多数のカメラを活用した空間認識処理に関する研究

神村涼1 池上努2 工藤知宏1

概要:同一領域を複数のカメラで同時撮影し、それらのデータを統合することで空間の三次元的な構成要素を特定す る手法について報告する.エッジデバイス自身で一次解析処理を行うスマートカメラを用いることで、撮影画像の集 約を避け、通信量の削減とプライバシー保護の両面を実現する.撮影した画像を個々のカメラ上で CNN を用いた物 体検出手法である YOLO により処理し、得られた画像解析情報をサーバに送信する.サーバ側ではこれらの情報とカ メラの三次元位置情報から、領域に存在するオブジェクトの種類と位置を再構成する.3 台のカメラの情報を用いる ことで、2 台の情報では確定できない複雑なシーンであっても一意的な再構成が可能であることを示した.

Spatial Recognition by using Surrounding Observation Cameras

RYO KAMIMURA^{†1} TSUTOMU IKEGAMI^{†2} TOMOHIRO KUDOH^{†1}

1. はじめに

昨今,監視や見守りの自動化を目的として,機械学習の ビデオモニタリングへの応用が進められている.これらの 研究の多くは,撮影した生データをクラウドに集約し分析 する手法を用いている[1].このような手法では,通信量が 膨大になるだけでなく,プライバシーなどの問題が生じる 可能性がある[2].また,ビデオモニタリングではカメラと 対象物の位置関係次第では,形状や数量などについて正し い情報が得られない恐れがある.後者の問題は複数カメラ の情報を統合して解析・活用することで解決することがで きるが,この場合,通信量やプライバシーなどの問題はよ り深刻になる.

このジレンマを解消する上で、エッジデバイス上での画 像データ処理は有効な手段である.カメラに付随したエッ ジデバイス上で撮影画像に対して物体検出などの画像処理 を施し,抽象化されたデータのみをクラウド上に送信する. これにより、通信量の削減だけでなく、プライバシーの保 護を実現できる.また、同一シーンを多数のカメラで同時 撮影しても通信量は小さく, 死角の問題を容易に解決でき る. これを実現するためには、高度なデータ処理機能を備 えた監視カメラを多数配置する必要があるが、近年、この 目的に則した安価なカメラ付きデバイスが製品化されるよ うになってきた. その一つ, HUSKYLENS は, 顔認識やオ ブジェクト追跡などの機械学習アルゴリズムが組み込まれ たシングルボードコンピュータで、検出結果をシリアルイ ンターフェース経由で外部に送信する. HUSKYLENS の MPU, Kendryte K210 は機械学習専用のモジュールを備え た System On Chip (SoC)で、物体検出や音声処理を低消費 電力で実現する.同じ MPU を用いたテストボード, Sipeed MAIX Bit の動作例を Figure 1 に示す. ここでは Micro Python を介して Tiny YOLOv2 を動かし,カメラで撮影したデータ をリアルタイムで物体検出処理をしている. LCD 上に物体 検出した枠とそのカテゴリ (Potted Plant と Car) が表示さ れていることがわかる. これら一連の処理にかかる電力は LCD (バックライト付)・カメラ込みでも1W未満(5Vで 200 mA 未満)であり,バッテリ動作も可能な低消費電力を 実現している.

Figure 1 Example of object detection by edge device.

このようなインテリジェントなデバイスを多数配置し、 同一シーンを多方向から撮影・画像処理することで、シー ンに関する抽象化後のデータを収集することができる.本 稿では、このようにカメラ上での解析で得られた多面的な 情報を統合し、シーンに関する三次元的な情報を再構成す る手法について論じる.すなわち、各カメラの絶対位置と 撮影範囲を所与とし、カメラから出力される物体検出結果 (物体のカテゴリおよび撮影画像内における位置とサイズ) から物体の絶対位置を推定する.

¹ 東京大学

The University of Tokyo

² 産業技術総合研究所

National Institute of Advanced Industrial Science and Technology (AIST)

2.1 複数カメラの活用

近年,スポーツ映像のマルチカメラ解析への関心が高ま っている.例えば,多視点映像の同期処理によるスポーツ 選手のトラッキングや,自由視点映像の生成,プレーの分 類や戦術分析などに関する研究が行われている[5].スポー ツ映像ではオクルージョンが多く動きが速いため,選手な どの特定が困難な傾向がある.そのため,既存研究のほと んどの手法は,異なる方向から撮影された重なりを持つ複 数の映像の情報を統合している[6-8].このように複数の映 像の情報を統合するためには,画像上の全ての画素を対応 する三次元空間座標と結びつけるために正確なカメラキャ リブレーションが必要である[8].上述の既存研究はいずれ も,カメラで撮影した映像データを集約しており,前節で 述べたように通信量やプライバシーなどについて問題とな る可能性がある.

また,正確な三次元情報を取得するために点群を用いる 研究[9]も報告されている.点群に基づく手法は,高いコス トを要することやリアルタイム性に欠けることなどが課題 となる.

2.2 スマートカメラの活用

AI, ML, IoT などの進歩により,人手を介さずに映像の 中からセキュリティ上の脅威を自動的に検出する,インテ リジェントなモニタリングシステムが提案されている.[1] では,画像解析をクラウド上の集中管理されたサーバで実 行される部分と,スマートカメラ上でローカルに実行され る部分に分けている. AI を搭載したモニタリングアプリケ ーションをエッジに展開することで,撮影された映像の初 期分析をカメラを搭載したデバイス上で行い,通信のオー バーヘッドの削減と,低遅延での脅威検出を実現している. ただし,カメラで撮影した画像は二次元情報しか持たない ため,[1]のような単視点カメラによるモニタリングでは奥 行き情報が定まらず三次元再構成が困難である.LiDAR (Light Detection and Ranging) センサなどと組み合わせるこ とで奥行き情報が得られるが,一般に高いコストを要する.

3. 提案手法

3.1 概要

本研究では、前節で述べた複数カメラを用いるソリュー ションとスマートカメラによるソリューションを統合して いる.本研究の全体像を Figure 2 に示す.カメラ付きのエ ッジデバイスを複数用意し、同じシーンを多方向から撮影 するよう配置する.カメラの位置・画角情報はあらかじめ 取得しておく.各カメラは撮影した画像の一次解析処理を 行い、得られた画像解析データをクラウド上のサーバに集 約する.サーバ上では複数カメラの情報を統合し、撮影シ ーンの三次元的な状況を再構成する.カメラ上で画像処理 することで、サーバとの通信量やプライバシーなどの課題 を解消できる.

Figure 2 Research overview.

本研究では、画像の一次解析処理に You Only Look Once (YOLO)[10-12]を用いた. YOLO は機械学習による物体検 出のアルゴリズムで、画像内の物体のバウンディングボッ クスを検出すると同時に、その物体のカテゴリを判定する. YOLO では検出と判定を分離せずに処理するため、高速な 物体検出が可能となっている.以下に述べる提案手法の検 証では、あらかじめ撮影した高解像度の画像をパソコン上 の YOLOv7 で処理し、検出した物体のカテゴリとバウン ディングボックス (中心位置とサイズ) のリストを一次解 析結果として用いた.物体検出の例を Figure 3 および Table 1 に示す.

Figure 3 Object detection by YOLOv7.

	Table 1	Object detection result.		
class	x	у	width	height
2 (Car)	0.192448	0.608681	0.170312	0.163194
75 (Vase)	0.590885	0.678819	0.167187	0.302083

YOLOは、画像左上隅を原点(0.0,0.0)とし、右下隅が(1.0, 1.0) になるよう規格化した座標系について、検出した物体 のカテゴリと中心点,およびバウンディングボックスの幅・ 高さを出力する. この例では,容量 2.8 MB の JPEG 画像を 一次解析処理することで、77Bのテキストデータに縮約し ている. なお, 検証に用いたセットアップでは, カテゴリ のクラス数は80である.

3.2 エピポーラ線

Table 1 で見たように、各カメラからは二次元の画像解析 結果が送信される.カメラの位置と方角および画角情報を 既知として,解析結果から三次元空間内のエピポーラ線を 求める.

エピポーラ線とはカメラと物体を結ぶ直線のことである. Figure 4 に幾何学的な配置図を示した.赤で示した線がこ こで求めるエピポーラ線である.いま,三次元空間内のカ メラの位置を o, 撮影方向の単位ベクトルを n とし, カメ ラ上方の単位ベクトルをpとする.pはn軸周りのカメラ の傾き(ロール角)を表すもので, n と直交する. カメラ の仮想的な投影面を距離1の位置に設定すると、そのサイ ズ (U,V) は画角情報から求めることができる. 投影面中央 から右端までのベクトルを u, 中央から上端までのベクト ルをレとすると、

$$\boldsymbol{u} = \frac{U}{2}(\boldsymbol{n} \times \boldsymbol{p})$$
$$\boldsymbol{v} = \frac{V}{2}\boldsymbol{p}$$

となる. 典型的なケースとしてカメラのロール角をゼロと して配置すると,鉛直上方の単位ベクトルを z として

$$p = \frac{z - (z \cdot n)n}{|z - (z \cdot n)n|}$$

で与えられる.ここで,・は内積を,×は外積を表す.こ こに定義した各ベクトルは、カメラごとに定数として求め られる.

YOLO により物体が画像内 (x, y) の位置に検出されたと き, カメラとその物体を結ぶエピポーラ線は, t をパラメー タとして次のように定められる.

$$e = o + td$$

$$= \frac{n + (x - 0.5)u + (0.5 - y)v}{|n + (x - 0.5)u + (0.5 - y)v|}$$

eはエピポーラ線上の点である.カメラと物体の距離をtに

代入すると、物体の位置を定めることができる.

Figure 4 Epipolar geometry.

3.3 三次元再構成

ぞれ

カメラが1台しかない場合、検出した物体に対してエピ ポーラ線が定まるが、線上のどこに位置するか特定するこ とができない. そこで配置の異なる2台以上のカメラを用 いて同一物体を検出し、複数のエピポーラ線の交点として 物体の位置を決定する.一般にカメラの位置や検出座標は 誤差を含むため,エピポーラ線は厳密には交差しない.こ こではエピポーラ線間の最近接点より物体座標を推定する. 2 台のカメラから同一物体に向けたエピポーラ線をそれ

$$e_1 = o_1 + t_1 d_1$$
$$e_2 = o_2 + t_2 d_2$$

とする. 方向ベクトル d_1 , d_2 が非平行であれば e_1 , e_2 の最 近接点は $e_2 - e_1 \ge d_1$, d_2 の直交条件より一意に定まり,

$$t_1 = \frac{(\boldsymbol{d_1} - a\boldsymbol{d_2}) \cdot \boldsymbol{b}}{1 - a^2}$$
$$t_2 = \frac{(-\boldsymbol{d_2} - a\boldsymbol{d_1}) \cdot \boldsymbol{b}}{1 - a^2}$$

で与えられる.ここで $a = d_1 \cdot d_2$, $b = o_2 - o_1$ である. 物 体の推定位置は、この最近接点の中点にとる.

3 台以上のカメラが同一物体を検出する場合, エピポー ラ線の全組み合わせについて最近接点が求められる. この 場合,最近接点分布の中心を推定位置とし,分布の半径を 推定誤差とする.

3.4 計算例

カメラ2台で同一シーンを撮影したケースについて,計 算例を示す.物体(Car と Vase)およびカメラの配置は Figure 5に示す通りである.カメラ1,2の撮影画像と検出結果を それぞれ Figure 3, Table 1 および Figure 6, Table 2 に示す. これらの情報をもとに計算したエピポーラ線と位置推定の 結果を Figure 7 に図示した.

Figure 5 Position of the Car, the Vase and Cameras in cm unit.

Figure 6 Object detection by YOLOv7 (Cam2).

Table 2 Object detection result (Cam2).				
class	x	у	width	height
2 (Car)	0.533594	0.722917	0.258854	0.233333
75 (Vase)	0.766667	0.637847	0.095833	0.161806

推定位置の実測値からのずれは, Car で 3.6 cm, Vase で 0.4 cm であった.一方,最近接点間の距離は Car で 1.4 cm, Vase で 0.6 cm であり,最近接点のばらつきが推定位置の誤 差をよく反映していることがわかる. Car において誤差が 大きいのは,検出した物体の中心点がカメラ間で一致して いないことが原因と考えられる.すなわち,物体検出で得 られるバウンディングボックスの中心は,必ずしも物体の 重心に一致しない.改善策として,セグメンテーション[13] の情報を併用することで,物体の中心点を精密化すること ができる.

Figure 7 3D coordinate estimation.

4. オブジェクトが複数ある場合の処理

前節で述べた計算例では、物体検出結果に含まれるカテ ゴリを手がかりにエピポーラ線を分類することができた. しかし、群衆シーンのように同一カテゴリの物体が複数存 在する場合、エピポーラ線の帰属に関して問題が生じる. 群衆シーンを模擬するものとして、Figure 8 に示すシーン の解析を行なった. 9 本の Bottle と 3 台のカメラの配置図 を Figure 9 に示す. 以下, Bottle A と B の位置決定を題材 に、問題点を提示するとともに解決策を提案する.

Figure 8 Placement of Bottles.

Figure 9 Position of the Bottles and Cameras in cm unit.

4.1 エピポーラ線の帰属問題

Figure 9 の空間配置において, Cam1 と Cam2 の 2 台のカ メラのみを用いて物体座標推定を行う場合について,得ら れるエピポーラ線を Figure 10 に図示した.実際には A, B 以外のボトルも検出されるが,これらはあらかじめ人為的 に省いた.各カメラから 2 本ずつ,合計 4 本のエピポーラ 線が引かれる結果,合計 4 個の交点(最近接点の組)が算 出される.ここで,Cam1 と Bottle A を結ぶエピポーラ線 と,Cam2 と Bottle B を結ぶそれとの交点を,1A-2B のよう に記述する.前節の手順に従って位置推定すると,エピポ ーラ線の対応関係は自明ではないため,2 本の Bottle の三 次元座標として,1A-2A および 1B-2B の組(Pattern 1)と, 1A-2B および 1B-2A の組(Pattern 2)の2 通りが考えられ る.ここから正しい組み合わせ(Pattern 1)を選び取る問題 が,エピポーラ線の帰属問題である.

第一に,推定誤差(最近接点間の距離)のより小さい組 を選択する手法が考えられるが,カメラと物体の配置次第 ではこれはよい指標とはならない.実際,Figure 9の配置で は Pattern 1 で 1.7 cm と 1.0 cm, Pattern 2 で 1.2 cm と 0.1 cm なり,前節の結果から予測される推定誤差範囲内に収まっ てしまう.以下,サイズ情報を併用する方法と,3 台以上 のカメラを活用する手法について述べる.

Figure 10 Object coordinate estimation (2 Cameras).

4.2 サイズ情報を用いた帰属

YOLO は検出した物体のバウンディングボックスのサイズ(w, h)を出力する. カメラと物体との距離 t が定まると, 物体の実際のサイズを

$$W = U \cdot w \cdot t$$

$$H = V \cdot h \cdot t$$

のように計算できる. 誤った組み合わせ (Pattern 2) では遠 近法が狂っているので,各カメラから算出される物体のサ イズの整合性から正しい組み合わせの判定が可能である. サイズ推定の結果を Table 3 に示す.サイズ指標として対 角線の長さを用いた.

	Pattern 1		Pattern 2	
	1A-2A	1B-2B	1A-2B	1B-2A
Cam1 [cm]	252.7	233.9	458.4	140.8
Cam2 [cm]	224.7	241.4	502	168.2
Absolute Error [cm]	28.0	7.5	43.6	27.4

Cam1 と Cam2 の絶対誤差が最大となるのは 1A-2B の場合 である.よって、Pattern 2 が誤った組み合わせであり、 Pattern 1 が正しい組み合わせであると判定することができ る.ただし、正しい組み合わせである 1A-2A の場合におい ても、絶対誤差が比較的大きな値となっている.YOLO に よる物体検出では、撮影する方向に依存してサイズが変化 することもあり、サイズ情報を用いた帰属の有用性はカテ ゴリに依存して異なる.また、物体が重なって写るケース などバウンディングボックスを誤って検出する傾向がある ため、複雑なシーンの解析では誤判定する可能性がある. そこで、4.3 ではカメラを1台追加することにより、サイズ 情報を用いることなく座標推定を行なった.

Vol.2022-CG-188 No.21 Vol.2022-DCC-32 No.21 Vol.2022-CVIM-231 No.21 2022/11/19

4.3 3台目のカメラを用いた帰属

3 台以上のカメラを用いることで,推定誤差に基づく判 定を精緻化することができる. Figure 11 に, Cam1, Cam2 に加えて Cam3 から Bottle A, B へのエピポーラ線を図示す る.図中, Bottle A, B の実際の位置を黒点で示している.

Figure 11 Object coordinate estimation (3 Cameras).

カメラが増えた結果,可能なエピポーラ線の組み合わせ は4通りに増える.正しい組み合わせ(1A-2A-3Aおよび 1B-2B-3B)および誤った組み合わせ(1A-2B-3Aおよび1B-2A-3B)の場合について,得られる最近接点を赤と青のドッ トでそれぞれ Figure 12と Figure 13に示した.正しい組み 合わせでは合計6点の最近接点が密集する一方,誤った組 み合わせではばらついていることがわかる.正誤全ての組 み合わせについて,推定誤差をTable4にまとめた.最近接 点の平均値を中心とした分布半径を推定誤差に取っている.

Figure 12 Correct combination (3 Cameras).

Figure 13 Wrong combination (3 Cameras).

Table 4 Distribution radius of closest points.

Red		Blue		
Combination	Radius [cm]	Combination	Radius [cm]	
1A-2A-3A	7.9	1B-2B-3B	3.8	
1A-2B-3A	90.9	1B-2A-3B	16.1	
1A-2B-3B	1041.5	1B-2A-3A	37.9	
1A-2A-3B	1071.7	1B-2B-3A	133.7	

正しい組み合わせの場合と比べて, 誤った組み合わせの場 合では,分布半径が1桁から2桁程度大きいことがわかる. したがって,分布半径の小さい組を選択することで正しい 組み合わせを判定することができる.

5. 考察

カメラがn台で同一クラスカテゴリの物体がm個検出さ れた場合,エピポーラ線の組み合わせの総数はm!ⁿ⁻¹通り となる.よって,カメラの台数や物体の個数が増えるごと に,組み合わせの総数と計算量が爆発的に増加する.これ は組み合わせ最適化問題に帰着され,最適解を効率的に求 めるための工夫が必要となる.ここではカテゴリ分類の精 緻化の可能性と,オクルージョンによる問題点について議 論する.

5.1 カテゴリ分類の精緻化

(1) 色情報による分類

群衆シーンでは、色情報を特徴量として分類し組み合わ せの数を削減することができると考えられる.バウンディ ングボックス中の色情報を手がかりとして物体を区別する. ただし、照明や外光などの周辺環境の変化によって物体色

情報処理学会研究報告 IPSJ SIG Technical Report

も変化するため、シーン全体の色分布に基づく補正処理 [14]などが必要となる.また、カメラごとの写り方の違いに よって物体の色分布が異なり、誤判定する可能性がある. そのため、色情報のみではなく他の情報も組み合わせて分 類を行うことが有効であると考えられる.

(2) インスタンスセグメンテーションによる分類

インスタンスセグメンテーションは、ピクセルレベルで 物体のクラスカテゴリを分類する手法である.実行例を Figure 14 に示す. バウンディングボックスレベルで検出を 行う物体検出と比べて、高精度な検出が可能である.オク ルージョンに強いことや、正確な領域を抽出可能であるこ となどが特徴である. ROI (Region of Interest) を対象に,全 ての物体に対してクラスカテゴリを予測し,各物体に対し て一意の ID を付与する. そのため, 1 枚の画像に複数の人 物が写っている場合、それぞれの人物を別の物体として認 識することが可能である.ただし、物体検出と比べて多く の計算量を要し、現在製品化されている安価なエッジデバ イス上での実行は困難である. エッジデバイスの性能が 日々進歩していることや、インスタンスセグメンテーショ ンを軽量化する手法[15]が提案されていることなどから、 将来的にはエッジデバイス上で処理可能となることが期待 される.

Figure 14 Instance Segmentation.

(3) 人物姿勢推定による分類

人物姿勢推定では,画像中の人物の関節点座標の推定を 行う.実行例を Figure 15 に示す.人物姿勢推定によって得 られる人物の向きや姿勢などの情報から分類を行うことで 組み合わせの数を削減することが可能である.また,(1)で 述べた色情報による分類と併用することにより,判定の精 度を高めることができると考えられる.

Figure 15 Pose Estimation.

5.2 遮蔽などによる問題点

カメラと物体の配置次第では、全てのカメラに全物体が検 出されるとは限らない.例えば Figure 9 の配置では、Caml-3 はそれぞれ 7本、6本、7本のボトルを検出しており、数 は一致しない.このような状況では正しい組み合わせの判 定はより複雑となる.解決策の検討はまだ十分にできてい ないが、前節で用いた分布半径に基づく判定の改良などを 検討している.前節では単純に最近接点の最大半径を指標 としたが、例えば最近接点の分布を手がかりにエピポーラ 線の取捨選択が可能ではないかと考えている.組み合わせ の数が膨大である場合、サーバ側の潤沢な計算リソースを 活用した並列処理も選択肢として挙げられる.

6. まとめ

本研究では、同一領域を複数のカメラで同時撮影し、機 械学習による物体検出結果を統合することで空間の三次元 的な構成要素を特定する手法について検討した.同一カテ ゴリの物体が複数存在する場合でも、3 台以上のカメラを 用いることにより、領域に存在するオブジェクトの種類と 位置について一意的な再構成が可能であることを示した.

カメラの台数や物体の個数が増えると,再構成にかかる 計算量は爆発的に増加する.計算量の削減にはエッジデバ イス側で行う一次解析処理の精緻化が必要である.現状で も色情報の付与など軽量な精緻化は可能と考えているが, 将来的にはセグメンテーションや姿勢推定など,より高度 な機械学習がエッジデバイス上で処理可能になると期待し ている.

エッジ AI に関する技術は急速な進歩を続けており,新 たな手法や新製品などの発表が行われている. Sense CAP[16]は1節で紹介したエッジデバイスと比べて性能が 高く,高度な処理が実行可能となっている.本研究の提案 手法と同様に,ローカルで画像を推論し抽象化された最終 結果のみをクラウドに転送するため,通信量の削減や高い データプライバシーを要するアプリケーションに適してい る.また,抽象化されたデータの容量は非常に小さいため, LPWA(Low Power Wide Area)のように容量に強い制約があ る通信方式を採用することができる. SenseCAP では, LoRaWAN モジュールを搭載することにより,超低消費電 力で長距離伝送を実現している.このように,ソフトとハ ードの両面で技術が進歩していくことにより,本研究の応 用展開が広がると考えられる.

参考文献

- Ahmed Abdelmoamen Ahmed and Mathias Echi.. Hawk-Eye: An AI-Powered Threat Detector for Intelligent Surveillance Cameras. IEEE Access, 2021, vol.9, p.63283-63293.
- [2] Ahmed Abdel Moamen and Nadeem Jamali. Opportunistic Sharing of Continuous Mobile Sensing Data for Energy and Power Conservation. IEEE Transaction on Services Computing, 2020, vol.13, no.3, p.503-514.
- [3] "DFROBOT SKU:SEN0305", https://wiki.dfrobot.com/HUSKYLENS_V1.0_SKU_SEN0305_SE N0336, (accessed 2022-09-21).
- [4] Sipeed: "Sipeed Maix-Bit Specifications", https://dl.sipeed.com/shareURL/MAIX/HDK/Sipeed-Maix-Bit/Specifications, (accessed 2022-09-21).
- [5] 田中成典、山本雄平、姜文渊、中村健二、清尾直輝、田中ちひろ. 複数視点からの映像を用いたスポーツ選手のトラッキングに関する研究. 日本知能情報ファジィ学会誌, 2020, vol.32, no.4, p.812-830.
- [6] 姜文渊、山本雄平、田中成典、中村健二、田中ちひろ、単視点 多眼によるアメリカンフットボールプレイヤーの識別と位置 特定に関する研究.写真測量とリモートセンシング,2018, vol.57, no.5, p.198-216.
- [7] Xina CHENG, Norikazu IKOMA, Masaaki HONDA, TakeshiIKENAGA.. Multi-View 3D Ball Tracking with Abrupt Motion Adaptive System Model, Anti-Occlusion and Spatial Density Based Recovery in sports Analysis. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, vol.E100A, no.5, p.1215-1225.
- [8] Yukun Yang, Ruiheng Zhang, Wanneng Wu, Yu Peng, Min Xu.. Multi-camera Sports Players 3D Localization with Identification Reasoning. IEEE 2020 25th International Conference on Pattern Recognition (ICPR), 2021, p.4497-4504.
- [9] Yin Zhou, Oncel Tuzel.. VoxelNet: End-toEnd Learning for Point Cloud Based 3D Object Detection. arXiv: Computer Vision and Pattern Recogniton /1711.06396v1, 2017, p.1-10.
- [10] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi.. You Only Look Once; Unified, Real-Time Object Detection. arXiv: Computer Vision and Pattern Recognition /1506.02640v5, 2016, p.1-10.
- [11] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv: Computer Vision and Pattern Recognition /2004.10934v1 2020, p.1-17.
- [12] Chien-Yao Wang, Alexey Bochkovskiy, Hong-Yuan Mark Liao.. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real time object detectors. arXiv: Computer Vision and Pattern Recognition /2207.02696, 2022, p.1-17.
- [13] Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yongming Haung, Youliang Yan.. BlendMask: Top-Down Meets Bottom-up for Instance Segmentation, arXiv: Computer Vision and Pattern Recognition /2001.00309, 2020, p.8573-p.8581.
- [14] 辻本晃大, 土居元紀. シーンの色分布を手掛かりとして照明

変動を補正した色情報による人物追跡. 日本色彩学会誌, 2017, vol.41, no.6, p.47-49.

- [15] 小石原遼, 天野敏之, 渡辺義浩. 高速インスタンスセグメン テーションを用いた投影による選択的色操作の提案, 日本バ ーチャルリアリティ学会 複合現実感研究会, 2022, vol.25, no.1, p.1-6.
- [16] "SenseCAP A1101 LoRaWAN Vision AI Sensor, Open the Door to the TinyML world", https://www.seeedstudio.com/SenseCAP-A1101-LoRaWAN-Vision-AI-Sensor-p-5367.html, (accessed 2022-10-21).