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Breaking the Memory Bottleneck for Iterative Memory-bound Applications Via Persistent Kernels
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Abstract: Iterative memory-bound solvers commonly occur in HPC codes. Spatial blocking optimizations of iterative
solvers are directed towards improving the data locality of the code executed within a single time step of the solver.
Temporal blocking optimizations combine multiple consecutive iterations in a scheme that requires the resolution of
neighborhood dependencies. We propose a novel data-locality optimization scheme for memory-bound iterative ker-
nels: PERsistent KernelS (PERKS). In this scheme, we target the elimination or reduction of data movements occurring
in-between time steps. We eliminate or reduce the traffic to the memory by caching a subset of the output in each time
step on on-chip resources to be used as input for the following time step. PERKS can be generalized to any iterative
solver: they are largely independent of the solver’s implementation, and run independently on top of spatial/temporal
blocking optimizations. We implement PERKS in CUDA since Nvidia GPUs provide low latency device-wide syn-
chronizations and a large volume of on-chip resources, i.e., scratch-pad memory and register files. We explain the
design principle of PERKS and demonstrate the effectiveness of PERKS for a wide range of iterative 2D/3D stencil
benchmarks (geomean speedup of 2.35x for 2D stencils and 1.53x for 3D stencils).
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1. Introduction
Iterative solvers are ubiquitous in High Performance Comput-

ing (HPC). For example, iterative stencils [1–4] are used widely
in numerical solvers for PDEs, iterative stationary methods are
used for solving systems of linear equations (ex: Jacobi [5, 6]
and Gauss–Seidel method [6–8]), and iterative Krylov subspace
methods are typically used for solving systems of linear equa-
tions (ex: conjugate gradient [9, 10], BiCG [10, 11], and GM-
RES [10, 12]).

Given that iterative stencils and Krylov subspace solvers typi-
cally have low arithmetic intensity [3], significant research effort
goes into optimizing them for data locality. Those effort include
moving the bottleneck from memory to cache on CPUs [13,14] or
on-chip scratchpad memory on GPUs [15, 16]. Other works fur-
ther push the bottleneck to be the register files [4, 17]. Those ef-
forts become increasingly effective on GPUs, particularly so since
the aggregate volume of register files and scratchpad memory ca-
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pacity is increasing with newer generations of GPUs [18]. While
the emphasis on optimizing iterative methods goes into reducing
the memory traffic within each time step, it is important to note
that a significant part of the time in iterative solvers goes into stor-
ing the output of each time step and then loading it again to use as
an input in the following time step. For example, Figure 3 shows
the time for inter-step data storing and loading to be a majority
of runtime for a 2D 5-point stencil running on an Nvidia A100
GPU).

One opportunity to improve the data locality is to extend the
lifetime of the solver across time steps and reduce the inter-step
traffic to the memory.

In this paper, we propose a generic scheme for running iterative
solvers to improve inter-step data locality. PERsistent KernelS
(PERKS)*1 are used to advance the solver over all, or some, of the
time steps. PERKS requires two basic features to function. First,
due to the spatial neighborhood dependencies in iterative solvers,
a chip-wide barrier is required at the end of each time step (or
several time steps when doing temporal blocking [3]). That is to
assure that advancing the solution in time step k would only start
after all threads finish advancing the solution in time step k − 1.
Second, on-chip resources to cache the output of each time step
are also required. Both features, chip-wide barriers and cache
memory, exist on CPUs. Therefore PERKS could be effective on
CPUs. However, in this paper we focus on demonstrating PERKS
on GPUs since: a) GPUs are more challenging to program and

*1 In this paper, we use PERKS, interchangeably, to refer to our proposed
scheme and as an abbreviation of PERsistent KERnelS.
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hence demonstrating the effectiveness of PERKS on GPUs would
pave the way for PERKS on CPUs, and b) GPUs are increasingly
prevalent in the top tier HPC systems; the Top500 [19] list in-
cludes seven GPU-accelerated systems in the top ten (June 2022
list), and one third of the systems on the list in general use discrete
GPUs.

In PERKS, we first move the time loop of the solver to be in-
side the kernel and use a device-wide barrier at the end of each
time step to avoid race conditions arising from possible neighbor-
hood dependencies in the problem domain. Next, we identify the
cachable data in the solver: the most considerable portion of data
(arrays) that is the output of time step k− 1 and input to time step
k. Finally, we change the code to use as much is available from
both the GPU scratchpad memory and registers to cache the data,
and reduce the traffic to the device memory.

The basic idea of PERKS and implementing PERKS is rela-
tively simple, which we argue is essential for encouraging scien-
tists and engineers to adopt PERKS in their iterative solvers im-
plemented for GPUs, and other architectures as well. That being
said, a challenging aspect that we address in this paper is a de-
tailed analysis of how and why PERKS is effective. The analysis
requires an understanding of the effect of concurrency on perfor-
mance. More particularly, to gain a deep understanding of why
PERKS are effective and the limitations of architectural features,
we study the effect of pressure on resources (particularly regis-
ters and shared memory). On top of that, we examine the effect
of reducing the device occupancy while maintaining high enough
concurrency to saturate the device.

It is important to note that PERKS is orthogonal to tempo-
ral blocking optimizations. Temporal blocking relies on com-
bining multiple consecutive iterations of the time loop to reduce
the memory transactions between them. The dependency along
the time dimension is resolved by either: a) redundantly load-
ing and computing cells from adjacent blocks, which limits the
effectiveness of temporal blocking to low degrees of temporal
blocking [20–22], or b) using tiling methods of complex geom-
etry (e.g. trapezoidal and hexagonal tiling) along the time di-
mension and restricting the parallelism due to the dependency
between neighboring blocks [23, 24]. In contrast, the execution
scheme of PERKS does not necessitate the resolution of the de-
pendency along the time dimension since PERKS includes an ex-
plicit barrier after each time step, which allows for advancing the
boundary cells in time. This means the PERKS model can be gen-
eralized to any iterative solver, regardless of whether the solver
had neighborhood dependencies in the domain or not, and can be
used on top of any version of the solver. In other words, iter-
ative kernels written as PERKS do not compete with optimized
versions of those iterative kernels. For instance, a stencil PERKS
does not compete with kernels applying aggressive locality op-
timizations; the performance gain from PERKS is added to the
performance gain from whatever stencil optimizations are used
in the kernel. As a matter of fact, the more optimized the ker-
nel before it is ported to the PERKS execution scheme, the
higher the speedup that would be gained by PERKS. That is
since optimizations to the kernel proportionally increase the
overhead of data storing and loading in between iterations,

which PERKS aims to reduce.
The contributions in this paper are as follows:

• We introduce the design principles of PERKS, provide analyses
of the potential of PERKS, and how to effectively port iterative
solvers to PERKS.

• We implement a wide range of iterative 2D/3D stencil bench-
marks and a conjugate gradient solver as PERKS in CUDA. It
is important to note that iterative stencils and Krylov subspace
solvers are the backbones of numerous scientific and engineer-
ing codes. We include an elaborate discussion on the imple-
mentation details and performance-limiting factors such as the
domain sizes, concurrency, and resource contention.

• Our PERKS-based implementation achieves geometric means
speedups of 2.35x for 2D stencils and 1.53x for 3D sten-
cils using highly optimized baselines comparable to state-
of-the-art 2D/3D stencil implementations, with A100 and
V100. The source code of all PERKS-based implementa-
tions in this paper is available at the following anonymized
link: http://shorturl.at/cdjmX.

2. Background and Motivation
2.1 Iterative algorithms

In iterative algorithms, the output of time step k is the input of
time step k + 1. Iterative methods can be expressed as:

xk+1 = F(xk) (1)

When the domain is mapped out to processing elements, there
are two points to consider:

• Spatial dependency necessitates synchronization between time
steps, or else advancing the solution in the following time step
might use data that has not yet been updated in the previous
time step.

• In time step k + 1, each thread or thread block needs input from
the output of itself in time step k (i.e. temporal dependency).
This gives the opportunity for caching data between steps to
reduce device memory traffic.

In the following sections, we briefly introduce iterative stencils
and Krylov subspace methods. Throughout the paper, we use
them as motivation examples, and we use them to report the ef-
fectiveness of our proposed methods, given their importance in
HPC scientific and engineering codes.
2.1.1 Iterative Stencils

Iterative stencils are widely used in HPC. According to Bas-
tian et al. [25], stencil applications represent 49% of workloads
in a wide range of HPC centers. Take 2D Jacobian 5-point stencil
(2d5pt) as an example:

x(i, j)k+1 =N ∗ x(i, j + 1)k + S ∗ x(i, j − 1)k+

C ∗ x(i, j)k +W ∗ x(i − 1, j)k + E ∗ x(i + 1, j)k
(2)

Computation of each point at time step k+ 1 requires the values
of the point itself and its four neighboring points at time step k.

Two blocking methods are widely used to optimize iterative
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stencils for data locality: Spatial Blocking [26, 27] and Temporal
Blocking [3, 28].

In spatial blocking on GPUs, we split the domain into sub-
domains, where each thread block can load its sub-domain to
the shared memory to improve the data reuse. In the meantime,
we require redundant data accesses at the boundary of the thread
block to data designated for adjacent thread blocks.

In iterative stencils, each time step depends on the result of the
previous time step. One could advance the solution by combin-
ing several time steps. The temporal dependency, in this case, is
resolved by using a number of halo layers that match the num-
ber of combined steps. The amount of data that can be computed
depends on the stencil radius (rad) and the number of time steps
that are combined (bt). In overlapped temporal tiling [29–31],
this region can be represented as 2×bt× rad (halo region). Meth-
ods based on this kind of blocking are called overlapped temporal
blocking schemes.

2.2 CUDA Programming Model
CUDA’s programming model includes: threads, the basic exe-

cution unit (32 threads are executed together as a warp); Thread
block (TB), which is usually composed of hundreds of threads;
grid, which is usually composed of tens of thread blocks.

On-chip memory in a streaming multiprocessor (SMX) in-
cludes: shared memory (scratchpad memory), L1 cache, and reg-
ister file (RF) and. Off-chip memory includes global memory and
L2 cache. Data in global memory can reside for the entirety of
the program, while data in on-chip memory has the lifetime of a
kernel. The shared memory is shared among all threads inside a
thread block.
2.2.1 GPU Device-wide Synchronization:

Synchronization in GPUs was limited to groups of threads:
thread blocks in CUDA (or a work group in OpenCL). Starting
from CUDA 9.0, Nvidia introduced cooperative group APIs [32]
that include an API for device-wide synchronization. Before in-
troducing grid-level synchronization, the typical way to introduce
device-wide synchronization was to launch sequences of kernels
in a single CUDA stream. Zhang et al. [33] conducted a compre-
hensive study to compare the performance of both methods. The
result shows that the latency difference between explicit device-
wide synchronization versus implicit synchronization (via repeti-
tive launching of kernels) is negligible in most kernels.

2.3 Motivational Example
We use a motivational example of a double precision 2D 9-

point Jacobian stencil to motivate implementing iterative solvers
as PERKS. (1). Why PERKS: Optimizations for iterative meth-
ods focus on a single step to speed up iterative solvers. Single-
step optimizations move the performance of the kernel closer
to the highest possible attainable performance on the roofline
model, yet will not influence the operational intensity. As Fig-
ure 1 shows, optimizations used for the 2D 9-point stencil move
the performance vertically at the same operational intensity value
of the kernel. Temporal blocking schemes can move the oper-
ational intensity, horizontally, to the right side of the roofline,
yet resolving the neighborhood dependencies introduces redun-
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Fig. 1: The roofline model of a double precision 2D 9-point Jaco-
bian stencil kernel, running S = 20 time steps, with a domain size
of 30722 on A100 GPU. Optimization per-time step uses shared
memory to improve locality [16]. Optimizations only improve
the iterative stencil kernel to get closer to the peak performance.
Reducing memory traffic between time steps can increase the per-
formance by increasing the operation intensity (OI). We plot dif-
ferent operational intensities for a version of PERKS that reduces
the data traffic in-between 20 time steps to 50%, 25%, and 0%.
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Fig. 2: Performance of a double precision 2D 9-point Jacobian
stencil kernel (30722) for different thread blocks per streaming
multiprocessor (TB/SMX) on A100. Filled regions indicate un-
used resources. The projected performance assumes that all un-
used resources can be used to cache data. Using one TB/SMX
and using all unused resources for caching can theoretically pro-
vide 1.66x speedup in this situation.
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Fig. 3: Runtime (20 time steps) of double precision 2D 9-point
Jacobian stencil (30722) with different state-of-the-art optimiza-
tions on A100 GPU. PERKS aims to reduce/eliminate the traf-
fic to/from device memory in-between time steps. NVCC-OPT
improves on NAIVE by enabling the auto-unrolling optimization
provided by the latest NVCC compiler version. SSAM [4] uses
register, while SM-OPT uses shared memory to improve local-
ity [16]. We also plot the speedup of each implementation, as-
suming we cache 50% of the domain. The results show that the
more optimized the baseline kernel, the more performance im-
provement we expect from caching.

dancy [22, 29, 30] or hard-to-parallelize complex geometrical tile
shapes [24, 34], and can cause register pressure [3]. In PERKS,

ⓒ 2022 Information Processing Society of Japan 3

Vol.2022-HPC-187 No.18
2022/12/2



IPSJ SIG Technical Report

we batch a sequence of time steps together and remove the un-
necessary data access between time steps. The target data traf-
fic to reduce is in-between time steps (i.e., outside the solver),
and hence is not subject to the neighborhood dependency issue
in temporal blocking schemes. Figure 1 demonstrates how this
idea works for a real stencil benchmark running on an A100
GPU for 20 time steps. By caching more of the domain in-
between time steps, the operational intensity moves more to the
right side of the roofline to be compute-bound. This also demon-
strates how PERKS is orthogonal to the per-time step optimiza-
tions; PERKS would improve the performance (by moving hor-
izontally on the roofline) regardless of how optimized the base-
line algorithm is at its operational intensity. (2). The prospect
of PERKS: Latency across all operations/instructions in newer
generation GPUs has been significantly dropping [35]. As a re-
sult, often fewer numbers of warps are enough for CUDA runtime
to hide the latency effectively and hence maintain high perfor-
mance at low occupancy [36]. In Figure 2, we vary the number of
thread blocks per streaming multiprocessor (TB/SMX) and plot
its performance (left Y-axis). For each TB/SMX configuration,
we plot on the right Y-axis the unused resources (shared memory
and registers). As the figure shows, even when T B/S MX = 4,
more than 11.2MB of shared memory and register files are not
in use. When T B/S MX decreases, the performance is slightly
fluctuated (74.6-62.0 GCells/s *2) while the freed shared memory
and registers gradually increase. By reducing the TB/SMX to its
minimum while maintaining enough concurrency to sustain the
performance level, the projection from performance gain when
caching a subset of the results in unused resources can improve
the performance by more than 1.6x.

As Figure 3 shows, the amount of time required for moving
the data from/to device memory in-between time steps for a sten-
cil kernel remains constant. At the same time, the compute part
decreases as the more optimized the stencil implementation is.
The prospect of PERKS is to reduce/eliminate this data move-
ment time that dominates the runtime in highly optimized stencil
implementations. Finally, while temporal-blocking schemes do
also reduce the data movement to some extent, they can not be
generalized to all iterative solvers. Additionally, resolving the
temporal and spatial dependency adds compute overhead and can
also lead to increased register pressure that limits the degree of
temporal blocking on GPUs [3].

3. PERKS: Persistent Kernels to Improve Lo-
cality

3.1 Overview of PERKS
PERsistent Kernels (PERKS) is a generic scheme for running

iterative solvers to improve data locality by taking advantage
of the large capacity of on-chip resources. PERKS relies on
chip-wide synchronization and on-chip caching resources: user-
managed (e.g., scratchpad memory) or transparent (e.g., cache
memory). Nvidia GPUs are widely used accelerators in HPC
systems (more than 30% of systems in Top500 [19]), and they
are equipped with both features. Nonetheless, PERKS, in princi-

*2 GCells/s denotes giga-cells updated per second.
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Fig. 4: Changing a traditional iterative CUDA kernel (time loop
on the host) to PERKS: 1) move the time loop from the host code
to the kernel code and use grid synchronization between time
steps. 2) cache data between time loops on the unused shared
memory and register files. The compute portion of the kernels
does not notably change, i.e., no requirement to change the origi-
nal algorithm when using PERKS.

ple, can be applied on any processor with support for chip-wide
synchronization and on-chip caching resources, be that a CPU or
a discrete accelerator.

Figure 4 shows an example of applying PERKS with CUDA.
As Figure 4 illustrates, in PERKS, we move the time stepping
loop from the host to the device, and use CUDA’s grid synchro-
nization API as a device-wide barrier at each time step. We then
use the free register files and shared memory to reduce traffic
to/from the device memory by caching the domain (or a subset
of it) in-between time steps.

3.2 Assumptions and Limitations
The techniques discussed in this paper are based on the follow-

ing assumptions about the applications.
Target Applications: In this paper, we target iterative kernels

that are bounded by memory bandwidth. While execution in a
PERKS fashion makes no assumptions on the underlying imple-
mentation, optimal PERKS performance can sometimes require
minor adaptations to the kernel. Finally, despite not reporting re-
sults for compute-bound iterative kernels, it is important to note
that compute-bound iterative kernels could potentially also bene-
fit from becoming PERKS, if the kernel generates memory traf-
fic in-between iterations that CUDA runtime can not effectively
overlap with computation.

Impact on Optimized Kernels: It is crucial to note that
PERKS is orthogonal to the optimization level applied to the
compute part of the kernel. As a matter of fact, the more opti-
mized the baseline kernel, the more performance improvement
we expect from PERKS. Because optimizations reduce the time
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per iteration, i.e., a single kernel invocation, while the time to
store/load to global memory in-between iterations remains the
same. To summarize, PERKS reduces what amounts to be Am-
dahl’s law serial portion of the solver, and hence the more op-
timized a code, i.e., a faster parallel portion, the higher the
speedup that would be attributed to PERKS.

PERKS in Distributed Computing: PERKS in this paper
is demonstrated on a single GPU. In distributed applications
that require halo regions (e.g., stencils), PERKS can poten-
tially be used on top of communication/computation overlapping
schemes [37, 38]. In overlapping schemes, the boundary points
that are computed in a separate kernel would not be cached,
while the kernel of the interior points would run as PERKS to
cache the data of the interior points. PERKS could also be used
with communication-avoiding algorithms (e.g., communication-
avoiding Krylov methods [39])

Use of Registers: PERKS uses registers and shared memory
for caching data in-between time steps. It should be noted that
there are no guarantees that the compiler releases all the regis-
ters after the compute portion in each iteration is finished (with
Nvidia’s nvcc compiler we did not observe such inefficiency). If
such register reuse inefficiency exists, imperfect register reuse by
the compiler could result in fewer registers being available for
caching and leaves only shared memory to be used for caching.
PERKS would not be effective if the target kernel consumes all
on-chip resources (both register file and shared memory) even in
its minimal occupancy.

Iterative Solvers as PERKS: While this paper’s focus is to
demonstrate PERKS model for iterative stencils and Krylov sub-
space methods (conjugate gradient), the discussion in this section
(and paper in general) is applicable to a high degree for other
types of iterative solvers. That is since PERKS is not much con-
cerned with the implementation of the solver, and only loads/s-
tores the domain (or a subset of it) before/after the solver part in
the kernel, under resource constraints. Iterative solvers that use
the same flow expressed in Figure 4 can, in principle, be ported
to PERKS (with relative ease). Generally speaking, the porting
process is as follows: move the time step outside the kernel to be
inside the kernel, add grid synchronization to ensure dependency,
and store/load a portion of the input or output to cache: either
shared memory and/or register (using register arrays). More de-
tails on porting kernels to PERKS in Section 4.1.

4. Porting Solvers to PERKS
Transforming the existing iterative solvers to PERKS is fairly

straightforward. This section first explains briefly how end-users
can transform or port their iterative solvers to PERKS. Next, we
elaborate on how we implemented memory-bound iterative meth-
ods (namely 2D/3D stencils and a conjugate gradient solver) as
PERKS.

4.1 Transforming Kernels to PERKS: the End-user Per-
spective

4.1.1 Identifying the minimal concurrency of the kernel
The end-user only needs to reduce the device occupancy to

minimum (while maintaining performance) via manual tuning

of the kernel launch parameters or using auto-tuning tools [40–
42].
4.1.2 Porting of Kernel to become PERKS

As Listing 1 shows, PERKS does not modify computation, and
the manually written code to move the time loop inside the kernel
and load/store to cache is straightforward. Alternatively, though
outside this paper’s scope, we point out the possibility of sim-
plifying the process of converting a kernel to PERKS by using
source-to-source translation, C++ templates, or Domain Specific
Languages.
4.1.3 What to Cache

The end-user can use a profiler, offline, to decide on what data
arrays to cache by identifying the arrays that generate the most
traffic to/from global memory. In many iterative solvers, pro-
filing is not even needed since the algorithm clearly implies the
main data array(s) causing the highest traffic (e.g., the matrix A
in conjugate gradient and the domain in stencil applications).
4.1.4 Where to Cache

The end-user would simply use the unused shared memory for
caching. For additional performance benefits, advanced users can
choose to also cache in registers by manually identifying the ad-
equate number of registers that can be used for caching, without
causing register spilling (we provide a python script to automate
this process), or by following the trace of existing on-chip re-
sources management research [43, 44]. We anticipate the possi-
bility of automating this step by source-to-source translation or
Domain Specific Languages so that this step of using on-chip
resources could be as easy as adding a persisting range in the
domain, similar, in principle, to the method of using L2 cache
residency control in A100 [45].

4.2 Transforming Stencil Kernels to PERKS
Our 3D stencil implementation uses the standard shared mem-

ory implementation where 2D planes (1D planes in 2D stencils)
are loaded one after the other in shared memory. Each thread
computes the cells in a vertical direction [2, 46]. In our PERKS
implementation, before the compute starts, planes that already
have the data cached from the previous time step do not load
from global memory. We do not interfere with compute; only
after the compute is finished that we store the results in the regis-
ters/shared memory. As Listing 1 shows, after adjusting to handle
the input and output of the computation part of the kernel. To en-
sure coalesced memory accesses in the halo region, we transpose
the vertical edges of the halo region in global memory. Finally,
if the original kernel uses shared memory [2, 46] or registers [4]
to optimize stencils, we use the version of the output residing in
shared memory or registers at the end of each time step as an al-
ready cached output. This way, we avoid an unnecessary copy to
shared memory and registers we would use for caching.

5. Why PERKS is Effective
This section includes an analysis of the effectiveness of PERKS

in a practical setting. The analysis in this section is based on the
latest Nvidia GPUs. Nonetheless, the analysis can be expanded
to other architectures with relative ease. We explain how to effec-
tively reduce concurrency in a regression-free manner to improve
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Listing 1: 2D 5-pt stencil implemented in PERKS.
1 g l o b a l void 2d5pt PERKS ( p t r i n , p t r o u t ) { . . .
2 f o r ( k=0; k< t i m e s t e p ; k++) { . . .
3 s w i t ch ( Source ( p t r i n ) ) {
4 c as e FromSM : load ( sm cache , sm in ) ; break ;
5 c as e FromReg : load ( r e g c a c h e , sm in ) ; break ;
6 d e f a u l t : load ( p t r i n , sm in ) ; }
7 2d5pt Compute ( sm in , r e g o u t ) ;
8 s w i t ch ( D e s t i n a t i o n ( p t r o u t ) ) {
9 c as e ToSM : store ( r e g o u t , sm cache ) ; break ;

10 c as e ToReg : store ( r e g o u t , r e g c a c h e ) ; break ;
11 d e f a u l t : store ( r e g o u t , p t r o u t ) ; }
12 . . .
13 / / r e s o l v e dependency i n ha lo r e g i o n o f TBs
14 / / p a r t o f t h e b a s e l i n e code ; o m i t t e d f o r space
15 g r i d . sync ( ) ;
16 . . . }
17 . . . }
18

19 d e v i c e void 2d5pt Compute ( sm in , r e g o u t ) {
20 x = t h r e a d I d x . x ;
21 t [ IPT +2 ] ; / / IPT : i t e m s per t h r e a d
22 f o r ( y=0; y< IPT+2; y++)
23 t [ y ]= sm in [ x , y+ i nd y −1 ] ;
24 f o r ( y=0; y< IPT ; y++) {
25 r e g o u t [ y ]= sm in [ x+ i nd x −1 , y+1+ i n d y ]*WEST
26 +sm in [ x+ i n d x +1 , y+1+ i n d y ]*EAST
27 + t [ y−1+1]*SOUTH
28 + t [ y+1]*CENTER
29 + t [ y+1+1]*NORTH;
30 }

31 }

the performance of PERKS.
In PERKS, low occupancy is desirable since this releases on-

chip resources (scratchpad memory and registers) to be used for
caching more data. Yet low occupancy should not be done in a
manner that drops the performance. Volkov [36] explored meth-
ods to achieve high performance with low occupancy. Specifi-
cally, Volkov reported that performance is not only dictated by
Thread Level Parallelism (TLP). We use Csw(OP) to represent the
parallelism exposed by the kernel where Csw(OP) is the minimum
number of concurrently executable instructions of the operation
OP exposed by the launched kernel.

The kernel saturates the device only when the minimal concur-
rency exposed by the kernel is higher than the max concurrency
supported by the hardware (Chw).

The hardware concurrency is dictated by Chw by throughput
THR and latency L [36], according to Little’s Law [47]:

Chw = THR · L (3)

The throughput THR for different data access operations are avail-
able in the official documentation of Nvidia GPUs [48, 49].
We measure the latency L with commonly used microbench-
marks [50–52].

We only summarize the concurrency findings. For the global
memory access operations at the SMX level, relying only on TLP
requires minimal occupancy (for Csw ≥ Chw) of 31.25% (P100),
25% (V100), and 37.5% (A100) to fully saturate the memory
bandwidth. Reducing the number of launched threads to meet
this minimal occupancy releases the on-chip resources to be used
for caching in PERKS. In addition, it is worthwhile to mention
that many well-tuned kernels usually rely more on Instruction
Level Parallelism (ILP) to drive the concurrency, which means
even lower occupancy can be tolerated [53–56].

Table 1: Stencil benchmarks. A detailed description of the stencil
benchmarks can be found in [17, 28]

Benchmark(Stencil Order, FLOPs/Cell)
2d5pt(1,10) 2ds9pt(2,18) 2d13pt(3,26) 2d17pt(4,34)
2d21pt(5,42) 2ds25pt(6,59) 2d9pt(1,18) 2d25pt(2,50)
3d7pt(1,14) 3d13pt(2,26) 3d17pt(1,34) 3d27pt(1,54)

poisson(1,38) — — —

6. Evaluation
6.1 Hardware and Software Setup

The experimental results presented here are evaluated on the
two latest generations of Nvidia GPUs: Volta V100 and Ampere
A100 with CUDA 11.5 and driver version 495.29.05.

We run each evaluation ten times for all iterative stencils and
conjugate gradient experiments, and report the run with the high-
est performance.

6.2 Benchmarks and Datasets
6.2.1 Stencil Benchmarks

To evaluate the performance of PERKS-based stencils, we con-
ducted a wide set of experiments on various 2D/3D stencil bench-
marks (listed in Table 1). The baseline implementation uses state-
of-the-art optimizations such as shared memory and heavy un-
rolling (to counter the reduction in over-subscription). We report
the performance (CGells/s) of the baseline implementation for all
benchmarks in Table 2. The baseline performance is on-par with
(and often exceeds) state-of-the-art GPU-optimized stencil codes
reporting the highest performance across different stencil bench-
marks. Namely, SSAM [4], register-optimized stencils [57, 58],
StencilGen [59], and temporal blocking AN5D [3].

We use the test data provided by StencilGen [59]. We tested
three PERKS implementations: PERKS (sm) that only uses
shared memory to cache data; PERKS (reg) that only uses register
to cache data; and PERKS (mix) that uses both shared memory
and registers to cache data. Due to space limitations, we report
only the peak performance among those three PERKS variants.

6.3 Sizes of Domains and Problems
PERKS intuitively favors small domain/problem sizes. How-

ever, for a fair evaluation of PERKS, we can not choose arbitrarily
small domain sizes; we need domain/input sizes that fully utilize
the compute capability of the device. We conducted an elaborate
set of experiments for every individual stencil benchmark to iden-
tify the minimum domain size that would fully utilize the device.
We use this domain size to represent large domains when PERKS
can only partially cache the domain. Note that domain/problem
sizes that are beyond domain/problem sizes that could fully uti-
lize the device are effectively serialized by the device once we
go beyond peak concurrency sustainable by the device. Table 2
summarizes the domain sizes (marked as ’P’) for stencil bench-
marks that would provide a base for a fair comparison. We also
test small domains where the whole domain can be cached by
PERKS (marked ’F’ in Table 2).
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Table 2: Speedup of PERKS over baseline (non-persistent kernels) for 2D/3D stencil benchmarks on A100 and V100 GPUs. For bench-
marks two problem sizes are reported: 1) for domain sizes large enough to saturate the device (i.e. weak scaling simulations), and 2)
for domain sizes that can be Full in PERKS (i.e. strong scaling simulations); Label Explanation: BM = Benchmarks, $ = Cache, P =
Partially Cache, F = Fully Cache, % $ed = Percentage Cached, Perf. = Performance in Giga-cells Updated per Second, ↑ = Speedup,
GM: Geometric Mean.

BM $
Single Precision Double Precision

A100 V100 A100 V100
Domain Size % $ed Perf. ↑↑ Domain Size % $ed Perf. ↑↑ Domain Size % $ed Perf. ↑↑ Domain Size % $ed Perf. ↑↑

2d5pt P 4608 × 3072 59% 257.74 1.66 4096 × 2560 38% 137.30 1.49 2304 × 2304 88% 285.63 3.69 2048 × 1280 88% 241.63 5.45
F 3072 × 2160 100% 636.79 4.34 2560 × 1536 100% 494.64 5.56 2304 × 1536 100% 335.42 4.46 2048 × 1120 100% 277.08 6.44

2ds9pt P 4608 × 3072 64% 229.88 1.51 2560 × 2048 94% 301.32 3.48 2304 × 2304 79% 194.48 2.70 2048 × 1280 75% 108.49 2.51
F 4608 × 1824 100% 463.25 3.59 2048 × 1760 100% 352.98 4.20 2304 × 1152 100% 235.70 3.20 1536 × 1280 100% 188.32 4.39

2d13pt P 4608 × 3072 47% 197.83 1.35 2560 × 2048 94% 222.71 2.64 4608 × 3072 13% 84.40 1.10 2048 × 2048 47% 58.99 1.40
F 4608 × 1440 100% 357.40 2.86 2560 × 1408 100% 266.54 3.25 4608 × 576 100% 181.19 2.71 2048 × 800 100% 141.26 3.62

2d17pt P 4608 × 3072 50% 170.91 1.28 5120 × 4096 14% 99.45 1.16 3072 × 2304 47% 91.77 1.34 4096 × 2560 14% 47.52 1.18
F 3072 × 2448 100% 280.19 2.63 4096 × 800 100% 207.62 2.76 2304 × 1440 100% 145.53 2.30 2560 × 576 100% 109.57 3.18

2d21pt P 4608 × 3072 41% 151.78 1.21 2560 × 2048 75% 124.12 1.60 4608 × 3072 6% 73.44 1.13 5120 × 4096 0% 46.76 1.12
F 4608 × 1536 100% 233.71 2.10 2560 × 1408 100% 178.40 2.39 3072 × 1008 100.00% 118.98 2.29 4096 × 320 100% 89.87 2.63

2ds25pt P 4608 × 4608 13% 126.98 1.05 2048 × 2048 78% 105.91 1.41 4608 × 4608 2% 69.29 1.22 5120 × 4096 0% 46.79 1.21
F 4608 × 672 100% 192.49 1.81 2048 × 1600 100% 149.50 2.06 4608 × 576 100% 96.98 2.00 4096 × 280 100.00% 61.96 2.13

2d9pt P 3072 × 3072 98% 491.51 3.44 2560 × 2048 97% 388.20 4.30 2304 × 2304 83% 247.35 3.27 2048 × 1280 88% 189.82 4.27
F 3072 × 2592 100% 547.10 4.03 2560 × 1664 100% 408.36 4.61 2304 × 1920 100% 289.90 3.89 1792 × 1280 100% 227.56 5.15

2d25pt P 4608 × 3072 47% 187.21 1.26 2560 × 2048 91% 196.04 2.29 4608 × 3072 13% 82.56 1.13 2048 × 1280 63% 67.39 1.58
F 4608 × 1536 100% 274.74 2.04 2560 × 1408 100% 212.94 2.56 4608 × 816 100% 139.38 2.28 2048 × 720 100% 105.13 2.64

GM(2D) - - - - 2.04 - - - 2.60 - - - 2.19 - - - 2.63
3d7pt P 256 × 288 × 256 21% 159.95 1.19 256 × 160 × 256 27% 99.49 1.21 256 × 288 × 256 0% 77.58 1.08 128 × 128 × 128 47% 56.47 1.67

F 126 × 192 × 256 100% 274.37 2.23 68 × 160 × 256 100% 212.58 3.21 39 × 288 × 256 100% 146.25 2.24 80 × 128 × 128 100% 98.33 2.99
3d13pt P 256 × 288 × 256 0% 129.16 1.12 256 × 320 × 256 0% 86.94 1.06 256 × 288 × 256 2% 70.15 1.18 256 × 320 × 256 0% 41.04 1.03

F 81 × 288 × 256 100% 152.15 1.47 32 × 320 × 256 100% 137.67 2.46 33 × 288 × 256 100% 92.62 1.77 8 × 320 × 256 100% 46.93 1.90
3d17pt P 256 × 288 × 256 28% 138.53 1.07 160 × 160 × 256 45% 94.45 1.34 256 × 288 × 256 2% 75.16 1.13 160 × 160 × 256 13% 45.54 1.40

F 84 × 288 × 256 100% 170.66 1.51 160 × 64 × 256 100% 131.01 2.12 36 × 288 × 256 100% 87.97 1.53 32 × 160 × 256 100% 64.43 2.37
3d27pt P 256 × 288 × 256 14% 130.88 1.01 160 × 160 × 256 45% 94.32 1.34 256 × 288 × 256 5% 75.22 1.14 160 × 160 × 256 13% 45.69 1.40

F 81 × 192 × 256 100% 162.22 1.33 160 × 64 × 256 100% 130.99 2.12 33 × 288 × 256 100% 86.89 1.43 32 × 160 × 256 100% 64.01 2.35
Poisson P 256 × 288 × 256 14% 130.50 1.01 160 × 160 × 256 30% 94.70 1.35 256 × 288 × 256 2% 73.13 1.12 160 × 160 × 256 13% 45.78 1.41

F 90 × 288 × 256 100% 164.00 1.45 160 × 64 × 256 100% 130.89 2.12 36 × 288 × 256 100% 87.59 1.54 32 × 160 × 256 100% 64.92 2.39
GM(3D) - - - - 1.30 - - - 1.72 - - - 1.38 - - - 1.80

6.4 Iterative 2D/3D Stencils
Table 2 shows the PERKS’ speedups for both large domain and

small domain sizes. The geometric mean speedup for 2D sten-
cils is 2.11x in A100 and 2.61x in V100. The geometric mean
speedup for 3D stencils is 1.34x for A100 and 1.76x for V100.
It is worth reemphasizing that PERKS’ speedups should not be
compared to speedups from optimization applied to the baselines;
PERKS’ speedups are compounded over any speedups for opti-
mizations applied to the baselines.

In large problem sizes, it is important to note three points: a)
the benchmarks we use include both low-order and high-order
stencils, b) the speedups are particularly higher on low-order sten-
cils that are more commonly used in practice (ex: geomean of
1.57x speedup for up to 2nd order 3D stencils on V100 and A100
in double precision), and c) the speedups we report are not lim-
ited to the –highly optimized– implementation we use as base-
line; other stencil implementations, regardless of their internals,
can also benefit from being transformed to PERKS.

6.5 Where to Cache: Shared Mem., Registers, or Both?
The intuition is that using both shared memory and registers

would always be better (more cache-able space). The results
show that this is usually the case. There can, however, be ex-
ceptions. For instance, in our observations, we see that for higher
order stencils, using shared memory and registers is often not the
ideal choice (presumably due to arising register pressure).

6.6 Discussion of the Results
We want to emphasize that for large problem sizes, PERKS

achieves high performance. To illustrate it, we can see from Fig-
ure 5 and Figure 6, that by applying PERKS in V100, we get a
geometric mean speedup of 1.71x, which is 98.6% of what one

generation of hardware improvements in A100 provide (1.72x)
. Applying PERKS provides a performance gain comparable
to migrating to the next generation hardware.

7. Related Work
The concept of persistent threads and persistent kernels dates

back to the introduction of CUDA. The main motivation for per-
sistence at the time was load imbalance issues with the runtime
warp scheduler [60, 61]. Later research focused on using persis-
tent kernels to overcome the kernel invocation overhead (which
was high at the time). GPUrdma [62] and GPU-Ether [63] ex-
panded on the concept of persistent kernels to reduce the latency
of network communication. As on-chip memory sizes increased,
researchers began to capitalize on data reuse in persistent kernel.
Most of them focused on specific applications, GPUrdma [62]
proposed to keep the constant matrix in shared memory. Kho-
rasani et al. [64] proposed to keep parameters in register. Zhu
et al. [65] proposed a sparse persistent implementation of recur-
rent neural networks. To our knowledge, this work is the first to
propose a methodological and generic blueprint for accelerating
memory-bound iterative applications using persistent kernels.

8. Conclusion
We propose a persistent kernel execution scheme for iterative

applications. We enhance performance by moving the time loop
to the kernel and caching the intermediate output of each time
step. We show notable performance improvement for iterative
2D/3D stencils for both V100 and A100 over highly optimized
baselines. We further report notably high speedups in small do-
main/problem sizes, which is beneficial in strong scaling cases.
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Fig. 5: PERKS speedup for 2D/3D stencil benchmarks on A100 and V100 GPUs. Baseline in this figure (and Figure 6) uses the
widely-common stencil optimization employing shared memory to improve locality [2, 16]. Note that using higher performing stencil
implementations as baseline would further improve PERKS speedup since the overhead of data storing/loading in between iterations
proportionally increases when the implementation is more optimized (as explained in Figure 3)

!"##
#"$% $"!& $"'( &"!$ &"'$

)"')

&"!#
!"#$ &"%%

'"%* &"$+ &"$) &"$% %"!&

! !

"!

#$!

!
$
%
"
&

#!

&,)
-./0
''&
*1&*
#(2

&,3
%-./
0')
$!1'
&(*
2

&,'
$-./
0(*
*1&*
#(2

&,'
+-./
0)+
!1&)
!*2

&,&
'-./
0$&
*1#*
%!2

&,3
&)-
./0&
(*1#
*%!
2

&,%
-./0
'+%
&1'&
(*2

&,&
)-./
0+&
*1&*
#(2

$,+
-./0
'&(
1'&(
1(*2

$,'
$-./
0$&
*1&)
!1(2

$,'
+-./
0'!
*1&)
!1$&
2

$,&
+-./
0'!
*1&)
!1$&
2

-453
346
/0'!
*1&)
!1$&
2

'(
))

*+
()")!

#"&*
$"&) &"+! &"$% &"*!

#"!'
&")! !"%$ $"&' &"#! &"'& &"'& &"'& %"!'

! !

#$!

$%!

!
$
%
"
&

#!

&,)
-./0
')$
!1&)
!*2

&,3
%-./
0'+
!*1&
*#(
2

&,'
$-./
0'#
*(1&
)!*
2

&,'
+-./
0(*
*1#*
%!2

&,&
'-./
0'#
*(1&
)!*
2

&,3
&)-
./0'
!**
1&*#
(2

&,%
-./0
'!!
#1&)
!*2

&,&
)-./
0'#
*(1&
)!*
2

$,+
-./0
'!*
1&)!
1!(2

$,'
$-./
0$&
*1&)
!1$&
2

$,'
+-./
0!#
1&)!
1'!*
2

$,&
+-./
0!#
1&)!
1'!*
2

-453
346
/0!#
1&)!
1'!*
2

'(
))

*+
(

!"#$%&''$!()*+,-#

#"#!
$"&* &"+' &"$* &"&% &"**

$"(%
&"&( %"'& &"&# '"++ '")$ '"#$ '")# (")&

! !

"!

#$!

!
$
%
"
&

#!

&,)
-./0
')$
!1&$
*#2

&,3
%-./
0''
)&1&
$*#
2

&,'
$-./
0)+
!1#!
*(2

&,'
+-./
0'#
#*1&
$*#
2

&,&
'-./
0'*
*(1$
*+&
2

&,3
&)-
./0)
+!1#
!*(
2

&,%
-./0
'%&
*1&$
*#2

&,&
)-./
0('
!1#!
*(2

$,+
-./0
&((
1&)!
1$%2

$,'
$-./
0&(
(1&)
!1$$
2

$,'
+-./
0&(
(1&)
!1$!
2

$,&
+-./
0&(
(1&)
!1$$
2

-453
346
/0&(
(1&)
!1$!
2

'(
))

*+
( !.#$/&''$!012.,-#

#"$# $")% &"(! &"!$ &"'* '"('

#"*$
&"*# %"'* &"&$ '"#+ '")' '"$$ '"#) ("#'

!
!

#$!

$%!

!
$
%
"
&

#!

&,)
-./0
&'!
*1$*
+&2

&,3
%-./
0'(
&#1#
!*(
2

&,'
$-./
0'#
#*1#
!*(
2

&,'
+-./
0&#
#(1$
*+&
2

&,&
'-./
0')
$!1#
!*(
2

&,3
&)-
./0!
+&1#
!*(
2

&,%
-./0
&)%
&1$*
+&2

&,&
)-./
0')
$!1#
!*(
2

$,+
-./0
'%&
1&)!
1'&!
2

$,'
$-./
0&(
(1&)
!1('
2

$,'
+-./
0&(
(1&)
!1(#
2

$,&
+-./
0'%
&1&)
!1('
2

-453
346
/0&(
(1&)
!1%*
2

'(
))

*+
( '())*+(,-./01' 234)567)-.)89:8;37<)!3#$/&''$!()*+,-#

2
34

)5
67

)-
=>

?
)5
54
@4
A

!4#$%&''$!012.,-#

2
34

)5
67

)-
=>

?
)5
54
@4
A

!"
#$%

&'()
*

!"
#$%

&'()
*

!"
#$%

&'()
*

!"
#$%

&'()
*

!"
#$%

&'+)
*

!"
#$%

&'+)
*

!"
#$%

&'+)
*

!"
#$%

&'+)
*

Fig. 6: Performance of PERKS for 2D stencils with small domain sizes on A100 and V100 GPUs (domain sizes are written next to the
benchmark names). Small domain means that the whole domain can be cached (ex: in strong scaling cases).
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