel codes and kernel data were referenced during the speculative
execution of Foreshadow side-channel attack.

After applying the DKMM, the adversary’s user process and
attack target user process shared only a shared kernel memory
space. Moreover, the adversary’s user process could not refer to
the kernel data located in the kernel memory space dedicated to
other user processes with kernel features.

4.4 Protected Kernel Data Management
DKMM requires the management of protected kernel data for

each kernel feature from the adversary’s user process. The de-
sign of handling timing of protected kernel data is based on the
assumption that DKMM prepares the protected kernel data list
at the kernel boot or user process creation for each kernel fea-
ture. Thereafter, DKMM verifies whether a protected kernel data
could be unmapped from the shared kernel memory space after
user process creation in the kernel layer.

4.5 User Process Creation
In this method, the dedicated kernel memory space is assigned

for each user process. The flow of user process creation can be

described as follows.
( 1 ) Creation of a shared kernel memory space after the user

process was created.
( 2 ) Creation of a dedicated kernel memory space for the user

process.
( 3 ) Placing of the kernel data in a dedicated kernel memory

space and its removal from the shared kernel memory space
for protection.

4.6 User Process Handling
This was followed by a description of the run-time flow of the

user process when using the kernel data to be protected.
( 1 ) Usage of the shared kernel memory space when executing

user processes.
( 2 ) Switching to a dedicated kernel memory space when using

protected kernel data.
( 3 ) Running of the kernel in the dedicated kernel memory space

and use of the kernel data to be protected.
( 4 ) Execution of the kernel in the shared kernel memory space

after using the kernel data to be protected.
DKMM therefore clears the CPU cache when the kernel

switches between the shared and dedicated kernel memory spaces
in the kernel layer.

5. Implementation

The environment assumed for the implementation target was
Linux with KPTI and the CPU architecture was x86 64.

5.1 Implementation Overview
The DKMM manages three kernel page tables that control the

visible kernel memory space for user processes. Figure 6 shows
the user process when the DKMM was applied to the Linux ker-
nel leveraged KPTI, which provides the user page table and the
kernel page table on its implementation. DKMM handles the ker-
nel page table as the shared kernel page table, which was used as
the kernel memory space. It was used together with the switching
control for the processing of the user process. A dedicated page
table was created for each user process, which was used as a ded-
icated kernel memory space, thereby enabling the protection of
the kernel data.

To support the multi-tenant environment, DKMM prepares
a protected_kernel_data_list and manually creates it in

Fig. 6 Overview of user process handling.
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the kernel source code. It requires manual work for usabil-
ity (the details are presented in Section 7.4) It allows the
Linux container feature to register its kernel data into the
protected_kernel_data_list to unmap kernel data from the
shared page table. Additionally, DKMM shares a dedicated page
table among the parent and child user processes for the container
environment, which is managed by the Linux cgroups.

5.2 User Process Creation
In the implementation method, the new_pgd variable of the

mm_struct structure was added as a dedicated page table, and
the group_tag as a group tag identification for the task_struct
structure of the user process. The following steps were used to
map the kernel code and kernel data.
( 1 ) The shared page table init_mm variable was mapped with

the kernel code and kernel data. These then run the kernel.
( 2 ) The same kernel code and kernel data were mapped to the

new_pgd variable from the init_mm variable for kernel op-
eration.

( 3 ) The kernel data were restored from the protected_
kernel_data_list and subsequently unmapped from
init_mm for the user processes.

DKMM identifies the container environment *1 creation when
the user process invokes the clone system call with sev-
eral options (e.g., NEWNET, NEWUTS, NEWNS, NEWIPC, NEWPID,
NEWUSER). Then, DKMM automatically sets the same group tag
identification to the group_tag of the child user processes from
the group_tag of the parent user process through the cgroups
interface.

5.3 User Process Handling
This section describes the control of user process execution,

which involves the following steps.
( 1 ) Supplementation of the system call from the user process.
( 2 ) Writing of the new_pgd of the current variable of the run-

ning user process to the CR3 register and switching it to the
dedicated kernel memory space.

( 3 ) Initialization of the CPU L1 cache using the x86 64 fea-
ture (e.g., wrmsrl function with MSR_IA32_FLUSH_CMD
and L1D_FLUSH options).

( 4 ) The processing of the system call is continued by the ker-
nel.

( 5 ) After the system call is completed, the kernel writes the
variable pgd of the current to the CR3 register and
switches it to the shared kernel memory space.

( 6 ) Initialization of the CPU L1 cache using the x86 64 feature
again.

To keep the kernel behavior stable, the kernel writes the pgd
variable of the user process to the CR3 register that switches to
the shared kernel memory space and continues the kernel pro-
cessing. The kernel handles an interruption, exception, or context

*1 For the container environment, the cgroups manages the relation be-
tween the UID of user process identification and the group tag
of group tag identification with the read and write interfaces (i.e.,
/sys/fs/cgroup/group name/tasks and /sys/fs/cgroup/group
name/dkmm tag) of the cftype structure.

Fig. 7 Mitigation of Foreshadow attack.

switch to another user process.

5.4 Foreshadow Side-channel Attack Mitigation
DKMM reduces the possibility of sharing the kernel data

among user processes in various caches of the CPU, and mitigates
the kernel data referenced by a Foreshadow side-channel attack.
Figure 7 outlines a mitigation of a Foreshadow side-channel at-
tack on the kernel with DKMM.

The attack target of kernel data was unmapped from the shared
kernel memory space, even though these were located in the ded-
icated kernel memory space of the attack target user process. In
the adversary’s user process, the only scope of the shared kernel
memory space and its dedicated kernel memory space that could
be referenced during the speculative execution was a Foreshadow
side-channel attack.

Attack target kernel data were not placed in the shared ker-
nel memory space, because speculative execution in the CPU
did not involve switching the kernel memory space. The refer-
ence process was performed only on the shared kernel memory
or its dedicated kernel memory space. Additionally, the kernel
with DKMM clears the CPU L1 cache when the kernel switches
among kernel memory spaces. Therefore, the kernel data placed
in the dedicated kernel memory space of attack target user process
could not be referenced through the CPU L1 cache for a virtual
address specified in the modified PTE from the adversary’s user
process.

6. Evaluation

6.1 Security Capability
To evaluate the security of the DKMM, we assessed the ker-

nel data protection against a Foreshadow side-channel attack in a
user process in a multi-tenant environment (e.g., container).
• Security Capability Evaluation

We evaluated whether the DKMM could protect the kernel
data of user processes using the container feature from a
Foreshadow side-channel attack.

6.2 Performance Measurement
We measured the performance overhead cost for a vanilla ker-

nel, the kernel with the DKMM, and the user process.
• Measurement of the system calls invocations overhead

We ran the benchmark software LMbench in a container
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Fig. 8 Prevention of Foreshadow side-channel attack.

environment with the kernel with KPTI after applying the
DKMM and measured the overhead of the executing system
calls.

• Measurement of application overhead
We measured the performance overhead for the application
in a container environment using ApacheBench.

• Measurement of kernel processing overhead We mea-
sured the processing performance overhead of the kernel
with the DKMM using the UnixBench score.

6.3 Evaluation Environment
6.3.1 Equipment

For the evaluation, we used a computer with Intel(R) Core
(TM) i7-7700HQ (2.80 GHz, four cores), 16 GB of memory, and
Debian 9.0 (Linux Kernel 5.0.0, x86 64) as the OS.
6.3.2 Implementation

The implementation of the DKMM was performed in the Linux
kernel 5.0.0 with KPTI, and it was realized in 41 files with 2,794
lines. The PoC code [16] was used for the Foreshadow side-
channel attack, and the PTE inversion of the Linux kernel was
disabled to enable the attack. To evaluate the security capabil-
ity, a kernel vulnerability was introduced from the Linux kernel
using parts of the PoC code [16] that lead to the Foreshadow side-
channel attack via memory reading through the system call.
• Foreshadow side-channel attack: Vulnerable kernel code is

ported from a part of the PoC code [16], which was imple-
mented as a system call. The PoC code exploits the vulnera-
ble kernel code to find a PTE for the magic physical address
from /dev/mem and /proc/iomem, then returns the target
PTE to the user process.

6.4 Security Capability Evaluation
For security evaluation, we placed the kernel data of a user pro-

cess that used the container feature in a dedicated kernel memory
space and targeted it for an attack. The attack target’s user process
was launched with normal user privileges, and the adversary ex-
ecuted the Foreshadow PoC code as the adversary’s user process.
The Foreshadow side-channel attack output guessed the results of
the kernel data of the attack target user process.

Figure 8 depicts the kernel data protection log for the container
feature for the PoC code [16] using the DKMM.

In lines 1 to 5, the physical address 0x2b8c3a8 can be iden-
tified from the virtual address where the kernel data cpt_data
are used by the container user process. As a preliminary check,
we launched side-channel attack using Foreshadow to the physi-

Table 1 Overhead of DKMM with Linux kernel (µs).

System call Vanilla kernel DKMM kernel Total Overhead Once Overhead

fork+/bin/sh 525.088 562.496 37.408 0.693
fork+execve 135.527 152.326 16.799 4.200
fork+exit 123.938 139.665 15.727 7.864
open/close 2.985 3.041 0.056 0.028
write 0.222 0.249 0.027 0.027
read 0.263 0.294 0.031 0.031
stat 1.008 1.051 0.043 0.043
fstat 0.285 0.311 0.026 0.026

cal address 0x2b8c3a8 via the PoC code as the adversary’s user
process in line 7. Additionally, in line 11, we demonstrated that
no estimated values in the CPU L1 cache existed in the form of
kernel data.

We enabled the DKMM protection in line 13. We evaluated the
kernel data protection for the container feature and initiated the
container user process in line 15. After switching to the dedicated
kernel memory space, cpt_data, the kernel data to be attacked,
was placed, and the virtual address was allocated by the kmalloc
function. In line 18, the kernel outputs the value of the virtual
address as 0xffff88847646f500.

In line 21, we executed the PoC code again as the adver-
sary’s user process and performed Foreshadow side-channel at-
tacks with the physical address 0x2b8c3a8. However, at line 25,
the kernel data value is observed to be a sequence of 0, confirm-
ing that the adversary failed to guess the value from the CPU L1
cache.

6.5 Measurement of Performance Overhead
6.5.1 Measurement of the System Calls Invocations Over-

head
LMbench was run 15 times as a user process in a container

environment on the Linux kernel with KPTI before and after the
application of DKMM, and the overhead was calculated from the
average value.

Table 1 presents the evaluation results. LMbench called 54
times for fork+/bin/sh, four times for fork+execve, twice for
fork+exit and open/close, and once for the others.

Table 1 indicates the total overhead that is entire system call
invocations cost and once overhead that is once system call in-
vocation cost for each system call. The fork+bin/sh requires
37.408 µs, which was divided by 54 times invocations yielding
0.693 µs. The fork+execve requires 16.799 µs; this was divided
by four times invocations to give 4.200 µs. The fork+exit requires
15.727 µs; this was divided by two times invocations, yielding
7.864 µs. The open/close requires 0.056 µs, which was divided
by two times invocations to give 0.028 µs. The other system calls
have same cost for total overhead and once overhead because
these are one time invocations.

Therefore, the most demanding system call was fork+exit
(7.864 µs), and the least demanding was fstat (0.026 µs). The
overhead per system call by the DKMM ranged from 0.026 µs
to 7.864 µs.
6.5.2 Measurement of Application Overhead

The Apache 2.4.25 web server executed the web application as
the user process in the container environment, and the web client
was ApacheBench 2.4 for the benchmark software. The network

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Table 2 ApacheBench overhead of DKMM with Linux kernel (µs).

File size (kB) Vanilla kernel DKMM kernel Overhead

1 563.667 567.161 3.494 (0.62 %)
10 719.867 725.337 5.47 (0.76 %)

100 2,136.533 2,148.283 11.75 (0.55 %)

Table 3 Unixbench score of DKMM with Linux kernel.

Vanilla kernel DKMM kernel

2,898.3 2,777.6 (1.06%)

environment was 1 Gbps.
ApacheBench 2.4 calculated the average of the HTTP down-

load requests for the HTTP accesses. ApacheBench sent 100,000
HTTP access requests and then downloaded the file for one con-
nection. The file sizes adopted by the benchmark configuration
were 1 kB, 10 kB, and 100 kB. ApacheBench was run 15 times as
a user process to calculate the average for the performance over-
head cost. The list in Table 2 indicates that our implementation
had an average overhead of 0.55 % to 0.77 % for each file down-
load access.
6.5.3 Measurement of Kernel Processing Overhead

To evaluate the kernel processing overhead, the UnixBench
scores of the vanilla kernel with KPTI before and after the ap-
plying of DKMM were compared. The UnixBench measured
the processing time of the system performance (i.e., calculation,
file copy, and process execution) in a general environment. The
UnixBench was executed five times to determine the average ker-
nel processing time. Table 3 presents the performance score, the
implementation of our mechanism yielded a score overhead of
1.06 %.

7. Discussion

7.1 Security Capability Consideration
From the security evaluation results, we confirmed that the ker-

nel with DKMM prevented a Foreshadow side-channel attack on
the CPU L1 cache from the adversary’s user process. We also
confirmed that DKMM did not affect the behavior of the con-
tainer functions and container user processes.

With DKMM, the kernel data of the container function did not
share the CPU L1 cache with the kernel data of other kernel func-
tions. It ensured that the kernel data of the container function was
in a different kernel memory space and that the CPU L1 cache
was cleared at the switching of kernel memory space; thus, it
could not be guessed easily by the Foreshadow side-channel at-
tack. Therefore, we can mitigate the threat of a Foreshadow side-
channel attack by preventing the PTE used by the user process
running the PoC code [16] from referring to the kernel data for
each user process with a kernel feature.

7.2 Performance Measurement Consideration
We confirmed that LMbench, ApacheBench, and UnixBench

correctly calculate the processing cost of the implementation of
DKMM with a kernel.

LMbench measured the time required to issue a system call.
The load of DKMM required the overhead of the system call from

the user process in the container environment. It also required a
write operation to the CR3 register due to the switching of the
kernel memory space when the container function was processed
as a kernel task. The high load on the fork and exit of the system
calls was due to the creation and destruction of user processes in
the container environment. DKMM created and released page ta-
bles for the creation of the kernel memory space, which led to an
increase in the load. Additionally, the creation and release of a
page also depend on the amount of protected kernel data. These
processes require the sequential page handling of kernel page ta-
bles, which increases the overhead of DKMM at the user process
creation (e.g., fork system call) stage.

However, ApacheBench and UnixBench indicate that DKMM
has nearly the same performance result. DKMM has adopted tag-
based translation lookaside buffers (TLBs). The implementation
of Linux with KPTI and DKMM allocates the process-context
identifier of TLB. The TLB cache improved physical memory
access even though the kernel updates the CR3 register. Thus,
calculation of the application performance benchmark is not sig-
nificantly affected by the switching of kernel memory in the ker-
nel mode. In addition, DKMM can be implemented for Linux
regardless of KPTI. Linux with DKMM handles two page tables
to support the shared and dedicated kernel memory space that re-
quires a similar performance overhead as that of the Linux with
KPTI.

7.3 Limitation
To implement DKMM, it was necessary to switch the kernel

memory space, manage the kernel data, and clear the CPU L1
cache. These tasks increase the overhead for each kernel data of
kernel feature to be protected.

Although the kernel memory space was allocated per user pro-
cess of kernel features, it was difficult to exchange or share the
kernel data to be protected. The implementation of DKMM sup-
ports the Linux cgroups that can allow the sharing of the kernel
data in the dedicated kernel memory space for the user processes
of the same container environment.

However, we needed to select the kernel data that is the protec-
tive object and redesign and implement the kernel components so
that they worked after the kernel memory space was allocated.

Additionally, the criteria of protection data are security mecha-
nisms related to information that contains the value of the access
control policy and the function pointer of the access decision ker-
nel code (e.g., cgroup and mandatory access control). We con-
sider that these security mechanisms related information have to
be protected from the adversary’s attack. The adversary tries to
collect the actual security parameter and virtual address of kernel
data on the kernel memory. It prepares the attack step of force-
fully overwriting kernel memory to disable the limitation of se-
curity mechanism on the multi-tenant environment.

Moreover, the level of selection difficulty of protection kernel
data must be considered. It requires the combination of three fac-
tors: security, kernel stability, and performance cost. The DKMM
protection mechanism unmaps the protection kernel data from the
shared kernel memory space. Firstly, the user of DKMM has to
determine the protection target of the kernel data on the kernel
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with DKMM at the source code. Next, is the consideration of
stability and performance cost. If the kernel data are referenced
across the whole of the kernel, it is difficult to apply the protection
mechanism of the DKMM owing to the stability effect, and ker-
nel source code modification is required. On the other hand, the
large amount of protected kernel data increases the performance
cost.

Therefore, the level of selection is based on the condition of
these factors from the user’s kernel knowledge and environment.
It indicates that the user of DKMM has to carefully determine
which kernel data satisfy the conditions of the protection criteria
with the kernel source code modification.

7.4 Usability
The usability of the DKMM must be considered. DKMM as-

sumes that the protected_kernel_data_list is statically reg-
istered in the kernel code. The user has to manually determine
which kernel data needs the protection of DKMM. The man-
ual work includes finding the protection target of kernel data and
modifying and compiling the source code. Linux kernel com-
piling took approximately 90 min in the evaluation environment.
The source code customization relies on the user’s knowledge of
kernel development and deployment.

Although the dynamic registration of protected kernel data and
control is important for the usability of DKMM, it might allow il-
legal modification of the protected kernel data. We consider that
easy management is the trade-off in the design and implementa-
tion.

7.5 Portability
For the portability of DKMM to other OSs, the kernel should

enable virtual memory construction and management functions.
Among the existing OSs, FreeBSD and Windows provide a vir-
tual memory, but this virtual memory still uses a single kernel
memory space. As a countermeasure against Meltdown side-
channel attacks, FreeBSD and Windows introduced a feature
equivalent to KPTI [17], [18]. We assume that the design of
DKMM can be ported to FreeBSD and Windows, that have al-
ready implemented two kernel page tables at the kernel layer. The
implementation of these OSs handles the switching between the
two kernel page tables. It manages the mapping of kernel code
and kernel data of kernel page tables for each user process. There-
fore, DKMM utilizes a similar implementation as KPTI, consist-
ing of the page table switching and management techniques of
the kernel page table, to provide and control a dedicated kernel
memory space as an additional kernel page table for other OSs.

8. Related Work

Software Side-channel Attacks
Several software-based side-channel attacks have been pro-

posed [19]. Memory operations and the response time of specific
CPU instructions have also been used to infer the protected mem-
ory area [10], [15], [20]. Moreover, attacks on various CPU and
MMU caches have been devised using CPU speculative execu-
tion and software implementations such as Meltdown, Spectre,
and Foreshadow [1], [2], [4], [5].

Software Based Countermeasure
To counter vulnerabilities to side-channel attacks, countermea-

sure technologies were introduced in the CPU, kernel, and com-
piler. Microcode updates were performed on the CPU [21]. In
the kernel, KPTI was used against Meltdown [6], which adopted
a page table separation mechanism between the user and the ker-
nel memory space [22]. For the compiler, the mitigation code [23]
was introduced against Spectre to mitigate the CPU’s speculative
execution causing preemption.

Against Foreshadow, a user code was introduced for PTE inver-
sion [11]. Other countermeasures against attacks between virtual
machines were introduced by initializing the CPU L1 cache [12].
In ASI, the virtualization function was separated from the kernel
memory space by page tables [13]. The process-local memory al-
located pages so that only a specific user process could refer to a
part of the kernel’s virtual memory space [24].

Further, core scheduling achieved execution avoidance
scheduling on the same CPU core of the user process that
was being attacked or targeted [25]. Safehidden proposed the
re-randomization of the kernel data placement on the kernel
memory space if the translation look-aside buffer (TLB) hit was
missed [26].
Hardware Based Countermeasure

To mitigate the impact of side channels, InvisiSpec examined
a temporary buffer mechanism to control whether the data area
could be referenced depending on the progress of the instruction
when processing speculative CPU execution instructions [27].
SafeSpec proposed a control mechanism to avoid registering data
in the CPU L1 cache and TLB until the end of speculative execu-
tion [28].
Cache Handling Countermeasure

As a countermeasure against side-channel attacks, a method
was proposed to create a cache area that could not be referenced
by the adversary’s user process. In STEALTHMEM, the refer-
ence area of the last level cache (LLC) was controlled by allocat-
ing CPU cores to a virtual machine with a VMM [29]. SecDCP
enabled dynamic LLC size adjustment on a per-user process ba-
sis [30]. CATalyst used Intel cache allocation technology to al-
locate a secure area in the LLC and allocated pages to virtual
machines [31]. DAWG proposed a mechanism to link CPU cores
and cache data to control accessibility [32].

9. Comparison

Table 4 presents a comparison between DKMM and previous
studies related to hardware CPU cache protection features. Ta-
ble 5 presents a comparison between DKMM, ASI, and a naive
method, which flushes the CPU L1 cache at the context switch of
the kernel, related to software CPU cache protection features.

By reducing the possibility of sharing the CPU cache with
other user processes, we mitigated the side-channel attacks on the

Table 4 Comparison of the hardware CPU cache protection features (� is
supported).

Feature SecDCP [30] DAWG [32] InvisiSpec [27] SafeSpec [28] DKMM

Hardware protection � � � �
Software protection �
Protection granularity CPU cache CPU instruction User process
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Table 5 Comparison of the software CPU cache protection features (� is
supported; � is partially supported).

Feature Naive method [33] ASI [13] DKMM

Protection configuration � �
Portability � �
Protection granularity Context switch VM User process

CPU L1 cache by Foreshadow. DKMM can be applied to a wide
range of environments because it does not require any hardware
countermeasures.

CPU cache partitioning technology used hardware functions to
mitigate side-channel attacks. These functions forcibly allocated
the CPU cache to be used for each user process, subjecting it to
side-channel attacks [30], [32]. Moreover, the CPU cache refer-
ence availability operation was based on the instruction execution
order in the CPU speculative execution control. It mitigated the
side-channel attack by ensuring that the inferred data were not
included in the CPU cache if a CPU cache reference occurred
during the side-channel attacks [27], [28]. CPU cache control-
ling was an important approach as a countermeasure against side-
channel attacks. DKMM could be combined with existing hard-
ware research methods.

The naive method, a side-channel countermeasure in the ker-
nel, requires the initialization of the CPU L1 cache at each
user process and kernel task switching [33]. From the view-
point of protection configuration comparison, the naive method
forcefully induces the CPU L1 cache to flush and incurs per-
formance overhead for user processes. The naive method issues
CPU hardware command (e.g., MSR_IA32_FLUSH_CMD) for ker-
nel task switching at the kernel layer. It does not support the
user handling of protection configuration for the user process
management from the administrator. We believe that in the de-
sign of DKMM is possible to implement customizable protec-
tion of kernel memory space isolation for the user process. Al-
though the design of DKMM issues CPU hardware command
(e.g., MSR_IA32_FLUSH_CMD) at the switching between the user
and kernel mode, the administrator can manage the protection of
DKMM for the user process using cgroups configuration, and
then apply the CPU L1 cache flush timing to the specific user
process.

Moreover, the ASI separated only the kernel code and kernel
data of a virtualization function (e.g., Linux KVM) from the ker-
nel memory space [13]. The implementation of ASI focuses the
Linux KVM on the x86 architecture and does not consider the
portability of the ASI design and implementation for another vir-
tualization mechanism of Linux and the CPU architecture. From
the viewpoint of portability comparison, DKMM was designed
to control the allocation of the kernel memory space per user pro-
cess. It achieves that in a simpler design and implementation to
migrate into the other OS kernel for the kernel feature protection
against a Foreshadow side-channel attack.

10. Conclusion

As a countermeasure against side-channel attacks on CPU
caches, the separation of the kernel memory space by KPTI
against Meltdown is necessary. Furthermore, the separation of

the kernel memory space of the virtualization function by ASI
against Foreshadow is also necessary. However, the kernel mem-
ory space was still shared among user processes. Arbitrary ker-
nel data could be referenced by side-channel attacks targeting
the CPU cache using Foreshadow. In the kernel layer, mitiga-
tion against further side-channel attacks is important when deal-
ing with sensitive kernel data related to user processes.

In this paper, we proposed DKMM that enabled the introduc-
tion of an additional kernel memory space for each user process
as a countermeasure against Foreshadow side-channel attack. It
protects the CPU cache of non-attacking user processes of the
kernel memory space from a speculative execution of the CPU
to access kernel data. It also prevents the kernel memory space
other than the adversary’s user process in the CPU cache.

We implemented DKMM in Linux and realized the allocation
control of kernel data related to the container function in the ker-
nel to a dedicated kernel memory space. To verify the effective-
ness of DKMM, we confirmed that the proposed security mecha-
nism prevented an adversary’s user process from referring to the
kernel data of a user process that used the container function via
the CPU cache by a Foreshadow side-channel attack. The per-
formance evaluation of the proposed security mechanism demon-
strated that the maximum load per system call was 7.864 µs, the
overhead to a web client program averaged between 0.55% and
0.77%, and the benchmark cost was 1.06% for the kernel.

In the future, for side-channel attacks countermeasures, re-
searchers should evaluate the effect of countermeasures on var-
ious caches on other side-channels and the effectiveness of the
performance overhead.
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