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3D Face Reconstruction-based Augmentation for Gaze and
Head Redirection
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Abstract: Gaze and head redirection is to change the gaze and head orientation of a full-face image to a target direc-
tion. Instead of only changing face direction in existing generation tasks, controllable both gaze and head redirection
containing more complicated information is also critical for creating expressive face image. However, the redirection
precision of existing gaze and head redirection models critically degrades once the target direction goes out of the
model’s capable range, which is limited by the angle range of the training data. In this paper we propose to use monoc-
ular 3D face reconstruction as data augmentation to extend the redirection range of the existing limited real data. The
augmentation can largely extend the head pose range by rotation while preserving the original gaze information of real
data. Consequently, the range of the head pose and gaze can both be extended. Experiments show that the proposed
data augmentation significantly improved the redirection performance especially when redirecting to a relatively large

angle while keeping the image quality.
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1. Introduction

In recent years, gaze has gained more and more attention in
the computer vision community due to its significance in human
behavior. Although estimating gaze direction has been making
great progress from model-based to the current appearance-based
approaches using deep neural network [6], [9], [33], redirecting
gaze and head of a given image becomes an even more impor-
tant topic due to the growing demand for face synthesis and face
editing in applications such as avatar in online advertising. Pre-
vious works redirected the gaze based on image-warping [5] or
combining graphics [28]. Generative adversarial network (GAN)
is also introduced to achieve better photo-reality [11]. While
these methods can only redirect gaze, learning-based face syn-
thesis has made great progress in simultaneously redirecting head
and gaze [35].

Learning-based face synthesis requires gaze and head pose la-
bels during training. It is believed that the learning-based gen-
erative model cannot precisely redirect to a large angle that is
out of the range of the training dataset, and therefore collecting
comprehensive training data is the main challenge in gaze redi-
rection. Specifically, while head pose labels are relatively easy
to get, sophisticated devices are required to obtain accurate gaze
labels. Previous work has made great efforts to collect accurate
gaze from in-the-wild settings [18], [34]. Although they obtained
a diverse environment and large subject scale, the gaze is natu-
rally limited by the screen size. On the other hand, extreme di-
rection data can be collected in lab-controlled settings [31], but
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the high cost makes it difficult to reach a large subject scale. To
address the above challenges, we propose to create synthetic data
as data augmentation to extend the angle range of existing limited
real data.

Since gaze is subtle information in the face image, the aug-
mentation data must contain an accurate gaze label, which is
defined as a 3D vector in physical space. The GAN-based
face generation approach cannot be directly applied since it
manipulates head pose in latent space instead of real physical
space [13], [17], [25], [26], [27]. Besides, the synthesized im-
age is also not reliable and few GAN-based works have consid-
ered gaze feature manipulation. On the other hand, 3D face re-
construction has been used to enhance face recognition [36] and
gaze estimation [21] because its sampled texture preserves the
original gaze feature. The 3D face can be rotated in 3D space
without estimation error, and therefore we decide to use this ap-
proach to augment the learning-based head and gaze redirection
method [14], [35].

In conclusion, we adopt a state-of-the-art head and gaze redi-
rection method, and create augmentation data to extend its capa-
ble redirection angle range. Our contribution can be summarized
as

e We hypothesized that the angle range in training data hugely
influenced the model’s redirection range and proved it by ex-
perimental analysis.

e We create augmentation data with a much larger angle range
by 3D face reconstruction.

e The experimental results proved that the 3D face
reconstruction-based augmentation is effective for ex-
tending the angle range of existing limited datasets for face
and gaze redirection.
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In this paper, we will introduce the dataset settings and ex-
perimental settings in section 3 used in the following hypothesis
validation and augmentation effect evaluation. In Section 4, we
first analyze the influence of training data’s angle range using an
existing large-range real dataset. In Section 5, we introduce the
augmentation method and create the augmentation data from nar-
row real data for redirection tasks to evaluate the effect of aug-
mentation.

2. Related Works

2.1 GAN-based Face Editing

Generative adversarial networks (GAN) have been widely
used in face editing to generate images with high photoreal-
ity [15], [16], [17], [25], [26]. There exist high-quality training
datasets such as FFHQ [17], CelebA-HQ [16] allowing the model
to edit face expression, age, glasses, pose, etc. Many previous
works trained a GAN that can change the pose of a given im-
age [13], [17], [25], [26], [27]. Most of the previous works were
designed to manipulate the head pose in the latent code space
for generating an image of different head poses. However, head
and gaze redirection is quite a different task that is determined to
redirect images based on physical direction, which requires labels
during training. Therefore, the GAN-based method is difficult
to apply directly on head and gaze redirection. In addition, the
gaze is much more subtle information so the existing GAN-based
method cannot handle it.

2.2 3D Face Reconstruction

The rapidly progressing monocular 3D face reconstruction led
to the improvement of other face-related tasks such as face recog-
nition [19], [29], [36]. 3DM Morphable Model (3DMM) [2] is a
parameterized model that has been widely used in 3D face recon-
struction [1], [3], [4], [22]. Although 3DMM is becoming robust
in reconstructing the face shape, the predicted texture cannot pre-
serve the authentic information of the input 2D image, especially
for the subtle gaze appearance. Another line of work directly
sampled RGB values from the input image to faithfully keep the
original appearance. Zhou et al. rotated the 3D reconstructed
face to create more pose-diverse training data for face recogni-
tion [36], and Qin et al. rotated the 3D reconstructed face to ex-
tend the gaze range for more pose-robust gaze estimation [21].
The proposed projective-matching [21] process transforms the
pixel-space 3D face to the camera coordinate system such that the
3D face can be rotated and translated inside 3D physical space.
The 3D reconstructed face can be arbitrarily manipulated and ren-
dered to new images, and it does not require any extra training
process.

2.3 Gaze and Head Redirection

Gaze direction is defined as the 3D vector that starts from the
center of the eye or face to the gaze target in the camera coor-
dinate system. Gaze redirection started from the eye-only image
by deep warping [5] method to GAN [11]. Although there exists
full-face gaze redirection using the 3D eyeball model [28], the
model-based approaches cannot redirect head or handle glasses,
although they do not need training data.

(© 2022 Information Processing Society of Japan

Vo0l1.2022-CG-188 No.1
Vol.2022-DCC-32 No.1
Vo0l.2022-CVIM-231 No.1
2022/11/18

o oA S

L 40 4}

o

L 9 ' j,u“? . '
= o

S -40 L& o

=

Pitch [degree]
B
o ©

—-80-40 0 40 80
Yaw [degree]

—-80-40 0 40 80
Yaw [degree]

GazeCapture

ETH-XGaze

Fig. 1 The distribution and samples of existing real datasets. The top row
is the head pose distribution, and the middle row is the gaze distribu-
tion. The bottom row is the image samples of the datasets.

Currently, learning-based full-face gaze and head redirec-
tion [14], [35] becomes a more significant topic, and head pose
and gaze direction labels are needed for training the redirection
model. Park et al. [20] proposed an encoder-decoder model that
disentangles the appearance, head, and gaze features and trans-
forms the source embeddings to target by rotation. During train-
ing, the paired images are used such that the model learns the
transformation supervised by the head pose and gaze label. ST-
ED [35] focused on improving the image quality performance and
took into consideration extraneous factors such as illumination
and hue by introducing an unsupervised self-learning pipeline.
Consequently, the model enables redirecting a source image to a
target image or any target angle.

The related works are summarized in Table 1. Since our task
is to redirect the head and gaze based on the physical direction,
GAN-based methods are not suitable. ST-ED is a state-of-the-art
model in head and gaze redirection, but its ability to redirect to
a very large angle is not verified. There is a lack of training data
with a large subject scale and angle range, and collecting such
data is not trivial. On the other hand, 3D face reconstruction can
create an arbitrary amount of face-rotated images with accurate
angles without extra training. Therefore, we decide to use ST-ED
as the baseline synthesis model but use 3D face reconstruction to
render images as augmentation data to extend the limited angle
range of real data, such that the ST-ED model can be more robust
in large angles.

3. Datasets and Experimental Settings

In this section, we will introduce the used datasets and experi-
mental settings used for the following analysis.
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Table 1 Comparison of related works of .

Methods Pros

Cons

GAN-based redirections High image quality

Cannot redirect based on physical target angle

3D Face Reconstruction

Accurate physical redirection angle

Cannot redirect gaze
Requires frontal source image

ST-ED
(Deep generative model)

Redirects head and gaze separately
Redirects from any source image to physical target angle

Requires labeled training data
Performance relies on training data

Redirected Image

Target Image

Redirect to Target Image

Fig. 2 The illustration of the experiment for evaluating the redirection per-
formance on large target angle.

Table 2 The estimation errors (degree) of the estimators for each dataset.

Average Error | ETH-XGaze  GazeCapture
Head Pose 0.61 0.88
Gaze 0.83 1.37

3.1 Datasets

o GazeCapture [18] is collected through crowdsourcing when
subjects are using tablet, resulting in a very large subject
scale with more than 1,400 subjects. It totally contains more
than 1.6 million images.

e ETH-XGaze [31] put 18 synchronous cameras under differ-
ent view angles to take pictures, which achieves a very large
angle range. It contains 110 subjects and each subject has
around 600 frames, and therefore it has more than 1 million
images in total.

The head pose and gaze distribution as well as some samples
of the datasets are shown in Fig. 1. We can find that the an-
gle range of ETH-XGaze is relatively large while GazeCapture
is much smaller because it requires the subject to fix their gaze at
some points in the screen, which fundamentally limits the range
of the gaze and head direction. On the other hand, crowdsourcing
makes it easier to collect a dataset with a huge subject scale, but
the high cost of a lab-control setting is difficult.

3.2 Experimental Settings

We introduce the common experimental settings used in the
following hypothesis verification and augmentation evaluation.

For evaluation, previous work evaluates image-to-image redi-
rection using ground-truth paired images [5], [11], [14], [35] as
shown in Fig. 2.

To obtain the head pose and gaze direction of the generated im-
age, we use a ResNet-18 [10] estimator. The estimator is trained
on the corresponding dataset when evaluating the model on each
dataset such that it can predict accurate head pose and gaze. The
average estimation errors for each dataset are shown in Table 2,
indicating that the estimator is reliable.

For pre-processing, we adopt the data normalization [32],
which is commonly used in gaze-related tasks [31], [35]. For
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Fig. 3 The distribution and samples of original XGaze and created subsets
for training the baseline model. The top row is the head pose distri-
bution, and the bottom row is the gaze distribution.

the training hyperparameters, we follow the same setting as the
original ST-ED [35].

3.3 Evaluation Metrics

Redirection Error. We compute the angular error between the
ground-truth target direction and the estimated direction of the
generated image. Both the head redirection error and the gaze
redirection error are evaluated.

LPIPS. We adopt LPIPS [11], [30], [35] to evaluate the gen-
eral similarity of the image between the generated image and the
target image.

FID. Fréchet Inception Distance [12], [24] has been used to
evaluate the visual similarity of two groups of images that is close
to human perception.

Identity Distance. In addition, we also compute the identity
feature distance between target image and generated image using
FaceNet [23] as an evaluation of the identity preservation ability.

4. Analysis of Angle Range in Training Data

Hypothesis: the performance of the redirection model will
drop significantly once the target direction is larger than the train-
ing data.

In this section, we verify this hypothesis by narrowing down
an existing large-range dataset to subsets and comparing their in-
fluence on the model as training data. We use the ST-ED model
as the baseline model for redirecting head and gaze.

4.1 Narrow Angle Range Creation

Since XGaze already contains a very wide range of head pose
and gaze, we create two subsets from it with a smaller range of
head pose (XGaze-SH) and small gaze (XGaze-SG). We train the
ST-ED model using these three training sets and compare their
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Table 4 The evaluation on XGaze Test of models trained by XGaze and its
narrow subsets.

Head Error ()  Gaze Error () LPIPS(]) FID(!) Identity (|) Head Error (|])  Gaze Error (]) LPIPS(]) FID(]) Identity (|)
XGaze XGaze
(Full Range) 2.007 5.097 0.073 16.810 0.982 (Full Range) 3.098 7.968 0.148 48.05 2.120
XGaze-SH ' 5.749 7.794 0.138 25.149 1.398 XGaze-SH' 5.873 10.218 0.183 56.56 2225
XGaze-SG * 2.204 9.679 0.077 17.238 0.989 XGaze-SG * 3.292 11.800 0.158 49.47 2.097

T SH is short for small head; *: SG is short for small gaze

performance with the same testing sets.

The distributions of the three training datasets are shown in
Fig. 3. XGaze uses 18 synchronous cameras. For the sub-
sets, XGaze-SH only contains the samples from the 10 relatively
smaller cameras, which is shown in the second column of Fig. 3.
XGaze-SG is sorted based on the £, — norm of gaze and chosen
from the smaller portion such that it has the same number of sam-
ples as XGaze-SH. The distribution is shown in the third column
of Fig. 3.

Since the official ETH-XGaze only has public gaze label for 80
subjects, we split them into 75 for training and 5 for testing. We
denote the first 75 subjects as XGaze and the last 5 subjects as
XGaze Test.

If not specifically mentioned, only the first 200 frames are used
for training because we also evaluate the model on seen subjects.
Therefore, for training, XGaze, XGaze-SH, and XGaze-SG have
270,000, 150,000, and 150,000 samples, respectively.

4.2 Experiments and Result Analysis

After creating the training datasets, we conduct the experiment
and compare the influence of different angle ranges of the training
data.

We evaluate the redirection error, LPIPS, FID, and identity dis-
tance. We choose the 200th- to 400-th frames of XGaze and the
first 200 frames of XGaze Test for testing, which have 150,000
and 10,000 samples, respectively. We use XGaze (frame 200 to
400) and XGaze Test as testing data. During testing, each image
is randomly redirected to another image.

The results of the two test sets are shown in Table 3 and Ta-
ble 4, respectively. Intuitively, the full-range XGaze shows the
best performance on all evaluation metrics. While the XGaze-
SH shows a huge performance drop on all metrics, especially the
head redirection error due to its limited range of head pose, the
XGaze-SG only drops the performance on gaze redirection error
due to its limited range of gaze and shows a comparable perfor-
mance on other metrics as the full-range XGaze. The reason for
the difference is that the other metrics are all influenced by incor-
rect head redirection, as shown on the left side of Fig. 4.

It is also noticed that the identity distance becomes much larger
when redirecting on unseen subjects. Visualized examples can
also be seen on the right side of Fig. 4, where the redirected im-
age of unseen subjects becomes a different person, which reveals
an inevitable drawback of the current ST-ED model.

In conclusion, narrow training data will cause a performance
drop on redirection. In particular, the limitation of the head pose
will have a greater effect on the overall image and will degrade
all the evaluation metrics.

Discussions The experimental results confirm that the hypoth-
esis is valid. The error is especially large when redirecting to a
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T SH is short for small head; *: SG is short for small gaze

Source  Redirected  Target Source  Redirected  Target

XGaze
(Full Range)

XGaze-SH

XGaze-SG

XGaze Train
(Frame 200 ~ 400)

ETH-XGaze Test

Fig. 4 Examples of image-to-image redirection. Each row corresponds to
each training data setting. Left side is the seen subjects from XGaze
Train, and right side is the unseen subjects from XGaze Test.

large target angle out of its training data’s angle range. The model
can only redirect in the angle range of the training data, indicating
that it is important to use training data that contain a large enough
angle range.

5. Angle Range Augmentation

In this section, we first create augmentation data for GazeCap-
ture, which has limited angle range, and then perform evaluation
experiments as explained in Section 3.2.

5.1 Augmentation Method

We follow an off-the-shelf 3D face reconstruction pipeline
3DDFA [7], [8], [37] to do reconstruction and apply the
projective-matching [21] to finally obtain a 3D face. Given a tar-
get head direction or gaze direction, we can compute a rotation
matrix, rotate the face, and render it to a new image.

To create augmentation data, we formulate head-based sam-
pling and gaze-based sampling. For the head-based sampling, we
computed a rotation matrix based on the origin and the sampled
target head pose and rotated the 3D face using the rotation matrix.
Similarly for the gaze-based sampling. In detail, we sample the
target direction from a circle-shaped uniform distribution, and the
circle radius is chosen to be 40 degrees. Consequently, the distri-
butions of the original GazeCapture dataset and its two augmen-
tation datasets are shown in Fig. 6. Notice that when forcing the
head pose to be uniform distribution, the gaze distribution may
have a larger range and vice versa.

We follow the split of ST-ED [35] to create the GazeCapture
Train and GazeCapture Test. If not specifically mentioned, we
abbreviate GazeCapture Train as GazeCapture later. Specifically,
GazeCapture contains 1177 subjects with 1,379,083 images, and
GazeCapture Test contains 139 subjects with 191,842 images.

For augmentation data, we filter out subjects with less than 30
samples in the original GazeCapture, and we randomly sample 30
images from the remained 861 subjects. Each source image will
be augmented to 10 new images, and some augmentation data ex-
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Augmentation Data

GazeCapture

Fig. 5 The samples of original GazeCapture (left) and its augmentation
(right).
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Fig. 6 The label distribution of GazeCapture (left) and the augmentation
datasets (right). The top row is the head pose distribution and the
bottom row is the gaze distribution.

amples are shown in Fig. 5. As a result, the augmentation dataset
contains 257,470 samples.

5.2 Experiments and Result Analysis

After creating the augmentation data, we conduct the two ex-
periments to compare their influence on the model.

We use GazeCapture Test and XGaze Test as the testing data.
During testing, each image is randomly redirected to another im-
age. Redirection error, LPIPS, FID, and identity distance are eval-
uated between target and redirected images. The results for the
two test sets are shown in Table 5 and Table 6, respectively.

Since the GazeCapture Test has a limited label range similar
to the GazeCapture Train, the head redirection error and gaze
redirection error are already at a small level. Therefore, adding
augmentation (target on the large range) data does not show an
obvious influence but only fluctuation in a very small range for
this test set. For the LPIPS, FID, and identity distance, the results
in Table 5 are generally worse than that in Table 3. The reason
is that the model is tested on unseen subjects from GazeCapture
Test. The model cannot preserve the appearance of unseen sub-
jects after redirection, resulting in a larger difference between the
target image and the redirected image. Examples can be observed
in the left side of Fig. 7, where the redirected image has a similar
but not perfectly identical identity. Therefore, in addition to the
face identity distance, LPIPS and FID are all at a higher level.

Since XGaze Test has a much larger direction range than Gaze-
Capture, it is much more difficult for the model to perform well,
as shown in the first row of Table 6. From the second and third
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Table 5 The evaluation of augmentation on GazeCapture Test.
Head Error (])  Gaze Error ()  LPIPS(]) FID(]) Identity (])
GazeCapture 1.179 3.960 0.201 39.64 1.923
GC T + Aug-40G 1.226 3.829 0.192 41.24 1.867
GC + Aug-40H 1.171 3.789 0.190 45.52 1.873

. GC is short for GazeCapture.

Table 6 The evaluation of augmentation on the XGaze Test.

Head Error ()  Gaze Error ()  LPIPS(]) FID(]) Identity (])
GazeCapture 22.265 32.837 0.383 145.68 2.383
GC + Aug-40G 8.335 21.222 0.296 121.86 2.288
GC + Aug-40H 11.499 20.399 0.322 133.70 2.288

T:GC is short for GazeCapture.

Source Redirected Target Source Redirected Target

& -
GazeCapture
g
GC
+ aug-40g
&
GC
+ aug-40h

GazeCapture Test XGaze Test

Fig.7 Examples of image-to-image redirection. Each row corresponds to
the training data setting. Left side is the unseen subject from Gaze-
Capture Test, and right side is the unseen subject from XGaze Test.

row of Table 6, the augmentation showed significant improve-
ment in the head redirection error and gaze redirection error. Note
that though the augmentation data improved the performance on
LPIPS, FID, and identity distance, it may be due to better head
pose redirection. As can be seen on the right side of Fig. 7, the
metrics between the redirected image and the target image are re-
duced due to a more similar head pose. All of the metrics are at a
very high level, meaning that the ST-ED model cannot generalize
the performance well on unseen subjects and the augmentation
has a limited effect on image quality and identity preservation.

Discussions Since the data augmentation focuses on angle ex-
tension, it can effectively reduce the redirection angle error. How-
ever, it is difficult to directly reduce the visual distance to the tar-
get image, especially for the preservation of identity.

6. Conclusion

In this paper, we analyzed the angle range of training data for
a face image synthesis model that redirects head pose and gaze.
The redirection performance hugely relies on the training data.
To tackle the limited angle range of training data, we proposed
to use 3D face reconstruction to create training data with a larger
angle range. We conducted thorough experiments and showed
that data augmentation can effectively reduce redirection errors.
Besides, we also found that subject identity preservation remains
a challenge, which will be future work, along with the demand
for higher photo-reality.
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