V7 br 27 L% 90-5
(19938 2. 4)

EEEY T NG L RO LD DEEHTIE

Keopr [H/ELF KB Ex
%) SEREYATLRAER
508932 AHEERESRET H6EHN3

HO5FL

FHET I, HRMIREESBLOTOSI K5 ¢ BARIIC o TEET 5. RIS & o THANY 7 |
9x T REEL CBIRTE 5 RHEMEALECH D, & ORETLE I B I LOTOSE L, #10 2 A F
WEEET 7Y a Y ANOBEEOLZEBRETRICLE. SRIZIY Y7 2705 — Y 8 B0 il
PRI % B, ALT IR, HIEE A ALOTOSOBE L B, v < > h B ERT. T4 bb, RS AL
LOTOSIZ & D, WAL LTHEIHICTT ra v 2Rl T 5 0% RT.

LINGUISTIC SUPPORT FOR DESIGNING RELIABLE SOFTWARE

Dusan Jokanovic Masataka Ohta

Advanced Intelligent Communication System Laboratories, Ltd.

6-6-3, Minami Yoshinari, Aoba-ku, Sendai, 989-32, Japan

ABSTRACT: This paper considers design environment based on LOTOS formal specification language.
Designers need an environment that effectively supports the development of reliable software. As a first step
towards this goal, we introduce an extension of LOTOS that makes it possible to define directly noninterruptable
sequences of actions in specifications, that is, atomic actions at any level of abstraction. This allows specifying
different software mechanisms for error recovery. The properties of the new language construct are discussed. In
addition, some examples of its use are given. Namely, we show how to use the enhanced LOTOS in order to
specify a simple reliable protocol. ‘

Key words : Distributed computing, Service specifications, Fault tolerance, LOTOS

1. Introduction

Communications, robotics, process control, and
other critical computer applications demand reliable
software. Software for such systems generally
comprises a set of concurrent, cooperating processes.
Designers need an environment that effectively
supports the development of fault-tolerant software!l,
Several researches have developed methods and tools
that use redundancy to help critical systems tolerate
errors caused by software faults. The most suitable
mechanisms for concurrent systems are programmer
transparent coordination and conversation!2}3], All
four of these approaches are general, apply to any type
of computation and they are based on atomic actions.
Unfortunately, the few languages that provide
adequate syntax and run-time support to implement
fault-tolerant mechanisms are still experimental.

In this paper, we consider design environment
based on LOTOS, a Formal Description Technique
being developed within ISO for the formal
specifications of OSI protocols and services!4!. In
standard LOTOS, the parallel operator specifies
interleaving at the elementary action level. In other
words, only elementary actions are viewed as atomic or
noninterruptible. Larger atomic actions, called here
atomic processes can be specified by using constructs
such as semaphores. However, this presents some
disadvantages, among others from the point of view of
modular design. For example, the parallel composition
of two processes may introduce some unwanted
interleaving, thus limiting the usefulness of this way
of composing modules. Furthermore, one of the main

concepts of step-wise development of system is to be

able to progressively expand what appears to be a
single action A at a high level of abstraction into a
functionally equivalent, possibly complex compound
action B at a lower level of abstraction. This presents a
problem when'concurrency is present: because, if A is
considered to be atomic, so must be B in order to be
equivalent to it. ’ .

As a first step towards specifying reliable and
modular software, we introduce an extension of
LOTOS that makes it possible to define atomic
processes at any level of abstraction. We extend
LOTOS language by some operators apt to define
noninterruptible composition of actions. In the
resulting enhanced language one can specify behaviors
of systems with some sub-behaviors being atomic. This
allows specifying mechanisms for error recovery!®H6.,

In Section 2, we explain the notion of LOTOS
processes briefly and the importance of their atomicity
from the aspect of fault tolerance. In Section 3, firstly,
we show how to specify atomic processes based on
standard LOTOS constructs. Then, a new language
construct is proposed which enables specifying atomic
processes in LOTOS with less inconvenience. Finally,
some properties of the construct are discussed. In
Section 4, we show how the enhanced LOTOS can be
used in order to specify a reliable protocol. Conclusion

is given in Section 5.

2. LOTOS processes
2.1 LOTOS characteristics

In LOTOS, a system as a whole is specified as a single
process which may consist of several interacting
subprocesses which may in turn be refined into sub-
subprocesses, etc. Thus, a LOTOS specification of a
system is essentially a hierarchy of process definitions.
A process specification in LOTOS describes its
behavior, that is, the sequences of observable actions
that may occur at its gates -interaction points (Fig. 1).
A process performs action either alone on one of its
gates or in cooperation with other process(es) on shared
gates. In the latter case it is said that participating
processes synchronize on these gates by performing
rendezvous.

The hierarchical structure of LOTOS specifications
suggests appropriate execution model. Namely, we

pl

p2 ' pPq

P

- process P[pl, p2 , pql: exit:=

p1;(pg; p2; exit) l[PQﬂ i;P

ehdproc

Fig.1 A process specification in LOTOS

assume that the executable processes are organized in
a binary tree structure, called activity treel’), where
each of the leaf processes behaves, at any time,
according to corresponding behavior expression. This
expression identifies the process current state and
indicates the set of alternative actions that it can
execute as well as the corresponding terminating state
that it reaches on executing each of them. Each of the

other nodes in the tree represents a process that. is
composed of its two child processes, according to the
binary behavior construct. Therefore the root process
behaves as described by LOTOS specification of the
whole system. Behavior expressions of all its
successors are formed by recursive binary splits of
system specification. This splits can be performed in
the various ways dynamically during the execution.
The essential is that whenever the behavior associated
with an executable process P is defined by an
expression BE=BE;*BE2, "*” being any binary
behavior construct, it is assumed that P may give birth
to two new processes, say § and R, such that Q behaves
according to BE7 and R behaves according to BEg. At
the same point of execution, newborn processes @ and
R are allocated to some processor(s) which need not be
the same which P is assigned to. From that moment on
P represents the behavior composition of @ and R,
defined by construct "*” and it is in charge of
coordinating the activities of @ and R. The operator "+”
can be: >>, [>, [], |l|; or [[{synchrogates}]|, which
represent enabling, disabling, alternative choice,
independent parallelism and dependent parallelism,
respectively. The following situations are possible: 1) @
and R are bound by the enabling construct
(P=Q>>R). Pmust first activate only @, and, when @
ends its execution successfully, P must kill @ and
activate R; 2) @ and R are bound by the disabling
operator (P=@Q [>R). Both processes must be activated
by P, but, as soon as R executes its first action, P must
kill @. 3) Q and R are bound by a choice operator
(P=QIIR). As soon as one of them executes an action,
the other one is killed by P; 4) @ and R are independent
concurrent processes (P=@Q || R); 5) @ and R are bound
by a parallel construct (P=Q |[{synchrogates}]| R).
These processes cannot execute actions on the
synchronization gates by their own, but they must
have a rendezvous on those gates. In addition to above
constructs, LOTOS expression a;b;P notifies temporal
ordering in the sense that a process P can be activated
only after actions a and b are exercised (first a then b).
2.2 Fault-tolerance and Atomicity
In the system of concurrent précesses such as LOTOS
execution model, it is essential to prevent domino effect
caused by error propagation throughout system. The
error confinement can be achieved using atomic
software constructs like conversations. Each process
that joins a conversation has a recovery point, an
acceptance test and alternate algorithm. While a

process is in a conversation it may only communicate
with other processes in the same conversation. If any
process fails an acceptance test or otherwise detects an
exception, every process in the conversation performs a
rollback to its recovery point, established on entry to
the conversation and uses an alternate algorithm, The
procedure described ahove implements backward error
recovery scheme. Similarly, forward error recovery in
concurrent software is based on atomic actions, as well.
Excephons, signal and ralse operations and exception
handlers are common mechamsms for provxdxng
forward recovery. If any process raises an exception
every process in the atomic action invokes an exception
handler for the exception. If all processes can recover
the process return from the exception handlers and
complete the atomic action normally. However, if any
of the processes cannot recover, all of the processes
complete the conversatmn abnormally and 51gna1 an
exception.

The concept of atomic actions (processes) can be
used to structure the temporal act1v1ty of the system
An atomic action is an activity, possibly cons1st1ng of
many steps perfonned by many different processors,
that appears primitive and indivisible to any activity
outside the atomic action. To other activities, an
atomic action is like a primitive operation which
transforms the state of the system without having any
intermediate states.

3. Atomic LOTOS processes

3.1 Standard language
As the atomic actions seems necessary for efficient
error recovery we propose an atomic action called
LOTOS Atomic Process or LAP. LAP represents a
distributed control structure that a group of LOTOS
processes may join or leave together in synchrony.
Inside a LAP the processes may communicate with one
another, but not with processes outside of the control
structure. LAP is conceived as a planned atomic action
since it has to be decided at the time of system
specification

Let us suppose that processes P, @ and R which
belong to the system under specification have to
perform some critical task in cooperation and
concurrently. Firstly, to improve reliability of the task
execution a LAP for participating processes has to be
specified and then, within it, some error recovery
mechanism provided. Specification of such error
recovery mechanisms are given elsewhere!8l, Here, we

pl

p2 pq

pq q1

process R[pl,p2,ql]: exit:=
behavior

hide pgin
Pip1,p2,pqllpqllQlgl,pql

Fig.2 Hidingin LOTOS

merely specify LAP taking advantage of LOTOS
specification construct called kiding. It allows
specifying gates in a process definition as hidden
making actions on those gates internal to the process
and unqbséﬁéble from the process environment. Then,
only its subprocesses may have rendezvous (multiway
synchronization with or without data exchange) on
those gates, independently of other processes (Fig. 2).

For each LAP the followfng has to be done at the
specification level: 1) for synchronization - two gates
for entrance and exit, lapin and lapout, respectively
have to be specified; 2) for error recovery - all input
values of parameters of constituent processes have to
be saved; 3) for management - a process CLAP which
would be LAP controller has to be determined; 4) for
atomicity - all gates of constituent processes have to be
hidden. Let us proceed in indicated order and suppose
that processes:
Pl{gates},{synchrogates},parametergate)(p-parameters),
Q[{gates},{synchrogates},parametergatel(q-parameters),
R[{gates},{synchrogates},parametergatel(r-parameters)
are planned to execute some critical task concurrently
by exchanging information through set of
synchrogateé, without exchanging information with
any other processes, and with high reliability. First,
define new processes P’, Q’, and R’ with common gate
lapin as follows: P’=lapin;P, Q’=lapin;Q and
R’=lapin;R. Thus, in addition to gates of processes P,
@, and R, these processes have a gate lapin, as well.
This gate serves at the same time as LAP identifier.
Next, inside the bodies of P, Q, and R, for each of their
terminating subprocess we define gate lapout before
exit, in the pattern....lapout ; exit. In addition, for each

processor, we define a parallel synchronized process,
SAVE|[parametergatel(parameters), responsible for
saving initial values of process input parameters. Now,
lets define CLAP as a LAP controller as follows:

process CLAP[lapin,lapout] : exit:=

behavior

hide all synchrogates in

P[synchrogates, lapin, lapout]|

Q\[synchrogates, lapin, lapout]| R’

endproc ‘

CLAP

)3

i Q

Fig.3 LOTOS Atomic Process

Since all gates in CLAP are hidden the information
smuggling across LAP’s border is prevented. This has
to be supported by run-time mechanism, too. After
process substitution CLAP behavior is equal to the
following one: :
lapin,(SAVEP[parametergate](p-parameters)||P)
|[synchrogates, lapin, lapout }]
lapin;(SAVEQI[parametergatel(q-parameters)||Q)
|[synchrogates, lapin, lapout |
lapin,(SAVER[parametergatel(r-parameters)||R)
Thus, after performing rendezvous on gate lapin the
processes P, @ and R’ enter LAP synchronously giving
birth to processes P, @ and R accompanied with
corresponding SAVE processes, respectively (Fig. 3).
Then, they continue performing assigned task
exchanging information through exchange gates.
Notice that the children of processes are members of
their parents’ LAP. LAP terminates successfully as
soon as all its members perform multirendezvous on
gate lapout and exit. Then, the other processes
dependent on the results of LAP may be enabled with
initial values of parameters computed in LAP and

conveyed through exit. CLAP checks if all processes
supposed to enter the LAP have applied for it and then
performs: synchronized LAP initiation, LAP isolation,
and synchronized exit. Moreover, it has to support
system recovery after an unsuccessful attempt to
assembling all planed processes in LAP.

3.2 Enhanced language
Hiding is not satisfactory enough for specifying atomic
processes, since it hides actions, which otherwise might
have to be visible in the environment. Therefore, we
propose a new construct for specifying atomic LOTOS
processes. It stands for strong sequencing construct
and it is denoted by "®”, For example, a ® b means that
after action a is executed, action b must immediately
follow. The behavior of this new construct has to be
defined in terms of the two LOTOS operators that
involve concurrency, that is, parallel composition and
disabling. To this end, we have defined auxiliary
constructs expressing the fact that, in the presence of
strong sequencing, evaluation of an expression must
continue along the subexpression where strong
sequencing is present.

Concerning composition, the auxiliary constructs
are: 1) The left composition construct, denoted by |1, is
like the LOTOS composition construct except that it
takes its new action from the left process. In the
similar way, 2) the right composition construct, noted
|r takes its next action from the right process.

Concerning disabling, the semantics of the disable
with atomicity is expressed as follows: if a strong
sequence is disabled by a process then the disabling
should be delayed until the end of the atomic process.
For this purpose we introduce a new derived disable
construct called left disable, and we denote it by 1>.

Before giving formal definition of the semantics of
these constructs, we provide some examples of their
use. We will use the following identities:

B\ stop = B, stop || B =B, and stop [>B = stop
In examples, indentation expresses sequencing and
two alternatives at the same indentation level express
a choice between derivations.

Example 1:
a ® b;stop || ¢ ® d;stop
-a-> (b;stop|lced;stop)
-b-> (stop || c ® d ; stop)
-¢->d;stop
-d-> stop
-c-> (a®b;stop|rd;stop)

-d->(ae®b;stop|| stop)
-a->b;stop
- b-> stop
The starting expression specifies a composition
between two atomic sequences "a ® b” and ”"c ® d”. As
we can see from the derivations, action "a” is always
followed by action ”b” and action ”¢” is always followed
by ”d” and both atomic actions are executed in any
order, Please notice that if, the environment offers "c”
after having offered “a”, the resultis a deadlock.
Example 2:
a®b;stop[>ced;stop
-a-> (b;stopl> ced;stop)
-b-> (stop[> c®d;stop)
-¢-> d;stop
-d-> stop
Sequence "a ® b” cannot be disabled by sequence "c ¢ d”
The formal semantics of the ® construct is complicated
by the presence of the choice construct [], since a
process can be defined as a choice between two
different alternatives, one of which is atomic and the
other not, such as the expression:
(a®b;stopllc;d;stop)fle®f;stop
Above expression shows a case where it is undefined
which parallel composition to apply after each action.
If left composition is applied, then "¢ ; d” is treated as
atomic, while if normal composition is applied, then
"q ® b” will be interrupted. Intuitively, both situations
are undesirable. In order to deal with this problem, we
introduce an operational semantics with attributes,
which will carry the atomicity nature of each
expression In order to be able to build an inference
system we use parametarized inference rules. The
parameter can be considered as a synthesized attribute
which will indicate the nature of the derivative of an
expression. This attribute has two possible values: “at”
to indicate an atomic derivation and ”int” to indicate
an interruptible derivation. For simplicity we will use
the name "any” to denote a variable that ranges over
{at, int}. The values "int” and "at” represent the
atomicity of derivations. In the following, by an action
(e.g. a,b,...) we mean an action consisting of a gate
name followed by its list of input/output events or an
internal action "i”
inference rules.

. Next we give only set of selected

For sequencing:
R1l: a® B -a-(atf)-> B,
R2: a;B-a-(int)-> B

Rule 1 states that the derivation by strong sequencing
is atomic., Rule 2 says that the derivation by
sequencing is interruptible. In the similar way
inference rules can be derived for other constructs:
For choice:
R3: A[]1B -a-(any) -> A’if A-a-(any)-> A’
R4: A [1B -a-(any) -> B’ if B-a-(any) -> B’
Rules 3 and 4 state that the derivative of a choice and
its atomicity is the same as the derivative and the
atomicity of one of its alternatives.
For parallel composition:
R5:A || B -a-{at)->A’ |l Bif A -a-(at)-> A’
R6:A || B-a-(at)->A |r B’if B -a-(at)-> B’
R7:A|| B -a-(int) -> A’ || Bif A -a-(int)-> A’
R8: A || B -a-(int) ->A || B’ if B -a-(int)-> B’
R9: A || B -a-(any)->A’ || B’
if A -a-(any)-> A’ and B -a-(any)-> B’
Please note that, according to this semantics atomic
sequences can compose only with atomic sequences.
For left composition:
R10: A |l B -a-(int)- >A’|| B if A-a-(int) -> A’
R1L: A |l B -a-(int)- >A’|| Bif A-a-(int) -> A"
Thus, the atomicity of derivation is the same as the
atomicity of derivation of the left process.
For disable operation:
Ri2: A [> B-a-(at)->A’1> Bif
A -a-(at)-> A’ and Label(a)# exit
R13: A [> B -a-(int)->A [> Bif
A -a-(int)-> A’ and Label(a)# exit
R14: A [> B -a-(any)->A’ if A -a-(any)-> A’
and Label(a)=exit, where exit is termination gate;
R15: A [> B -a-(any)->B’if B -a-(any)-> B’
When the disabled process is atom-prefixed, the next
action is to be taken from it (Rule 12) if it has not
terminated. If a process is terminated then the
disabling has no effect (Rule 13). Please notice that
Label(x) returns the gate name that occurs in action x.
Rules 5 (respectively 6) states that if a process A
(respectively B) derivates in an.atomic way to another
process A’ (resp. B’), then the composition of process A
(resp. B) with another process B (resp. A) is atomic and
the next action of the composition will be taken from A’
(resp. B’). These two rules express the interleaving.
Now, as an example, we use this new formalism to
derive the behavior of process defined as follows:
Example 3:
(a®b;stop[] c;d;stop) | e® f;stop
-a-(at)-> (b;stop|l e®f;stop)
-b-(int) ->(stop || e ® f; stop)

-e-(at)-> f; stop
-f~(int)-> stop

-c-(int)-(d ; stop || e ® f; stop)
-d-(int) -> (stop || e ® f; stop)
-e-(at)-> f; stop
-f-(int)->stop

-e-(at) ->(d ; stop |r f; stop)
-f-(in#)->(d ; stop || stop)
-d-(int)->stop

-e-(at)-(a ® b ;stop [1 ¢c; d; stop) |r f; stop
-f-(int)->(a ® b;stop [1 c; d ; stop) || stop
-a-(at)-> b ; stop
-b-(int) -> stop
-c-(int)-> d ; stop
-d -(int)-> stop
The sequences a ® b and e ® f are not interruptible
while ¢ ; d can be interrupted by e® f.

4. Specification examples

First, we will show how to specify atomic sequences of
actions within a process. Those actions should not
overlap with other actions of other processes. In the
example below, processes A and B have atomic actions
denoted by asI1 ® asi2 and as21 ® as22, respectively.
A:=al;asll®asl2;A
B: = bl ;as21®as22;B
‘We are interested to find a process equivalent to the
composed process A || B, defined as follows:
A|B = al; (asl1®as12; A]|B)[]1 bl;(A | as21 as22;B)
Let P =(asl1®asl12; Al|B) and @ =(A || as21 ® as22; B)
By substituting and then expanding we get:
P=
asl1e(as12; A|IB)[]1b1;(as11® asi12; Al as21® as22;B)
Q=
ali(asl1® as12; Al| as210 as22; B)[] as21® (A |r as22; B)
LetR = (as11® asi2;A || as21@ as22;B).
Then by laws: asI2;A|IB = asl2;(A || B)
and Alr as22; B = as22; (A || B), it follows:
P = asl119 as12;(A||B)[1b1; R and
Q = as210 as22 ; (A||B) {1 al; R, where
R = asll®asi2;(al;R[las21®as22;(A||B))

[1 as21@as22;(bl;R[lasl1easi2;(Al|B))
At last, we get:
A|B= al;(aslle®asl2;(A||B)[1bI;R)

[1 bl;(as21@as22;(A||B)[lal;R)

Thus, it is clear that the resulting behavior is equal to
interleaving of the behaviors of the two processes
without the overlapping of their atomic actions.

As mentioned, in LOTOS there are some high-level
composition constructs that can be used in splitting
systems into modules that can be:

1) executed sequentially using the enabling

operator> >,

2) executed concurrently using the composition

operator ||,

- 8) executed by having a process disabling another
using operator [>.
In doing so, the design process becomes in principle
easy. However, as mentioned in Introduction, usually
it is not easy to split systems into several concurrent
components because of the high level of the
concurrency that is involved in LOTOS.

For instance, suppose that one wants to build a
send-receive protocol by performing the parallel
composition of a sender and a receiver. This will
normally not be possible because of the interleaving
that is involved in the language, namely sender and
receiver will be able to interleave at each elementary
operation and there is no way of preventing them from
doing so, short of using semaphores. In other words, a
protocol specification described by existing LOTOS
language operators is either ambiguous and unreliable
or cumbersome. In order to specify reliable protocol in
elegant way we make use of proposed LOTOS
extension.

The protocol entity (Fig. 4) that we want to specify
should provide a data sending service as well as data
receiving service. The entity will get data from a user
via gate "from__user”, send it via a medium at gate
"to__ medium”, receive data from a medium via gate
"from__medium” and deliver it to a user via gate
"to__user”.

First, let us specify the sender:

sender: = from__user ® to__medium ; sender
then the receiver:

receiver :=from__medium ® to__user ; receiver
The whole entity will be then:

protocol : = (sender || receiver)

By expansion we get:
sender || receiver

= from__user ® (to__medium ; sender | receiver)

[1from__medium ® (sender |r to__user ; receiver)

= from_user ® to__medium ; (sender || receiver)

[1from__medium ® to__user ; (sender || receiver)

P d ’
from__user to__medium
user medium
J— receiver ?-
to__user from__medium

Fig.4 Protocol entity

Atlast, protocol := from_user ® to__medium ; protocol

[from__medium ® to__user ; protocol
Therefore, by combining in parallel the two processes,
we have obtained a system that provides the two
functions, unambiguously.

5. Conclusion

We research specification mechanisms to allow
some critical part of LOTOS processes to recover after a
manifestation of an error. Namely, a notation for
specifying an atomic action, named LOTOS Atomic
Process LAP is proposed. Automatic implementation
and execution of LOTOS specifications is important
step in design of distributed software systems. It can be
especially useful in rapid prototyping in distributed
environment where system functionality checking is in
focus and efficiency is less important. The results of our
research can be applied for designing simulators of
LOTOS specifications.

References:

[1] B. Randell,“ System Structure for Software Fault
Tolerance,” IEEE Trans. Software Eng., Vol. 1, pp. 221-
232, June 1975,

[2] T. Anderson and P. A. Lee, Fault Tolerance, Principles
and Practice, Prentice-Hall, 1981.

[31 F. Christian,“ Exception Handling and Software Fault
Tolerance,” IEEE Trans. Comp.,Vol. 31, pp. 531-540,1982.

[4] T. Bolognezi and E. Brinksma,“ Introduction to the ISO
Specification Language LOTOS,” Computer Networks
and ISDN Systems, vol. 14, North-Holland, 1987.

[51 P. Jalote, R. Campbell, "Atomic Action for Fault Tolerance
Using CSP,” IEEE Trans. Software Eng., vol 12, no. 1, pp.
59-68, Jan 1986.

61 C. A. R. Hoare,” Communicating Sequential Processes,”
Commun. ACM, vol. 21, no. 8, pp. 666-677, Aug. 1978.

n G. Bochman, Q. Gao and C. Wu, “On the Distributed
Implementation of LOTOS,” in Proc. 2nd Int. Conf.
Formal Description Techniques, Canada, Dec. 1989 .

81 D. Jokanovic and M. Ohta” Supporting fault tolerance in
distributed LOTOS environment,” Tehnical Report of
IEICE, FTS 92-12 (1992-09).

