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概要：Estimating the physical distance between mobile devices such as smartphones with their Wi-

Fi modules in an indoor environment has many potential real-world applications such as enhancing

indoor navigation, analyzing and discovering communities, Wi-Fi geo-fencing, etc. Such distance estima-

tion tasks have been conducted using Received Signal Strength Indication (RSSI), which leverages the

strengths of signals from nearby Wi-Fi Access Points (APs). However, the imprecision of RSSI measure-

ments has limited the performance of the RSSI-based methods. Recently, IEEE 802.11mc introduced

Wi-Fi Round Trip Time (RTT) protocol, which enables distance estimation between devices and nearby

APs by calculating the time-of-flight of signals, and has greatly improved the accuracy of indoor ranging.

Therefore, this study presents a novel method for distance estimation between devices using Wi-Fi RTT,

leveraging a graph neural network (GNN) to fully capture the geometric information among smartphones

and nearby APs.
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1. Introduction

In recent years, Wi-Fi technology has become very pop-

ular with the proliferation of wireless smart devices such

as smartphones and tablets; its infrastructure has been

widely deployed in both public and private environments,

including shopping malls, airports, offices, and private res-

idences [1][2]. Nowadays, many mobile services rely on the

user’s position to deliver appropriate information, such as

navigation, wireless payment, communication, etc. Al-

though outdoor positioning technologies through Global

Navigation Satellite Systems (GNSSs) have been well-

developed, the non-line-of-sight (NLoS) to the satellites

hinders the accuracy of indoor positioning [3]. The preva-

lence of Wi-Fi access has drawn attention from researchers

on proximity detection of devices using Wi-Fi, which is

to determine the locations of the Wi-Fi-enabled devices

in indoor environments [4]. Such technologies have effi-

ciently improved the accuracy of indoor positioning. On
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the other hand, distance estimation using Wi-Fi is at-

tracting more attention, which is to estimate the physical

distance betweenWi-Fi-enabled devices. It has many real-

world applications such as enhancing the accuracy of in-

door navigation, analyzing and discovering communities,

Wi-Fi geo-fencing, etc [2].

The most common approach to distance estimation us-

ing Wi-Fi has been based on Received Signal Strength

Indication (RSSI), which is to leverage the strength of

signals emitted from nearby Wi-Fi Access Points (APs).

However, the imprecision of RSSI measurements has lim-

ited the performance of the RSSI-based methods [2]. In

addition, the feed-forward neural network based on hand-

crafted features, which is often used to analyze the col-

lected information, cannot fully leverage the geometric

information of APs and smartphones due to its compara-

tively straightforward structure.

In recent years, IEEE 802.11mc introduced Wi-Fi

Round Trip Time (RTT) protocol, which enables distance

estimation between devices and nearby APs by calculat-

ing the time-of-flight of signals, and has greatly improved

the accuracy of indoor ranging [5]. Therefore, this study
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presents a novel method to estimate the physical distance

between smartphones and APs using Wi-Fi RTT, while

leveraging a graph neural network (GNN) to fully cap-

ture the geometric information among them. Figrue 1

depicts the use case of our approach, i.e., when the dis-

tance between smartphones and nearby APs are known

and the distance between smartphones is unknown. The

main contribution of our research includes the following:

• To the best of our knowledge, this is the first study

that estimates the physical distance between two

smartphones using Wi-Fi RTT.

• To the best of our knowledge, this is the first study

that leverages GCN on predicting physical distance

between objects.

図 1 Relationship between Smartphones and APs

2. Related Works

2.1 Indoor Positioning with Wi-Fi RTT

Overview: Traditionally, indoor positioning and rang-

ing techniques are divided into fingerprinting approaches

and propagation approaches. Conventional fingerprint-

ing approaches for indoor positioning with Wi-Fi typically

consist of two phases the training phase, and the position-

ing phase [6]. In the training phase, the received Wi-Fi

measurements are observed and collected at a number of

known coordinates in order to construct a feature map of

the surrounding environment. In the positioning phase,

the position of the device can be estimated by correlating

the measured information with the preconstructed map.

The coordinates corresponding to the closest match are

returned as the estimate for the receiver position.

In recent years, the focus of indoor positioning research

has been gradually shifted to base on Wi-Fi RTT since the

introduction of IEEE 802.11mc standard. This new pro-

tocol allows smart devices to estimate their distances to

nearby Wi-Fi APs; hence, many studies have been con-

ducted regarding the performance of indoor positioning

using RTT, and how to increase its precision with differ-

ent approaches.

Fingerprinting Methods: Hashem et. al. [7]

presents an indoor location determination system that

combines the advantages of the fingerprinting method and

time-based ranging techniques. Their model overcomes

challenges such as NLoS, multipath, signal interference

and achieve a submeter accuracy in two different testing

environments.

Despite its accuracy, fingerprinting methods are usually

time-consuming and expensive because the users have to

go through preliminary investigation of the target envi-

ronment to collect site information and construct a fea-

ture map. It is also difficult to implement in a real-world

scenario, where the site information, such as location of

APs and structure of the indoor environment is usually

not directly available [8]. On the other hand, propaga-

tion methods are usually more time-saving because they

do not require preliminary investigation and feature map

construction. As a result, their predictions are not as ac-

curate as fingerprinting methods.

Propagation Methods: Different approaches have

been leveraged to increase the accuracy of propagation

methods. Cao et. al. [9] presents a propagation-based

study that increases the localization accuracy by lever-

aging an indoor position method based on line-of-sight

(LoS) identification and range calibration. They first de-

signed a NLoS and LOS identification algorithm based

on a scenario recognition model using Gaussian process

recognition (GPR). Also, a range calibration model using

nonlinear least-squares fitting is established to correct the

measured LOS distance. When performing positioning,

the environment is first identified by the scenario recogni-

tion model, and a LOS distance will be obtained based on

it. The LOS distance will then be calibrated by the range

calibration model before being used to estimate the smart-

phone’s position using the least square algorithm. Their

proposed model achieves a submeter accuracy, which is

an improvement compared to some other positioning tech-

niques such as using RSSI.

Han et. al.’s [10] research also dedicate to address the

problem of RTT bias, which is caused by signal detour

along with NLoS paths, by proposing a novel positioning

algorithm that estimates the location of users by inte-

grating RTT and pedestrian dead reckoning (PDR) mea-

surements detected by the inertial measurement units of

smartphone. PDR is able to provide the geographic rela-

tion among adjacent locations, and derives the sequence of
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the locations of the user in order to avoid deviation from

the user’s mobility trajectory. Specially, when conduct-

ing Wi-Fi positioning, they first jointly estimate an RTT

bias of each AP and the step length of the user by con-

sidering their geometric relation, then construct the user’

s relative trajectory with respect to each AP. After that,

the trajectory alignment process, which aligns the relative

trajectory of every AP into a single one, is achieved be-

fore estimating the sequence of the absolute locations of

the user from the aligned global coordinate system. This

proposed method also yields a submeter accuracy in LoS

environments but not as good in NLoS environments, but

is still an improvement compared to conventional multi-

lateration techniques.

2.2 Distance Estimation between Wireless De-

vices Using Wi-Fi RSSI

Binary Proximity Detection: Proximity detection

is another popular field in studies using Wi-Fi devices,

especially during the ongoing COVID-19 pandemic. Van

Hyfte et. al. [4] mentions that some smartphone appli-

cations aim to alert their users when they come within

close range to individuals infected with COVID-19, and

report potential exposures to public health authorities so

that they can prevent spread of the virus. Therefore, it is

important to monitor proximity of users. They propose a

new method of detecting proximity of two Wi-Fi-enable

devices using Wi-Fi measurements, in contrast to con-

ventional methods which mostly leverage Bluetooth Low

Energy. The proposed method is a binary classifier that

takes AP features and RSSI measurements from two MAC

addresses as input, and predicts whether or not two finger-

prints are in immediate physical proximity. Those within

2.25 meters of range are labeled “Close” to each other,

and“Far”from each other otherwise. Their model results

in an average accuracy of around 70%.

Accurate Distance Estimation: Although binary

proximity detection is valuable to applications such as

disease control, sometimes we need to predict a precise

physical distance between two devices for other purposes.

To solve this problem, Nakatani et. al. [2] proposes a new

method using RSS data. A major contribution of their

work is that they do not require labeled training data

regarding the presence of obstacles between two smart-

phones, while taking the obstacles into account by apply-

ing a wall detection model that computes the probability

of having walls between two locations. Then the distance

estimation is performed using a neural network that lever-

ages the presence of walls. Although this environment-

independent distance estimation model no longer needs

input of site information, the imprecision of RSSI mea-

surements has limited its performance. The accuracy with

a mean absolute error of bigger than 3 meters needs to be

improved for real-world implementation purposes. In this

study, we employ RTT measurements and a graph neural

network to achieve precise distance estimation.

3. Proposed Method

3.1 Overview

As mentioned in Section 2, while the majority of current

RTT-based indoor ranging methods are based on the fin-

gerprinting method for its excellent accuracy, our method

features a propagation method mainly due to its conve-

nience and practicality in daily life. Compared to other

propagation methods which usually leverage a simple feed-

forward neural network, we propose a novel approach us-

ing GNN which is believed to be capable of better utilizing

the geometric information. Furthermore, rather than fo-

cusing on improving the distance estimation accuracy be-

tween a smartphone and nearby APs, we aim to predict

the physical distance between two smartphones, which can

be more practical for real-world applications.

Therefore, we propose RTT-GCN, an algorithm based

on graph convolution network (GCN) for distance esti-

mation using RTT. With RTT-GCN, we aim to exploit

the geometric information from Wi-Fi RTT data to learn

meaningful representations for the unknown physical dis-

tance between two smartphones.

3.2 Graph Structure

In this paper, we are leveraging graph neural networks

to handle the geometric information collected. An undi-

rected graph G can be defined as G = (V,E) that consists

of a set of nodes V = {v1, v2, ..., vn} and a set of edges

E ⊆ V × V . It can also be represented by an adjacency

matrix A, where Ai,j = 1 represents there is an edge be-

tween node i and node j, and Ai,j = 0 represents there is

no edge between them.

As shown in the left half of Figure 2, we construct a

graph consisting of nodes corresponding to devices (smart-

phones and APs) and edges corresponding to the distances

among the devices. However, when we regard devices as

nodes and the links among them as edges of a graph, the

measurements, including RTT and RSSI data, will be seen

as edge features. However, a limitation about current

graph neural networks is that they are mostly focusing
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on the nodes and node features, while treating edges as a

simple binary information.

図 2 Transformation from original graph G to line graph L(G)

To solve this problem, we utilize the line graph tech-

nique as introduced in Cai et. al.’s [11] paper. In a

line graph structure, the edges from the original graph G

will be converted into nodes in the new line graph L(G).

Therefore, if G has m nodes and n edges, L(G) will have

n nodes. New edges will be formed based on whether the

two new nodes of L(G), or in other words, two edges of

G, share a common node in G.

After the line graph transformation as shown in the

right half of Figure 2, we will be able to treat informa-

tion such as RTT and RSSI measurements as node fea-

tures, thus analyzing this information using normal graph

neural networks.

3.3 Network Structure and Network Training

Figrue 3 shows the network structure of RTT-GCN.

The inputs of the model include standardized RTT mea-

surements, an identifier of each measurement, and the ad-

jacency matrices describing the relationship of devices in

each measurement, i.e., graph structures. The x in the

figure represents the propagation-related features, includ-

ing one vector describing the physical distances between

devices based on RTT, and another vector labels an ID

for each distance. The distance between smartphones is

labeled as “0”, while the distances between the first smart-

phone to every APs are labeled as “-1” and the distances

between the second smartphone to every APs are labeled

as “1”. The IDs are incorporated because we want the

model to learn the different types of distances and lever-

age that information in feature aggregation. The A in the

figure represents matrices describing the graph structure.

The outputs of the model will be a numerical value that

predicts the physical distance between two smartphones.

RTT-GCN is based on GCN, and the dataset is split

図 3 Network Structure of RTT-GCN

into a training dataset and a testing dataset. In the train-

ing process, the input data is fed into three GCN lay-

ers after standardization. Then the learnt representation

is processed through feature extraction and linear trans-

formations. The output will be optimized according to

Mean Squared Error (MSE) loss function and evaluated

based on absolute error when compared to the ground

truth value.

4. Data Collection Method

In 2016, IEEE 802.11mc standardized the fine tuning

measurement (FTM) protocol that allows an AP to mea-

sure the round-trip time between it and a wireless device

by calculating the time-of-flight of signals. The protocol

allows a Wi-Fi-enabled device to send an FTM request

to a nearby RTT-capable AP, and the AP will send an

acknowledgment back to the device. After several rounds

of interchanges, the smartphone will get an estimated dis-

tance between them by calculating the time it takes for

the signals to travel in between.

If a smartphone sends an FTM request to an AP at t1,

the AP receives it at t2 and sends an acknowledgement

back at t3, the smartphone receives it at t4, RTT and cor-

responding distance can be calculated as follows, where c
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denotes the speed of light:

RTT = (t4 − t1)− (t3 − t2) (1)

Distance =
RTT · c

2
(2)

Devices: The model of APs we plan to use is the

Google Nest Wi-Fi router. The smartphones we pre-

pare include a Google Pixel 2 (manufactured by HTC), a

Google Pixel 3 XL, a Google Pixel 4, a Google Pixel 4 XL,

and a Google Pixel 5 (all manufactured by Foxconn).

Applications: The Android application we use to col-

lect the RTT measurements is modified based on the pub-

lic WifiRttScan App developed by Google. While the

original app is able to write down RTT measurements to

a selected AP in a csv log, we modified it so that it is

able to record RTT measurements from all available APs

nearby. We use an app based on ARPose to collect ground

truth location information using images from the camera

lenses.

5. Preliminary Experiment

In this study, we conduct a preliminary experiment us-

ing simulated data to evaluate the effectiveness of our ap-

proach.

5.1 Data simulation

First, we generate random coordinates of two smart-

phones and six APs within a virtual environment of

25m× 25m. Then we calculate the euclidean distances

between the coordinates representing the smartphones

and the ones representing APs, and add random positive

values to simulate noise in reality. The distance between

smartphones is regarded as the target for the output of

the model. A feature vector describing the classes of the

nodes were also generated. Also, an adjacency matrix that

corresponds to the graph is generated for each data entry.

Based on experiments, we hide the information of the node

representing the target distance in all the matrices for the

first GCN layer, and also removed some of the redun-

dant edges among nodes, i.e., those corresponding to the

relationship among APs, for better prediction accuracy.

We generated 10,000 data entries, i.e., data observations

of 10,000 different scenarios, for the training dataset and

1,000 data observations for the testing dataset.

5.2 Results & Discussion

The trained model results in an average absolute error of

4.74 m from the ground truth value on the testing dataset.

If we consider a naive approach that predicts the distance

between smartphones by taking the average of distances

in the entire dataset, RTT-GCN achieves predictions that

are around 25% better.

Compared to Nakatani et. al.’s [2] study which has

an average error of bigger than 3 meters when the ac-

tual distance is shorter than 20 meters, the precision of

RTT-GCN still needs improvement. However, this is only

a preliminary result that leverages only RTT measure-

ments and types of connections. We believe the accuracy

of RTT-GCN will be improved if we incorporate other

meaningful features from actual data collection as input.

We are considering how to improve the network struc-

ture of RTT-GCN. For example, we want to first examine

whether there is any information lost or ignored along the

convolution layers and linear transformations. Also, our

current graph structure only carries information of which

smartphone each node corresponds to as a channel in x.

We believe it will be helpful to generate an additional

graph that gathers information of which smartphone and

which AP that each distance corresponds to, and fuse it

into the current graph structure to increase its perfor-

mance.

6. Conclusion

In this paper, we propose a novel method to predict

the physical distance between two smartphones using Wi-

Fi RTT measurements. To the best of our knowledge,

we are the first to apply GCN and leverage line graphs to

process the geometric information for distance estimation.

The estimated error is 4.74 meters for the testing dataset.

7. Future Works

Currently, the result of RTT-GCN is evaluated using

only simulated data. In the future, the first thing we

will do is to perform data collection in various real envi-

ronments. Meanwhile, other valuable data such as RSSI

measurements and standard deviations can be acquired

and used as additional input features.

After data collection, we will also explore other mod-

ules that will contribute to improving the accuracy of

RTT-GCN. For example, a time-series module that an-

alyzes the movement trajectory of the smartphone can be

potentially helpful. We will also analyze the effects of dif-

ferent combinations of parameters, e.g., by changing the

number of GCN layers, size of input and output channels,

etc.
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